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ABSTRACT

An elementary procedure is outlined for obtaining zero approximation eigen-
functions of many electron problems. The procedure allows a calculation of these
functions as linear combinations of products of functions, each involving one electron
only. The proper combination of products for one of the terms of highest multiplicity
may, as a rule, be obtained by inspection; the remaining functions are obtained from
this by the use of angular momentum operators. The "strong field" eigenfunctions for
equivalent and non-equivalent electrons are obtained first, and from these are found
the "weak field" eigenfunctions. The usual solution of the secular equation is unneces-
sary wherever the resultant states may be interpreted as having a definite and known
kind of vector coupling (e.g. Russell-Saunders, or (jj)).

HE solution of quantum mechanical problems involving many electrons
is usually carried out by means of a perturbation calculation. In the case

of degenerate systems the direct method of performing the calculation in-
volves the solution of the secular determinant. This step is frequently awk-
ward. In some cases it may be avoided by the use of the method of sums. In
other cases it is possible to use general theorems about the form of angular
momentum matrices, as for instance in the derivation of the Lande g factor.
The method of sums is however not always sufhcient to solve a given prob-
lem, and the use of matrices is often dificult. We describe below a systematic
and elementary way of automatically solving the secular equation, i.e. re-
moving the degeneracy, for any case in which the angular momenta of the
resultant states are known. For such cases the "zero approximation func-
tions, " which are linear combinations of the complete set of functions de-
scribing the degenerate problem, may be formed directly by a simple applica-
tion of certain angular momentum operators. Having the "zero approxima-
tion" eigenfunctions the perturbation energies are obtainable by direct in-
tegration. Needless to say, this method is applicable only for cases of definite
and known vector coupling, such as Russell Saunders or (jj), and not for
unknown intermediate couplings.

The general method can be explained by considering a single p electron
which gives rise to 'P states. If the coupling between the orbital motion and
the spin is weak, the following "strong field" eigenfunctions may be con-
structed: PI... Pp. .. P i... Pi, , Pp, , P I, ; wherethe erstsubscriptgives
the value of the orbital magnetic quantum number m&, and the second gives
the spin quantum number I,. If the possible orbital functions are denoted by
NI, Np, I I, ancl the two spin functions by s+ and s, the 'P&, ; term must be
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represented by e" ujs+ where 0 is a real number. For simplicity we let 0 =0.
In order to form the other functions we use the formulas

(J, + zJ„)P(j, m)

(L, + zL„)u(l, m, )

(S, + iS„)s(s, m, )

(J, —iJ„)$(j,m)

(L, —iL„)u(l, m, )

(S, —iS„)s(s, m, )

(j + m) '"(j —m + 1)"'P(j, rl —1)

(l y 'm ) '/'(l —m, y 1)'"u(l, m, —1)

(s + m )'/'(s —m, + ].)'/'s(s, m, —1)

(j —m) z/z(j + m + 1)z/Q(j, m + 1)

(l —m, ) '/'(l + m, + 1)'/'u(l, m, + 1)

(s —m, ) '/'(s + m, + 1)'"s(s, m, y 1) .

Here f(j, m) denotes the "weak field" eigenfunction containing both spatial
and spin coordinates, (the symbols j, m are here suffixes), and represents a
state of total angular momentum j, and total magnetic quantum number m.
The function u(l, m/) contains only spatial coordinates and represents a state
of total orbital angular momentum /, and orbital magnetic quantum number
m~. Similarly s(s, m, ) contains only spin coordinates and represents a state of
total spin s, and spin magnetic quantum number I,. Again /, m~, s, m, are
suffixes.

(J„J„,J,) = (I„+S, Ly + S„,L, + S,)

where by definition the components of the total angular momentum operatorjare the sums of the components of orbital and spin operators I and 8.
Successive applications of the operators L,+iL„and S +iS„starting with

'P&,~„will give immediately all the "strong field" functions, but in this simple
case the "strong field" functions can be written down at once without use
of the operators.

The "weak field" function 'Pz/z (m =3/2) must be equal to the "strong field"
function 'P&, .; since a stationary state in which the value of rn is a maximum
can arise only when m~ and m, have their maximum values. The zPz/z (m =-', )
eigenfunction will be a linear combination of the "strong field" eigenfunctions
zP& . and 'Po, ;. Applying the operator (J,+iJ„) to the term zPz/z (m =3/2)
gives the proper combination of these terms and automatically the proper
normalization factor. Further applications of the operator lead to the remain-
ing "weakfield" functions for the zPz/z term The 'P.; (m=-', ) term may be
obtained by'constructing a combination of 'Po, ; and 'P&, ; which is normal,
and orthogonal to 'Pz/z (m = —', ).The 'P; (m = ——',) term may be obtained from
this by operating with (J,+iJ„)or by constructing a function orthogonal to
Pz/z (m z) in a way similar to the above. All the 'P eigenfunctions are

listed in Table I. In this and the following tables the symbol representing the
term stands for the corresponding eigenfunction also.

When dealing with states arising from two or more non-equivalent elec'-

trons, different orbital functions must be used. Thus for the combination of
a p and a d electron which gives rise to singlet and triplet P, D and Ii terms,
there appear the orbital functions v. ~, uo, n ~ for the p electron and v2, v~, vo,

~ H. Weyl, Gruppentheorie und Quantenmechanik, Kapitel IV.
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TAaLa I. 'P eigenfQnctions arising from a p electron.

"Strong field" "Weak field"

Pi, & =Q1S+
2pp, =QpS
P 1,i =Q 1$+

2P1 —~i Qis
2pp, —-', =Qps-
P 1, i=Q 1$

2P3/2(m =3/2) ='Pl, ~

'P3/2(m= -', ) =1/3i(2'/"P ~+'Pi &)

2P3/2(m = 2) = 1/3i(2p-1 -i+21/22Pp —i)
2P3/2(m = —3/2) ='P 1,=~
'P (m=-', ) =1/3'/"Pp ——2'/"Pl =)
2P~(m= —-', ) =1/3l(2'/22P 1 ~ —'Pp ~)

=Q1$~
= 1/3'/'(2'/'Qps++Qis )
=1/3'/'(Q is++2'/ Qps )
=Q 1$
=1/3'/ (Qps+ —2/ Q]$ )= 1/31/'(2'/'Q 1$ —Qps )

v 1, v 2 for the d electron. To satisfy the exclusion principle, the total eigen-
function must be made antisymmetric, and since the only combination of
spin functions giving m =1 is s+Is+", the antisymmetric orbital combination
1/2'"(u~r sz —ur '

v& ) must be used to obtain 'Fz
&

1 Ills I N, IIs II
3p + 1 +

21/2 p Is I p IIs II

The superscripts refer to the number of the electron. Operating on 383 1 with
gr, rr (L*+ iL „) gives

Q(L, + iL„)'Fa, g
——6"''Fg

g

1 2 / g S g s $ I S I 21/2N IIs II

21 2 I

The sum of these two determinants is equal to the sum of two other determi-
nants

S S I 21/2N IIS

21/2 ~Is I
2 +

1 Nl S+ Nl S+

21/2 2p, ls+ 2z 1"s+II

These new determinants are obtained by expanding each of the former
by the column changed by the operator and then recombining by rows. The
result of this expansion and recombination is directly obtained by applying
the operators to the rows instead of to the columns. It is seen that this is
applicable to all the cases considered. The advantage of the second form is
that the columns of any one determinant are all the same except for the
electron index. Thus the notation can be abridged by writing only one column
of each determinant. For example:

1 I1$+
'Fg, y

= i Q(L, + iL„)'F, , g
=

~2S+ I,II

Ips+ I1$++ 21/2 etc.
'V2S+

All the'F terms can be obtained from'F~ ~ byoperating wither, n(L, +iL„)
andgr n(S, +is„).

The procedure outlined above applies in general with the obvious gen-
eralization of using three kinds of orbital functions in the case of three elec-
trons, etc, Two electron eigenfunctions may be separated into products of
spin and orbital functions. For triplet states there are three symmetric spin
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functions sq =sos+'r, so = 1/2"'(s+rs n+s rs+n), s ~ =s zs n, and for singlet
states there is only one antisymmetric function

s, = (s's" —s's").
21/2

To satisfy the exclusion principle, the orbital eigenfunctions for triplet
states must be antisymmetric, and may be represented by determinants. For
singlet states the orbital functions must be symmetric and may be written as
"permanents" thus:

(
Qy

g I~II+ III~I
'V2

The 3F eigenfunctions arising from the combination of a p and a d electron are
listed in Table II.
TABI.H II. "Strong field" 'F eingenfunctions arising from the combination of a p and a d electron.

The subscrijt i can take the values I, 0, —1, where s~, so and s. ~ have the values given above.

J"3,, ——1/(2)'i' ug i ss
v~ I

3P2 $ = 1/(6)~i2f2«2 /u1 + uo ' ass
l» v~ f

3P;=]/(60)«~f(12)«2 /ui +4 u
' +2'12 u g gs;

Ivo

'Fo, =1/(20)' 'f2' ' iud +6"'
lv-~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

'F 3,, =1/(2)'~' u ~ ts;
vg)

uo t
+2"' lu-i

vo ' I» f

P3 p may be found by making a normal function which is orthogonal to
3F3,p. This amounts merely to changing the sign between the two determi-
nants representing the 'F3, p term. An easy consideration shows that the 'Il
functions are obtained from the F functions by substituting for each determi-
nant the corresponding "permanent" e.g. , by substituting for ~"„,

'
~

the
expression („",')—=ugv~n+u, "v,', and by substituting so for s;. The same
connection between singlet and triplet functions exists for all two-electron

configurations.

TABLE III. 'D "strong field" eigenfunctions arising from the combination of a P and a d electron.
The omitted functions are easily constructed.

'D2, , =

'Do, '=

3D

Sp )Sj

1/6''flui
' —2'i" uo Ls;

» f
1/(12) i' 3 ~ u] —2«u

v2
1/2'i"f u& — u & s;

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1/6«' (2)'~' uo —
,

'u y s;
V—2, v—1
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'D&, & is orthogonal to 'F» and is obtained from it by changing the sign
between the determinants. The other 'D functions are obtained from 'D2 & by
use of the operators, and are listed in Table III.

For two non-equivalent p electrons the procedure is exactly like the above
except that now there are orbital functions u~, up, u ~ and v~, vp, v ~. If, however,
the two p electrons are equivalent, simpli6cations occur since the orbital func-
tions for the two electrons are the same. Consider first the 'D state arising
from this configuration. For the 'D2, p state only the combinations u&' s+'u &"

s "and u& s u&" s+" may be used, and their antisymmetric combination,
written in the abbreviated notation is

QyS+
D2, 0

Q~s

All the 'D eigenfunctions may be obtained from 'D2, p by successive applica-
tions of the operator gz, zz(1- +iI-„)or from zD—~, 0 by use of pz, zz(L —il &)

The 'D eigenfunctions are found to be:

QpS+
'Di, p

=— +
2 Qys

Qps+

QpS

Q ps+. QpS+ Q ps+
Dp, p + 2 +

Q,s QpS Q ys

The 'I' eigenfunctions may be obtained from either 'P&, & or 'P j,&. Either
one of these can be constructed by inspection as was done for 'D2 p. Having
either of them the remaining 'I' eigenfunctions are obtained by using

Pz, zz(&*+&&zI) andgz, zz(S, +iS„)orgz, zz(I —zI „)andPz zz(S, —iS„).These
eigenfunctions are found to be:

1 QyI l,i
Qy

Si) Ip
2'~'

1 Qp
~ 3DSi) P si.

Sp p must be a linear combination of the three eigenfunctions having a
resultant mI, and ns, equal to zero, so

Qps+
'Sp, p

= A + 8
Q ys

Q ps+. QpS++ C
Qys QpS

Since 'Sp, p must be orthogonal to 'D p, p and 'Pp, p and must be normalized th'ere

are three conditions for determining the coefEicients A, 8, and C, namely:

These conditions determine 'Sp, p to within a factor of absolute magnitude one,
and it is found that
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NpS

NpS+ I iS++
Ni S

The method outlined above can be very simply extended to a combination
of three or more electrons. For n electrons the determinants are of order n.

If the electrons are non-equivalent, a different orbital function must be
used for each, and the calculation may become clumsy. It is always definite
however, and if the electrons are equivalent, the calculation is very much
abridged. Eigenfunctions for three equivalent p electrons, calculated by this
method, are listed in Table IV.

TABLE IV. 2P and 'D "strong field" eigenfunctions arising from the combination of three equiv-
alent P electrons.

'D ~ =1/6'
ups+
uls
QpS+

2D2 1 = 1/6. /2
ups+
ul, s
Qps

( 1 ups+ t ups+
'Dg, , ——1/12~'( cups

~ + jugs j
QpS+ ul S+

2D] ~ = 1/12'l' u]$ + u]$
ups u ys

'Dp ~ ——1/6
ups+ ui s+
Q ys +2 Qps +
ups+ u ps+

QpS+
uls Dp, =i~ = 1/6
u —as+ J

u ps+ ups+ u],$+
ups +2 u] s + ups

i ups- I
u ]s

I
u —gs

'D g
~ ——1/12'i'2

) Qps+
upS
u ps+

ul $+
+ u l s

u l,s+.

Q ps+ Qps+
D y =~ = 1/12~~ ups + Qps-

u js u&s

2D—2 1 = 1/6 /2
f ups+
u ls
u ps+

'D 2 =~ ——1/6'~2
Q ps+
ups
u ys

ul, s+ ul.s+.
'P~ ~ = 1/12'"~' Qps + u ]Sy

ups+ ups

ul, s
'Pq, ~ =1/12-'~' Qps

] Qps+

ul, s+
+ ups

ups

2Pp x =1/12&/2
ups+
Q ys

,
ups+

ups+
+ u ]s+

ups

ul, s
2Pp 1 1/12l/ 2 ' ups

Iu ps+

ups+.
+ u ys

QpS

,
ups+ upS+

P y, -', =1/12 u ys + Q ps+,

ju ps+
/

/ups

ul, s ups+
'P ~=~-=1/12-'~' u ys + u ys

~

Q ps+ ups

The "weak field" eigenfunctions for a particular state can be obtained
from the "strong Beld" eigenfunctions of that state by forming linear com-
binations in the proper way. Since the weak and strong field levels are the
same for singlet states, the weak and strong field eigenfunctions are the same
for singlet states. For states of multiplicity higher than one the procedure
is as follows: the "weak field" eigenfunction having the largest value ofj and
the maximum value of the corresponding m is the same as the "strong Geld"

eigenfunction with the maximum values of m~ and m„ i.e. ~P2(m =2) ='P&, &.

'The 'P2 eigenfunctions for the other values of m may be obtained from the
'P2(m=2) eigenfunction by applying the operator g(J,+iJ„). The ~Pz

(m = —2) eigenfunction might have been obtained by inspection and the re-
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maining eigenfunctions calculated by means of the operator g(J —iJ„).
This affords a check on the work. It is seen that the use of the+(J, +iJ„)or
g(J, —iJ„) operators is equivalent to making linear combinations of the
"strong field" eigenfunctions. These operators give the proper linear combina-
tions and normalization factors automatically as well as checking each other.
The sPi(sss = 1) eigenfunction must be a linear combination of the two "strong
field" eigenfunctions for which m~+m, = 1, that is of 'P1, 0 and Po 1. Since the
sP, (m =1) eigenfunction must be orthogonal to sPs(sss =1) and is to be nor-
malized, it can be determined to within a factor of absolute magnitude one.
Successive applications of g(J,+iJ„)will give all the Pi eigenfunctions. It
will be found that there will be just enough conditions to determine the 'Po, o

eigenfunction. It is easy to see that this procedure is applicable in general.
This "weak field" eigenfunction for 'P states arising from the combination
of two equivalent p electrons are:

'Ps(res = 2) = 'Pi, i,

1
Ps(sss = 1) = I'Pi, p + 'Pp, iI 'Ps(m = —2) = 'P i

21/2

1
Pi(sis = 1) = I'Pp i —Pi p}

21/2

1
sPp(sss P) IsP, , + sPp p

—sP , , I31/2

It is to be observed that the proper linear combination of "strong field"
eigenfunctions to form "weak field" eigenfunctions for a given state is inde-
pendent of the electron configuration giving rise to that state. In the calcu-
lation of "weak field" functions it is also not necessary to write out the "strong
field" functions explicitly, but it is sufficient to apply the operators to a
"strong field" function r/s(sssi, m, ), the operators L,+iL„and L, iL„applying-
to the first index m&, S,+iS„,S,—i S„applying to the second, ns, .
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the use of angular momentum operators and kindly advised us during the
preparation of the paper.


