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The Heat Cayacity of Methane

D. S. Villars and G. Schultze (Phys. Rev.
38, 998 (1931)) have recently published a
paper on the rotational heat capacity of
methane gas. By applying the results of Hund
and Elert, they obtained the a priori proba-
bilities of the rotational states and the series
expression for Q=p;p;e ""er. According to
Villars and Schultze, symmetry and nuclear
spin result in the existence of three non-
combining types of methane, quintet, triplet
and singlet. They have calculated rotational
heat capacities for each of the three varieties;
for the metastable mixture of 5/16 quintet,
9/16 triplet and 2/16 singlet, and for the
equilibrium mixture. The heat capacity of the
metastable mixture is that of what we night
call "ordinary" methane, while the equilibrium
heat capacity is that which would obtain in
the presence of some hypothetical catalyst.
The results of Villars and Schultze indicate
that the rotational heat capacity of methane
reaches a maximum around 50'K and then
falls o& to about 0.6 R at 175', where it is
apparently still decreasing. This result was
very surprising, since it seemed to us that She

equipartition value of 3/2 R should have been

equation equally well at the boiling point and
at room temperature led us to recalculate the
results of Villars and Schultze.

Assuming methane to be a regular rigid
tetrahedron, the rotational energy levels are
given by the equation'.

From the de6nition, 0 =h'/8''IkT, we have
the following expression for the rotational
heat capacity'

d2 inQC„= cr' ~2 Q
dg' Q2

For I, the moment of inertia, we have used the
Raman value, 5.17)&10 " gm cm' (Dickin-
son, Dillon and Rasetti, Phys. Rev. 34, 582
(1929)), which was also used by Villars and
Schultze. We have used the same a priori
probabilities as those given by Villars and
Schultze.

An evaluation of Q, (dQ/da-) (d'Q/do-') by
summing, and substitution in the above equa-
tion for C„, gives the results in Table I, and

TABLE I. Rotational heat capacity of methane.

T'K

3.84
7.68

12.80
19.20
25.60
30.72
38.40
43.89
51.20
61.44
76.80

153.60

Quintet
C„/R

0
0.006
0.276
1.354
2.255
2, 432
2. 198
1.971
1.747
1.589
1.516
1.500

Triplet
C,/R

0.035
0.481
0.981
1.328
1.457
1.487
1.498
1.499
1.500
1.500
1.500
1.500

Singlet
C„/R

0
0.003
0.030
0.219
0.537
0.794
1.101
1.250
1.374
1.456
1.492
1.500

Equilibrium
C„/R

0.499
0.941
1.347
1.733
1.838
1.798
1.688
1.621
1.563
1.527
1.504
1.500

5/16 Quintet
9/16 Triplet
2/16 Singlet

C,/R

0.020
0.290
0.642
1.198
1.592
1.696
1.667
1.615
1.561
1.527
1.504
1.500

reached by this temperature. If their results
were correct, the experimental value of the
entropy of methane at 298.1' would be con-
siderably in error, since it has been obtained
from the third law value at the boiling point

by assuming the rotational heat capacity of
the gas to be 3/2 R from the latter tempera-
ture to 298.1'K.

The fact that the experimental entropy
agrees with that calculated from the Tetrode

those plotted in Figs. 1 and 2. In Fig. 1, the
three curves represent the heat capacity of the
three kinds of methane, while in Fig. 2, the
two curves are for the equilibrium mixture
and the metastable frozen mixture. Above the
temperature range of the plots, the heat
capacity curves are virtually straight lines,
coincident with C„/R = 1.5.

Our results differ considerably from those
of Villars and Schultze. Below 40', the two
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Fig. 1. Rotational heat capacities of methane. A, quintet. 8, triplet. C, singlet.
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Fig. 2. Rotational heat capacities of methane, Squares, equilibrium.
Triangles, frozen.



2298 LETTERS TO THE EDITOR

sets of results agree fairly well, except for the
case of the equilibrium mixture, but at higher
temperatures the difference is very marked.
As may be seen from Fig. 2, according to our
calculations, the heat capacity after reaching
a maximum, descends asymptotically toward
the equipartition value, which it reaches,
within a few thousandths of a calorie, at a
temperature of 100'K. We have been unable
to discover the source of the large deviation,
but suspect it lies in the evaluation of the
sums involved.

For the sake of completeness, we have cal-
culated the vibrational heat capacity at room
temperature. Use is made of the same equation
as in rotation, namely C/R=(0'd'1nQ/do-')
but in this case we substitute vibrational
energies in the expression for Q. With the

frequency assignments of Dennison (D. M.
Dennison, Astrophy. J. 62, 84 (1925)) and

assuming simple harmonic motion, we obtain
C„&»8'&/R=0. 296. For the heat capacity of
methane at room temperature, therefore, we
have 3/2 R for translation, 3/2 R for rotation,
R for C„—C, and 0,296 R for vibration. Thus

C„» ' = 8.54 cal. mole ~.

The International Critical Tables gives C„
=8.47 at 15'C, and at this temperature our
calculated value would be 8.45.

D. P. MAcDovowr. r.

Chemical Laboratory of the Uni-
versity of California,

Berkeley, California,
November 18, 1931~

An Estimation of the Spectrum of the Element of Atomic Number 87

During the past two years I have been
examining the optical spectra of mineral con-
centrates in an effort to identify the ries
ultimes of the missing alkali element, eka-
caesium. A comparison of alkali spectra shows
that the principal series spectrum of this
element will be characterized by a widely
separated doublet in the red region, and a
closer doublet in the violet. K. T. Bainbridge, '
basing his computations on the similarity of
the spectrum of Ra II with that of un-
ionized eka-caesium, has estimated the wave-
length of the 1'S—2'P2 line to be 7600 + 200A,
and that the component of lesser intensity,
1'S—2'P~, is further in the red at 8720 + 200A.
F. H. Loring' has made another estimate,
based on Hick's equation for series spectra,
which lead to values of 8061A for the 1'S
—2'P2 line, and 4831A as the wave-length of
the 1'S—3'P~ line, Both estimates of the
1'S—2'P~ line place it in a region of poor
photographic sensitivity, indicating that for
purposes of identification, the 1'S—3~P2 tran-
sition, though theoretically not the most per-
sistent line in the spectrum of the element,
will be more important than the true raie
ultirne in the red. As the approximated wave-
lengths of the red line diAer considerably from
each other, corresponding doubt is placed on
the estimate made by Loring of the wave-
length of the line in the violet region. In
general, a more exact knowledge of the posi-
tion of the individual lines, together with in-
dependent estimates of the doublet separa-
tions, are desirable.

Unfortunately, the methods which led to
the exact elucidation of the spectra of stripped
atoms of the initial series of the periodic table
are not applicable to the present case owing
to the paucity of analyzed spectra in the 7th
period. Spectral regularities in a group of
elements, as observed by Ramage' among the
atomic weights of the alkalis, or by Hicks' for
their atomic volumes, ' cannot be used for ex-
trapolating the spectrum of eka-caesium be-
cause of a lack of generality in the correla-
tions.

In an effort to estimate the spectrum of the
missing alkali, I observed that for any spectral
term T, in a periodic group-of elements, the
quantum defect Q, is roughly a linear function
of the total quantum number n, of the valence
electron. If Q is known, T can be calculated
from the relationship: (1) T=r'R/(n —Q)',
where R is the Rydberg constant and r —1 is
the degree of ionization of the atom. Though
this relationship is not precise, it is singularly
free from manifest exceptions (see Fig. 1).
This generality has been tested and found
to be true for the S, P, D, P, G and H levels
of the neutral alkali atoms, the singlet and
triplet S and P levels in the spectra of the
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