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ABSTRACT

A general reciprocal relation, applicable to transport processes such as the con-
duction of heat and electricity, and diffusion, is derived from the assumption of mi-

croscopic reversibility. In the derivation, certain average products of fluctuations are
considered. As a consequence of the general relation S=k log W between entropy and
probability, different (coupled) irreversible processes must be compared in terms of
entropy changes. If the displacement from thermodynamic equilibrium is described
by a set of variables a&, , a, and the relations between the rates u&, , a and
the "forces" BS/dn1, , 8S/du are linear, there exists a quadratic dissipation-
function,

2 4 (a, n) =—ZP, n;; Ot; =dS/dt =S(a, ~) =—Z(BS/dn7)lx7

(denoting definition by =—), The symmetry conditions demanded by microscopic
reversibility are equivalent to the variation-principle

5(a, ~) —C(a, n) =maximum,

which determines a1, , n for prescribed o,1, ~ ~ ~, a . The dissipation-function
has a statistical significance similar to that of the entropy. External magnetic fields,
and also Coriolis forces, destroy the symmetry in past and future; reciprocal relations
involving reversal of the field are formulated.

I. INTRQDUcTIQN

N A previous communication' a reciprocal theorem for heat conduction in. an anisotropic medium was derived from the principle of microscopic re-
versibility, applied to fluctuations. In the following we shall derive reciprocal
relations for irreversible processes in general, particularly transport processes:
conduction of electricity and heat, and diffusion.

As before we shall assume that the average regression of fluctuations will
obey the same laws as the corresponding macroscopic irreversible processes.
In (I) we considered iiuctuations in "aged" systems, i.e. , systems which have
been left isolated for a length of time that is normally sufficient to secure
thermodynamic equilibrium. For dealing with the conduction of heat we
naturally considered the fluctuations of the distribution of heat, and we stud-
ied the behavior of the quantities o.~, o.~, o. 3 = the total displacements of heat
in the directions x&, x2 and x3, respectively.

We brought the laws of irreversible processes into the theory of Huctua-
tions by studying averages

ng(t)n, (t + r) = lim —— n~(t)ng(t + r)dt
5"—~m $ —$ g

(1.1)

' L. Onsager, Phys. Rev. 37, 405 (1931).Cited in the following as (I).
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of the values of two fluctuating quantities ni and n& (in this particular case
displacements of heat in two perpendicular directions) observed with a pre-
scribed time interval v. The condition of microscopic reversibility we applied
in the form:

ni(t)ng(t + r) = ag(t)n, (t + r) . (1.2)

The calculation of averages of the type (1.1) involves several steps. First
of all, something must be known about the distribution of values of the fluc-
tuating quantities n1, n2 ~ ~ ~, we shall employ standard methods for cal-
culating the average products:

0!1
&

A 10.'2& (1.3)

with but a slight variation. In addition, we must know the average changes
(of quantities n. , n3 . ) which accompany a given deviation ni of a quan-
tity ni from its normal value ni(=0). On this basis a certain t'rutfal state of an
irreversible process is associated with the displacement n1 =n1,. the average
regression towards the normal state will obey the ordinary macroscopic laws
governing such processes.

The average regression is described by the functions:

n;(r, n, ')

defined as the average of the quantity n, , taken over all cases, (picked at ran-
dom for an aged system), in which, r seconds earlier, the quantity n; had the
value n . Whenever these functions are linear in o. , which will be the com-
mon case when reasonable variables n are chosen, the knowledge of the av-
erages (1.3) suffices for evaluating (1.1).

In (I), (4, we derived reciprocal relations for heat conduction in an aniso-
tropic body, showing that the conducting properties of the most general (tri-
clinic) crystal can be represented by a symrrtetrical tensor (ellipsoid). In that
particular case it was not necessary to calculate the averages (1.3), nor to de-
termine completely the state associated with a displacement n1 =a1', because
the necessary information could be derived from considerations of symmetry.
Even so, these considerations were based on the proposition that, in regard
to the probability for a given distribution of energy, the different volume ele-
ments of a homogeneous crystal would be equivalent, so that the anisotropy
of the crystal could be neglected in this particular connection. This proposi-
tion involves the fundamental principles of statistical mechanics although it
obviates a part of the general mathematical apparatus.

We shall review the derivation brieHy. If J1, J2, J3 denote the components
of the heat How along the coordinate axes x1, x2, x3, respectively, and T the
absolute temperature, the phenomenological laws of heat conduction in a tri-
clinic crystal take the general form

~1 L'llx1 + L 12X2 + L13X3

L 21xl + L 22X2 + I23X3

J3 = L31X1+I-32X2+ L33X3

(1.4)
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where Xi, X2, X~ are the components of the "force" on the heat flow

X, = —(1/T)BT/dxl) X2 = —(1/T)BT/dx2, X3 ———(1/T)c)T/dx3 (1.5)

(Carnot). In order to derive the reciprocal relations

Li2 = ~~i) L~3 = L3~) L3i = Li3

we considered the fluctuations of the moments

~x&dV

~x~dV

(1 6)

of the distribution of energy, 2=2(xl, x2, x3). When we chose the external
boundary of the crystal spherical, center at the origin, all questions pertain-
ing to theAzstanfane021s distribution of energy have spherical symmetry (cf.
above). Thus

A2 —0& Ai = A2
&

(XI(X22 — 2 ~ (1 &)

and with a displacement of energy there is associated a temperature gradient
in the same direction:

BT/dxl ' ' 2 = TX1(!21 r)r2 ) = CTcl!1

TX2(c21 r 122 ) = CT!22
(1.8)

where C is for our immediate purposes a mere constant. (Certain rather
trivial considerations are needed to justify our assumption of a linear rela-
tion between displacement (c21', n2') and gradient (TXI, TX2). When we ta ek
that much for granted, the more special form (1.8) follows from the spherical
symmetry. )

The gradient (1.8) determines the heat flow J according to (1.4), and the
rate of change n of the displacement o. is the same as the total flow

,') = r v's = frrv = —cv, !r„,'+ r„,'+r.„,'). .
(1.9)

c22(121 I 122 I c23 ) CU(J 21121 + 122122 + J23r23 ) ~

Then in a short interval of time At

I 2(~fr c21 ) 122(01 121 ) + c22(r21 )Ak = 0 L21CU121 D1)

where c22(0, c21') vanishes by symmetry. From this, obviously

c21(/)c22(5 + D$) = c21 c22(6$) cvl ) = I 21CUcrl

and, by analogy

c22(t)121(t + 6),') = —1.12CUc222hf.
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Since, by (1.7): nP =nP, the requirement:

for microscopic reversibility imposes the condition:

The more general case of simultaneous transport of heat, electricity and.

matter (diffusion) in isotropic or anisotropic media leads us to consider the
Huctuations of a set of variables n1, o.2. ~ ~ ~, measuring displacements of heat,
electricity and matter, eventually in different directions. We shall have to
actually evaluate the averages (1.3); symmetry considerations can yield the
necessary information only in a few cases, as above. The calculation of (1.3)
involves directly Boltzmann's fundamental relation between entropy S and
probability W:

5=k log 8'+constant
The exceedingly general character of this relation is the reason that the rates

of irreversible processes, not solely the ultimate equilibrium, are subject to
reciprocal laws, in which different processes have to be compared in terms of ttte

entropy changes involved.
Sometimes, of course, it may be more convenient to employ other thermo-

dynamic potentials, particularly the free energy, the main reason being that
conditions of mechanical equilibrium (pressure, elastic) frequently enter into
the laws of irreversible processes, and that the description in terms of energy
involves more familiar derived functions (thermodynamic potential, electro-
motive force, electrical resistance). Above, we purposely considered the
"force" on heat, although the concept was not necessary for dealing with the
problem in hand, just to demonstrate how the concept of "force" could be ex-

tended beyond the familiar.
Fundamentally, however, the entropy is the simplest among the thermo-

dynamic potentials, and it is the only one that will serve our purposes in all

cases. In our example, where displacements n1, n2, n3 of heat are considered,
the state of the system being determined by these displacements, so that

S = o(n, , n, , n, ),
the temperature gradients are essentially the same as BS/dn& etc. , or rather

Ba/da„= B(1/T)/dx„

In order to see this, we recall the fundamental thermodynamic relation

8S= (1/T) (5E—5A) —(p/T) bm,

where A=energy; A =work; ttn=amount of substance; p=Gibbs' thermo-

dynamic potential. The amount of heat added to a volume element is

6Q=SZ —bA. Now if there is a uniform gradient of temperature (or 1/T
in the r-direction, then an amount of heat 5Q transported a distance Ax,

changes the entropy by the amount

8S = 8Q D(1/T) = 8Q Ax„B(1/T) /dx„= 8 „8(1/T) /dx„
whereby bn, measures a displacement of heat (in units cm Xcal.).
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Similarly, where a displacement n of matter (in the x direction) is con-
sidered,

Ba/du = —B(p/2')/dx,

and if n is a displacement of electricity, then

B~/dn = X/2",

where X is the intensity of the electric field.
According to the empirical laws of transport processes the fiow J of mat-

ter, heat or electricity is proportional to the gradient of the corresponding
specific potential, that is

J ~ —grad T
for heat conduction and

J~X; J~ —gradp, ,

respectively, for electrical conduction (Ohm's law) and isothermal diffusion
(alternative form of Fick's law). In the following we shall write these em-
pirical relations in the general form

dn„/dh = ri„BS/dec„,

where the rate of displacement n is essentially the same as the flow J, (by
deffnition), except for a volume factor. Whenever different transport pro-
cesses interfere with each other the simple proportionality is replaced by a
system of linear relations

ri„= G„gBO/dn, + +G,„Bo/do.„, (r = 1, , e), (1.11)

where again 5=0(n~, n„). In taking for granted the linear form (1.11) we
are still making use of empirical laws, mostly familiar, which are understood
and expected from simple and equally familiar kinetic considerations of very
wide scope. Examples have been enumerated in (I), )( 1—2, and need not be
repeated here.

Our object is to show that the condition (1.2) for microscopic reversibility
leads to the general reciprocal relation

(1.12)

2. GENERAL THEORY OF FLUCTUATIONS

It was shown by L. Boltzmann that a mechanical theory of molecules re-
quires a statistical interpretation of the second law of thermodynamics.
Thermodynamic equilibrium is explained as a statistical equilibrium of ele-
mentary processes, and Boltzmann gave a direct relation between the en-
tropy 5 and the "thermodynamic probability" 8' of a thermodynamic state:

5 = k log 8'+ const. , (2 . 1)

where k is the gas constant per molecule (1.371 X10 "erg/degree). The ap-
parent rest associated with thermodynamic equilibrium is explained by the
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smallness of the factor k. According to (2.1), under circumstances which nor-
mally lead to such equilibrium, the probability

eked/k

for a deviation involving an entropy change AS (necessarily negative), is ap-
preciable only when AS is (at the outmost) of the order of magnitude of k.

The fluctuations permitted by this restriction can be observed only in very
favorable cases, for example the opalescence of liquids near the critical point'
and Brownian motion of small particles in liquids, ' or of a mirror in delicate
elastic suspension. 4

The premises and the consequences of Boltzmann's principle (2.1) have
been discussed by A. Einstein to an extent which will be practically sufficient
for our purposes. It is essential that a thermodynamic equilibrium state,
specified in terms of energy and external parameters (volume etc.), is incom-

pletely specified from a molecular point of view; the quantity W measures
the number (or extent) of difl'erent possibilities for realizing a given thermo-
dynamic state. In order to calculate W one needs a complete (molecular)
theory of the system in hand: If one assumes that molecules obey the laws

of classical mechanics, then 8' equals an extension in phase-space, while on
the basis of quantum theory 8' equals the number of stationary states cor-
responding to the prescribed energy. However, as Einstein has pointed out,
the calculation of fluctuations according to (2.1) is independent of a/l special
assumptions regarding the laws wkictt may govern elementary processes (we must
of course assume that these laws do permit statistical equilibrium of some

kind).
We shall have to make certain general assumptions about aged systenss,

i.e. , systems which have been left isolated for a length of time that is normally
sufficient to secure thermodynamic equilibrium. We expect that such a sys-
tem will in the course of time pass through alt the (thermodynamic) states
F', I", F' that are compatible with the conditions of isolation, whereby
the energy, the values of external parameters (volume, etc.) and the numbers

of indestructible elementary particles (atoms, molecules) are prescribed. ' In
the course of a long time t the system will spend a total t„of time intervals in

the state I'"; we expect that t&, t& tI will be proportional to the regions 8"I,
. . WI. This statement contains an assumption even if WI, 8'g . are

considered as unknown, namely that t,(t, t./t will be fully determined by
the nature of the system, (and the conditions of isolation), independently of
the initial state. Granted this assumption, we may define S'&, TV& as pro-

' M. v. Smoluchowski, Ann. d. Physik [4], 25, 205 (1909).Theory accompanied by a general

discussion of fluctuations is given by A. Einstein, Ann. d. Physik [4], 33, 1275 (1910).
' A. Einstein, Ann. d. Physik [4], 17, 549 (1905). M. v. Smoluchowski, Ann. d. Physik [4],

21, 756 (1906).
' P. Zeeman and O. Houdyk, Proc. Acad. Amsterdam 28& 52 (1925).W. Gerlach, Naturwiss.

15, 15 (1927).G. E. Uhlenbeck and S. Goudsmit, Phys. Rev. 34, 145 (1929).
' Einstein, reference 2.
' In a discussion of the fundamental questions involved, W. Schottky introduces the term

"resistent groups. "Ann. d. Physik [4], 68, 481 (1922).
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portional t&/t, t2/t, without reference to any detailed theory of the sys-
tem. (On the basis of the underlying picture, every W is still a large integer,
equal to the number of "microscopic" states contained in a given thermody-
namic state. Here, however, we are only interested in the ratios of Wi, W„~ ).
The various assumptions involved in this application of Boltzmann's prin-
ciple may be summarized in the formula:

S„= k log (&„/&l) + const. (2.2)

where S„ is the entropy of the state I'"; we shall refer to f„/t as the probability
for this state.

A thermodynamic state r"=I'(&zi', &z„") may be defined in terms of
given values o.&", n„" for such variables 0.&, Q.„as can be measured by
ordinary means. From a statistical point of view we must allow latitudes
An&, An„ in this specification (the probability for a region of no extension
equals zero). We have to introduce a distribution-function

and the probability for the state 1'" becomes equal to the integral of f(&z&,

o.„) over the region
ng(") & ng & O, g(") + Any

u„(") & n„& 0.„(")+ An„.

Then (2.2) takes the form

5, = k log f(ni&"&, iz„&"&) + k log (An&. . . i&in„) + const. (2.3)

Our only direction for the appropriate choice of latitudes An is that they
ought to be taken of the same order of magnitude as the common fluctuations
of the quantities n in the state F".This convention takes care of all important
cases; because thermodynamic measurements of entropy are possible only
for equilibrium states. A more accurate specification of ~nj, An„ is un-
necessary because, say, doubling each bn will change the right side of (2.3)
only by the amount nk log 2, where k =1.371 &&10 "erg/degree, and an en-
tropy difference of this magnitude is far too small to affect any measurement.
Actually, where reasonable variables 0.1, n„are chosen, the order of mag-
nitude of the product Dn~, An2 An„varies so little that the contribution
k log (d,&zi' ~ An„'/An&" A&z„") to the entropy difference between two
thermodynamic states is entirely negligible in comparison with k log(f(o.i,
o& ')/f(ni", ~ a„"));it is the factor f(o&&, a„) that causes the tremendous
difference in the probabilities of different thermodynamic states, and is re-
sponsible for measurable entropy differences. Thus, as long as we restrict our-
selves to cases where S„ is a measured entropy, we may neglect the variabil-
ity of the term k log (hn& ~ An„) on the right side of (2.3) and write

' We allow ourselves, following the custom of thermodynamics, to consider states that may
be approximated in some way by equilibrium states. Cf. Schottky, reference 6.
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S.„= k log f(nq&"' n &') + const. (2.4)
So far we have assumed that the variables ni, O,„define the state of

the system in hand completely from the thermodynamic (phenomenological)
point of view. As pointed out by Einstein the relation (2.4) remains valid in
cases where this definition is incomplete. We merely have to adopt the con-
vention that among all the states which fulfill the given specifications, we
select the one with the greatest entropy. This theorem again depends on the
probabilities for different states being of different order of magnitude, so that
the given set of values of ni, . - n will be realized by the chosen state much
more frequently than by all other states taken together. We shall summarize
these results for subsequent applications. The greatest entropy allowed by a
given set 0;1', n„' of values of the variables ei, o.„we denote by

f71 ~ n &1p ' ' ' Oln ~

The corresponding (thermodynamic) state we denote by

F&.. .„——I'&. . „(n&',. n„').
Then

oq. . .„(ni', n„') = k log f(n, ', n„') + const. (2.5)

gives the probability for finding the variables n&, n„with a given set of values
n&', ~ n„'. Practically every time when n&, . n„assunie this set of values, the
systeni will be in the state I'& „(n,', n„').

We shall calculate at once certain averages which will be needed for the
subsequent derivations. We denote by f„(n„) the distribution-function for the
variable n„. We have according to (2.5):

k log f„(n ) = o„(no) + const. , (2.6)

where o„(n„') is the greatest entropy possible when no=n„', realized by the
state F„(no ). The function f„ is determined by (2.6) together with the condi-
tion

p Ap dot'p = 1.

We obtain from (2.6) by differentiation

kdfo/dn. = f.(n.)«./dn. ,

assuming that the differential quotient exists. We shall also assume that the
entropy o „(n„)attains its maximum for a finite value n„of n„, corresponding
to the equilibrium state Fo, and that (n„noo)f„(n—„) approaches zero for
large values of tn„no' ~.

' T—hen it is easy to calculate the average

( „—„')do,/dn„= Jl (n„—n„')(do„/dn„) f„(n„)dn„

Ny Ap d ~ dN~ dCl~.

' Einstein, reference 2.
ll Otherwise this function must have an infinite number of maxima. All the conditions stated

are fulfilled whenever 0,„is a resonable thermodynamic variable.
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Integration by parts yields

k [(no —no')f. (no) ] —k J" fo(no)dno

The first term vanishes, and the second equals —k; thus

(n„—n„')do.„/dn„= —k.

In the same manner, and under the same assumptions we find

(n„—n„')Bo, „/dn„

(2. 7)

jf (n„—n„)(Bo/dn„) f, „dn,. . . dn„= —k, (2.8a)

(n. —n. ') ~o, -/dn. ="0 (p & V). (2.8b)

In the following we shall find it convenient to apply the simple formula (2.7)
directly. However, it seems desirable to show the connection with the or-
dinary formulas for the averages of the products (n„—n„') (n, —n, '). We must
assume that the entropy a'&. .„can be expressed by a multiple power series, and
that the abridged Taylor development

where

ol. . .n(nip ' ' nn) = So+ q g Qoq(no no)(nq nq)j
u

I ~o
'Voq = 'gqo = [a ot n/dnodnq]ay=ago; ", a„=anp,

(2 9)

(2. 10)

will suf&ce in the entire region of values of n~, n, for which the contribu-
tion to any of the averages (2.8 a, b) is at all appreciable. (Since f exp(o/k),
the maximum of f&...„ is very sharp). Then we may substitute in (2.8 a, b):

n

halo& n/dno ="ZUnq(nq nq ) ~

y=l

and we obtain a system of linear equations

(2. 11)

(2. 12)

from which the mean squares and products of fluctuations may be computed.

3. THE REGRESSION OF FLUCTUATIONS

WVe are accustomed to observe that the course of an irreversible process
taking place in an isolated system is entirely determined by the initial ther-
modynamic state according to definite laws, such as the laws for conduction
of heat. On the basis of a statistical interpretation of the second law of ther-
modynamics, no process can be completely predetermined by an initial ther-
modynamic state; because such a state is itself incompletely defined (from a
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molecular point of view; cf. )2). However, we can understand a predetermina-
tion with practical certainty, within limits of the order of magnitude of or-
dinary fluctuations, whereby much greater deviations will be very rare. From
this statistical point of view we may still interpret the predictions of irrever-
sible processes from empirical laws as valid for averages taken over a large
number of similar cases, which in this connection means cases of irreversible
processes starting from the same initial thermodynamic state.

Strictly speaking, this rule does not specify uniquely the more refined
"microscopic" (molecular) interpretation of laws derived from relatively
crude "macroscopic" observations. It makes a considerable difference whether
we take an average of the type n = (n'+n")/2 or one of the type a = [(n'~+
n"')/2]"~. However, in all important concrete cases the natural answer to
this question will be obvious. For example, if o. is a total displacement of heat,
itself the sum of many local displacements whose changes depend on local
conditions, there may be no doubt that the straight average a = (o.'+n")/2
is correct.

Now we are able to solve the problem of predicting the average regression
of fluctuations: Suppose that we start out with a certain isolated system, and
watch the fluctuations of the variables ni, n for a great length of time.
Whenever the values of n&, o.„happen to be (simultaneously) n~',
n„', we make a record of the values which these variables (and perhaps other
quantities a„+„n„+„)assume r seconds later. The averages of such records
we denote by

We know that almost every time when n& =o,&', , o.„=n„', the system
will be in the (phenomenological) state I"j . . „=F(n~', n„'), and the aver-

age course of an irreversible process following that state, described by the
functions

we know from macroscopic experiments. These functions may be considered
as properties (in an extended sense) of the state f"~ . . „.The "normal" (com-
mon) properties of states corresponding to prescribed values n~', n„' of
the fluctuating quantities o.&, O.„are certainly those of the state F&'

The question whether we are allowed to interchange "normal" and average
properties must be decided from the consideration of individual cases, as out-
lined above.

Assuming that the variables ni, e„are suitable in this regard, we
have:

cx;(r, n, ', n„') = n;(r, p'g. . .„), (f = 1, , e+ p), (3 1)

as a general rule for predicting the @veI.age regression Of fluctuatiopq from the
laws of irreversible processes,
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For a discussion of the requirements of microscopic reversibility the aver-
ages

A;;(r) = n;(t)n;(t + r) = n a, (r, a ) (4 1)

afford a convenient point of attack. The quantities A;;(r) may also be de-
fined as time averages (1.1)

~rI

A;, (r) = lim I n;(t)n;(t + r)dt.
t "~on " ~ f=-t'

In the following it will be convenient to assume that the variables 0,~, ~ ~ 0.'

measure deviations from the thermodynamic equilibrium, whereby their
averages n~, a„ for this state (and also the "normal" values nto) vanish:

n;=a =0, (i=1, n). (4.2)

The assumption of microscopic reversibility requires that, if n and P be
two quantities which depend only on the configuration of molecules and
atoms, the event n =n', followed r seconds tater by p = p', witt occurjust as often
as the event P = P', followed r seconds tater by n =n'. The same will be true if n
and P depend on the velocities of elementary particles in such a manner that
they are not changed when the velocities are reversed, for example, when 0.
depends on the distribution of energy in a system. "If 0.; and 0.; are two such
"reversible" variables of a reversible system, then obviously

A;;(r). = n;(t) n;(t + r) = a;(t)n;(t + r) = A;;(r) .

We shall consider cases where the course of an irreversible process starting
from any state of the type F& . . „can be described by a set of linear differential
equations of the form (1.11):

Cfi = (4.4)

According to (3.1) we have

n;(r, n ) =n;(r, l' ),

where I";is the state of maximum entropy for a given value 0. of the varia™
ble n;. Mathematically this state is characterized by the relations

Ct'~' = CL j
Ba, „/dn„= 0, (r W j),

(4.5)

and we have for the set of values of cx&, n„determined by these conditions;

(4.6)
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From (4.4) we have in a short interval of time 6t

n, (i»it, n ) = n;(0, n ) + n;At = n;(0, n ) + gG;, (Bo, „/d. n. .,)At,
r=I

or substituting (4.5) and (4.6):

n;(ht, n ) = n;(0, n ) + G;;(da;(n )/d. n )At.

Calculating according to (4.1) the average A;;(ht) we obtain

A;;pa) = n, (t)n;(t + ht) = n, "Yn,(0, n ) +G,;;Atn, do;/dn;,

or, observing (2.7) and the convention (4.2):

Similarly, of course
A;,(n~) = A;;(0) —S~~G;;.

A;;(At) = A;;(0) —khtG;;.

(4.7)

Applying the condition (4.3) for microscopic reversibility we find

(4 8)

as announced at the end of f1. The importance of considering fluctuations for
the derivation of this result is apparent from the occurrence of Boltzmann's
constant k in (4.7).

5. THE PRINCIPLE OF THE LEAST DISSIPATION OF ENERGY

The symmetry relation (4.8) contains the important reciprocal relations
in transport processes. An alternative form of (4.8) is convenient for many
applications, and commands considerable intrinsic interest. The description
(4.4) of a set of simultaneous irreversible processes may be rewritten in the
form

»'l»ri" ~(ni, ' ' nn)
Qp;, n„, (i = 1, I), (5 1)

where, according to the equations»»»» 1 (i ~)gp;„G„= gG;,p„= S;; =
0, (i N j),

(5.2)

the coefficients (p;;)form the inverse matrix of (G;;), which enter into (4.4).
The symmetry relations (4.8) may be replaced by the equivalent

p;;=p;;, (i=1, I).
We introduce the dissipatiou function-

@(n» n) = 2 Zp»»'n»n»'»
s»7

(5 3)

(5.4)

and incorporate the symmetry relations (5.3) into the description of irrever-
sible processes by writing

col ~ »»(nl» ' ' ' n»»)/dni = (74'(n» n)/dn;» (5.5)
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in place of (5.1). Further, if we define a function

2277

(5.6)

representing the rate of increase of the entropy, we can formulate a vuriaIion-

princip/e, namely

6[S(n, ri) —4 (ri, ri) J = 0. (5 7)

Our convention is that only the velocities n&, ~ a should be varied, thus

according to (5.5). The variation principle (5.7), which we shall call the prie
cipte of the least dissipation of energy, for reasons mentioned in (I), fj6, pro-
vides convenient means for transforming the reciprocal relations (5.3), or
(4.8), to cases where the conventional description of irreversible processes in-
volves an infinite number of variables, for example the temperatures in all
parts of a space. The dissipation-function equals half the rate of production
of entropy

2C (ri, ri) = 5(n, ri),

because of (5.5), (5.6) and (5.4), which may be written

C'(ri, a) = te QP;;ri;ri; = —,
' Qri;8 C/dri;.

It is evident from (5.8) that 4(a, n) must be essentially positive (definite or
semidefinite), because the second law of thermodynamics demands S~O.
Therefore the extremum given by (5.'7) is always a maximum

S(n, ri) —C'(ri, ri) = maximum. (5 9)

Applications of this principle will be given in a later publication; in (I),
f )4-5, a special result was derived by a direct method.

It is worth pointing out that in the dissipation-function has a direct sta-
tistical significance. A detailed discussion would be out of place in this article,
where a compact presentation of important theorems is intended, but we may
state without derivation the result, which is an extension of Boltzmann's
principle (2.1). The equilibrium condition of thermodynamics

S=maximum

characterizes the most probable state, and the probability W' for a state
I'(crt, ~ ~z„) is given by Boltzmann's principle

k log W(ni, a„) = S(ni, n„) + const. ;

for the precise interpretation of this theorem we must refer to the discussion
in f2. In a similar manner, Eq. (5.9) describes the most probable course of an
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irreversible process. It is also possible to show, under assumptions approxi-
mately equivalent to those that are necessary for deriving, (simultaneously),
(5.5) and (2.12), that the probability

8'(I", dd, I'") = W(ni', n„', fU, ni", - . n„")

for the states I"=I'(ni', n ') and I'" =I'(ni", n„") occurring at, the
times t' and t" =t'+At, respectively, is given by the formula

4(iIn, hn)
k log W(I", ht, I'") = 5' + 5" — -+ const. , (5. 10)

where 5'=5(ni', n„'), 5"=5(ni", n„"), and

C(i1n, hn) = -,'Qp;;(n;" —n )(n;" —n ).
II g 7

(Needless to say, we assume that we are dealing with an aged system. )

6. NoNREvERslaLH SvsTEMs

As mentioned in (I), P, we know from our macroscopic experience certain
conservative dynamical systems which do not exhibit dynamical reversi-
bility, namely systems where external magnetic 6elds are acting, and systems
whose motion is described relatively to a rotating frame of coordinates, the
rotation being equivalent to a Beld of Coriolis forces. In such cases, where the
macroscopic laws of motion are non-reversible, the microscopic motion can-
not be reversible.

In dealing with cases of this kind it is advantageous to consider the in-

tensities of magnetic and Coriolis fields as variable external parameters of the
system in hand. Then macroscopic dynamical systems subject to external
magnetic and Coriolis forces have the following symmetry with regard to
reversal of the time: If [q] = [Q(t —tp) ] is a possible motion (succession of con-

figurations [g]) of a system left to itself in a magnetic (or Coriolis) field of
intensity 0, then the reverse succession of configurations [g] = [Q(to —t) ] is a
possible motion of the same system when placed in a field of intensity —O.
Further, let n and P be two functions of the state (and of the parameters) of
the system in hand, such that their values are not changed when all the veloci-

ties in the system are reversed, (simultaneously with 0). Then, when we

consider the fluctuations in an aged system, as in )4, the succession of events

n =n, P =P', with an intervening lapse of time r, will occur in a system placed

in a field of intensity +0, just as often as the succession of events P =P',
n =n, (with a time-interval r), will occur in a system placed in a field of in-

tensity —O~.

If we may apply this symmetry condition to the motion of elementary

particles, and 0.;, o.; are two "reversible" dynamical variables, the averages

(4.1) will be functions of the time r and the field intensity 0:
A;;(0~, r),
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and we have the symmetry condition

A,.,(O r) = 2,(—0 —r) = A (- 0, r). (6 &)

Supposing that a certain irreversible process can be described in the form
(4.4), the coefficients G;; being functions of 0,

(i =1, I), (6.2)

we can derive (4.7) as before

A, ,(O, a&) = A, ,(O, O) —k&~G;;(0)

g;, (—0 Zt) = A "(—0 0) —kttG;f( 0)—
and upon applying the symmetry condition (6.1) we find

G,;(0) = G;;(- 0). (6.3)

This theorem contains a reciprocal relation between the Nernst effect and the
Ettingshausen effect, which has been derived previously by P. W. Bridgman"
and by H. A. Lorentz" on a quasi-thermodynamic basis.

"P. %. Bridgman, Phys. Rev. 24, 644 (1924); Fourth Solvay Congress ("Conductibilite
Electrique des Metaux"), 352 (1924).

~' H. A. Lorentz, Fourth Solvay Congress, 354 (1924).


