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ABSTRA.CT

Selection rules for many-electron transitions are derived by taking into account
the first order perturbed eigenfunctions. The perturbations considered are the electro-
static interactions between the pairs of electrons, and the spin-orbit interaction of
each electron. It was found that the possibly occurring terms in the first order eigen-
function were narrowly limited, and that this limitation provided the selection rules
as follows: No more than three electrons can jump at a time. (a) when three electrons
jump all change their n by an arbitrary amount, one changes its l by + 1, the others by
6 and e, 5+ e being even. (b) when two electrons jump both can change their n arbi-
trarily, one changes its L by 8+1, the other one by e. Breaking off the series expansion
for 1/rp@ in the electrostatic interaction after the second term gives for 8 and e only
the values 0, +1. The Heisenberg two-electron selection rule is therefore to be con-
sidered as a special case of (b). The Laporte rule is verified making use only of the
properties of spherical harmonics. Qualitative rules have been derived to tell when
many-electron transitions may be expected to be strong. The first order terms also
cause anomalies in the intensities of one-electron transitions.

I. INTRQDUcTIQN

''N A recent paper~ Condon considered the inHuence which neighboring
& - electron configurations have upon each other. when one treats the first or-
der perturbation of the eigenfunctions. Condon also mentioned that the oc-
currence of two-electron transitions was closely connected with this mutual
inHuence. In this paper we propose to study somewhat more in detail the
possibilities for many-electron transitions by means of the method used by
Condon. For our purpose it is necessary to investigate what type of terms
occurs in the first order expansion of the eigenfunctions. The perturbations
we shall consider are the electrostatic interaction between the diH'erent elec-
trons, and the spin-orbit interaction for each electron.

2. ONE-ELEcTRQN TRANsITIQNs IN THE MANY-ELEcTRoN PRoBLEM

We shall first discuss the outline of the way in which our results were ob-
tained, and at the end of the paper give the more detailed derivations and re-
marks.

Let
f'(aptly, m2l2, erlr) (2 &)

be a zeroth order eigenfnnction for an f-electron problem, stabilized with re-
spect to the electrostatic interaction between the different electrons, and for
the spin-orbit interaction of each electron. For convenience we also assume

* Condon, Phys. Rev. 36, 1121 (1930).
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that these functions are stabilized for the interaction with a homogeneous
magnetic field. This symbol thus stands for a linear combination of eigenfunc-
tions, each one being the product of single-electron eigenfunctions for all
electrons. The single-electron eigenfunctions are the usual Schrodinger cen-
tral field eigenfunctions with spin,

R„~(r)P 'e' '~S(rs./t) .

The different terms of such a linear combination will all contain the same set
of quantum numbers, n;, 1;, but will differ in the permutations of the coordin-
ates over these states. Moreover the same permutation will occur several
times in the linear combination, each time with a different choice for the
magnetic quantum numbers, I& and nz, for each electron. This choice is re-
stricted, however, by the fact that the total projection, M, given by,

is the same for all terms of the linear combination and is a characteristic of the
state under consideration. For our problem the magnetic quantum numbers
are of no further interest. That is why we do not use them in the designation
of the eigenfunctions. '

The intensity of a transition between two states, each one characterized
by such a zeroth order eigenfunction, depends upon integrals of the form

(2.2)

Primes are used for the quantum numbers of the final state. Here X stands
for any one of the quantities

Prr sin Ore'&&

F

err cos 9 (2.3)

Qrr sin 0re '&&.

p

Considering the angles' 0~ one can derive first of all the well-known selection
rule for 3I. For the first choice of X the integral (2.2) vanishes unless 3I'
= Sf+1, for the second choice unless M' = M, and for the third choice unless
M'= M —1. The middle choice gives a Zeeman component which is linearly
polarized, parallel to the direction of the external field, the others give the
circularly polarized components.

~ In the derivations at the end the magnetic quantum numbers will be included for the
sake of clarity.

' One should not confuse the coordinates of the first, second. . . Fth electron, with the
quantum numbers, e.g. , n&, n&, n3, ny. The number of quantum number sets f, of course
equals the number of electrons Ji, but there is no connection between nl, and rp, n2 and re etc.
Because of the permutations n& is connected with all the rz, re, ~ rp. Similarly for n&, n3,
ny. The difference is further brought out by using Roman numerals for subscripts of the co-
ordinates and the capital letter for the running index.
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After the 3II's for initial and final state have been fixed it is very essential
for our purpose to remark that the integral (2.2) will vanish anyhow unless

just one of the l of the final state differs by +1 or —1 from one of the l; of
the initial state. All other / and n must be the same for both states, except
that the n with the same index as the differing l may be different from n;
by an arbitrary amount. (See note A). If we denote the quantum numbers
which differ by the index 1 we can write for the non-vanishing case

In the language of the atomic model this result would mean that only one
electron could jump at a time, when we consider only zeroth order eigen-
functions, and that it's l changes by +1 or —1 and its n by an arbitrary
amount. '

3. TERMs OccURRING IN THE FIRsT ORDER EIGENFUNcTIQNs

3. In order to account for two-electron jumps we must now investigate
what happens if we take the first order terms into account. For a qualitative
discussion we need to consider such terms only in the initial or the final state;
taking them for both states would not result in anything new. The first order
eigenfunction will be of the form

(nl tl' ' ' 'Sf tf) =lp (nl tl' ' ' 'nf tf)+Agcy (nl ll ' ' ' 'nf tf )

(3. I)+up dg'lP (ny ty
' nttr)

The first sum with the coeKcient ) we assume to arise from the spin-orbit
interactions, the second sum with p from the electrostatic interactions. If, is

just these terms which cause the many electron transitions and therefore we are
very much interested in finding out what terms may occur and what terms are
excluded. Though it does not help us in getting the many-electron transition
selection rule, as a first limitation on the terms occurring in the two sums,
we may cite.the well-known matrix mechanics theorems that only such terms
will occur that have the same total 3II, and J. Next, the primes at the sum-
mation signs mean that all eigenfunctions except the unperturbed one may
occur in the sum. As we are dealing here with an originally degenerate system
we must look at this fact more closely, since the prime excludes different
eigenfunctions from the first than from the second sum. If we take for in-
stance extreme Russell-Saunders coupling, the smaller spin-orbit interaction
causes the splitting up of each multiplet (due to the Russell-Saunders coup-
ling) into its levels. In the first sum are therefore excluded such eigenfunctions

' It is perhaps not superfluous to note that this way of expressing our result may lead to
the confusion mentioned in the footnote (2). One cannot say that one particular electron
changes its quantum numbers, as all permutations of the electrons over the quantum numbers
occur. If we consider the quantum state of the many-electron problem to be built up of a num-
ber of single electron states over which the electrons are distributed, one can say that in a
transition only one electron state changes and the others remain unchanged.
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of the different terms which belong to one and the same multiplet, but levels
of other multiplets from the same configurations, that is, having the same4
n's and 1's may occur, as well as the eigenfunctions with different n's and 1's.

The larger electrostatic interaction excludes from the sum all such eigen-
functions which belong to levels which fall together without this interaction.
These are the multiplets with the same set of n's and l's. Thus the second sum
will not contain eigenfunctions having this set of e's and l's. For extreme (jj)
coupling on the other hand, the second sum may now contain terms having
the same set of n's and I's as the unperturbed eigenfunction; the spin orbit
sum (thus far) may or may not have the same set of /'s, but must have at
least one n different. These statements hold, of course, in extreme coupling
only, in which case one can think of the perturbations as applied con-
secutively, the large one first and then the smaller.

For the spin-orbit interaction the perturbation is of the form,

(3.2)

This requires that in the first sum only such terms remain that have all
l's the same as the zeroth order eigenfunctions, and one of the n's but not
more may diIIerent. ' (See Note B.)

The electrostatic perturbation is of the form

g2

(3.3)
EG ~Il 0

This necessitates that only such terms occur in the second sum for which two
and no more than two of the l's may be different from two of the l's of the
zeroth order eigenfunction. (See Note C~.)

If we denote these changes by 8 and e their sum must be even. (see Note
C, , )

If we restrict ourselves to the first term of the expansion of the electro-
static perturbation in spherical harmonics, we find that none of the l's may
change, and that one of the n's may be different. " (See Note C3.)

The next term in the expansion for I/r&G gives two I's different, each by
+ 1 or by —1, and the n's connected with them maybe different by an
arbitrary amount. ' (See Note C4.)

The results of this section may then be summed up as follows: If we take
' In the case that all the n's and l's are the same, the eigenfunction in the sum must be a

different linear combination than the unperturbed one, namely, a combination belonging to
another multiplet of the same configuration.

' As mentioned just before with reference to Note 8, for extreme (jj) coupling one of the
n's must be different.

' This is the same result that we got from the spin-orbit interaction.
' In general, if we consider the kth term of the expansion, taking the two differing I's as

the first two, and calling them l I h, l2 b, we find that in order that the integral does not vanish,
lI, l», k, must be the side of a triangle of even perimeter; Similarly for l2, l», k. Thus, for ex-
ample, l& —lIt„may have the values, k, k —2, k —4 ~ ~ . The n's again are arbitrary. See Gaunt,
Camb. Phil. Trans. 1929.
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as an example those terms out of the sums for which the first quantum
numbers are different, we may write them'

),erg'(er", I„er, I~) erst order spin orbit terms

first order

pd, p'(I&'v, 4 + 1;e2'vl, + 1; Nrlr) electrostatic

~ ~ ~ ~ ~ ~ & ~ ~ ~ terms

pdqP'(e~, I, + Bq, m2 Is + &a, mf, lf) ' (8 + e = even) .

(3 4)

.At this point we need say nothing more about the terms occurring in the
spin-orbit sum (we again refer the reader to note B).But about the terms of
the second sum we can say something further not only about what terms are
excluded, but with what relative strength the allowed terms may occur. This
is due to the fact that the coefficients of the terms of the second sum involve
a product of two integrals, each of which contains a product of three spherical
harmonics, the harmonic on which we sum occurring in the same way in both
integrals (see notes C~ and C~). This latter property is the important one in
excluding certain states from the sum and assigning the relative strength
with which others occur. As mentioned in note C2, the integral of a product of

p d f g h

Fig. 1.

three spherical harmonics vanishes unless the absolute value of any two of the
l's is equal to or less than the third l. This fact lends itself nicely to a chess-
board diagram. We give the results which can easily be verified by examining
the integrals for a few cases.

In Fig. 1 the abscissas and ordinates stand for the two I's (of the terms of
the electrostatic interaction sum) which are allowed to be different from two
of the unperturbed eigenfunction. Pick out any initial point or state, E(I).
Draw the two forty-five degree lines through it and complete the figure as
shown by the heavy lines. Then

(a) the states which can occur in the sum, with respect to the chosen
initial state, lie within the region bounded by the heavy line. Those, in the
shaded region, are excluded by reason of the vanishing of the integrals.

' It can be understood from what follows that the terms for which all quantum numbers
are the same as those of the unperturbed state, do not contribute to two-electron jumps, but
are important in accounting for anomalies in one-electron intensities.
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(b) states lying within the region bounded by the heavy lines, but which
1-'.ve 8+c g even, are also excluded. This gives the Laporte rule when one
considers the transitions. One can easily show that the Laporte rule holds for
higher perturbations as well, since for these perturbations the same type of
integrals is involved.

(c) To find the relative strength with which the allowed states occur in the
sum we proceed by the following rule: Go by the shortest number of unit
"bishop's moves" from the initial state Z(I) to any allowed state in the sum.
The number of unit moves which it takes to get there gives the lowest term
in the expansion with which this state occurs (it may occur also in the higher
terms). The states which are only one unit bishop move away occur with the
largest coefficients, and are those which enter to give the Heisenberg selection
rule.

4. TWO-ELECTRON AND THREE-ELECTRON TRANSITIONS

We now consider a final state of which we take only a zeroth order
eigenfunctions. We chose it such that that there would be no transitions,
if we had taken also only the zeroth order eigenfunction of the initial state;
thus we take more than just one 1 and n different for the two states. We
now investigate under what conditions the above given first order terms will
cause the following integral, which governs the intensities, not to vanish

(4. 1)

Substituting for P leads to integrals of the following type

XG JI 1p (Sl ) /i i
' ' Sf pf

fi' )Xlp (51 ) ll i
' ' ' Sflf)dr (4 2)

pd J
if'(I, ', f,'; . . rij f/')Xf'(ei"', l, + 8; e2"', fp + e; ri3, l3, mgfy)dr (4.3)

and another integral like (4-2) due to the first term of 1/ri;g. Of such integrals
we know already that they will vanish, unless we have chosen the quantum
numbers of the final state just right. Just one of the l's of the final state must
differ by +1 or —1. from one of the 1's of the other eigenfunction under the
integral, the e's associated with these two l's may differ by an arbitrary
amount, but all other l's and n's must be the same.

One will only get transitions with first order eigenfunctions when the
quantum numbers of the final state are in a certain relation to the quantum
numbers of the series expansion of the initial state. ' Now we have seen that
the quantum numbers in these series were related to the quantum numbers
in the zeroth order eigenfunction, the quantum numbers by which we
usually denote the state under consideration. It follows that one will only
find transitions when the quantum numbers of the final state are related in a

' A similar statement will be true if we interchange initial and final state.
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certain way to those of the initial as required by the condition that at least
one of the integrals (4.2), (4.3), does not vanish. This can be provided for ir.

number of different ways and one can without much difficulty verify the
following results, from which we omit the cases which give rise to an ordinary
one-electron transition.

Combining statements just preceding references to notes A, 8, and C~, one
finds that due to the first order terms of both the spin-orbit interaction and
the first term of the electrostatic interaction, transitions may occur between
two states:

(a) when there is a change in lwo electron states, one changing only its e,
the other changing its l by +1 or —1, and its n by an arbitrary amount,
thus:

p'(Sl, 1,; Sf, lf) ~f (el', ll., e2', l2+ 1; Sf, lf).

Combining statements just preceding references to notes A, C2, C3, C4, one
finds that due to the first order terms in the electrostatic interaction a
transition may occur between two states,

(b) when there is a change in three electron states, all changing their e's
by arbitrary amounts, two of them changing their 1's by 8 and 2 (8+ 2 = even),
the third one changing its l by +1 or —1.The values of +1 and —1 for 8 and
e will be more probable. Thus,

(sl ll' ' ' ' sf lf) ~ 4' (el ll + 8' 2s12 + E's313 .+ 1' ' ' ' ef 1f) .

(c) when there is a change in two electron states, both changing their e's
by arbitrary amounts, the one changing its l by 8, the other changing its I
by e+1 (8+a=even). Again the values +1, —1 for 8 and s will be more
probable. Thus,

1p (Sl ll' ' ' ' ef, lf) ~ 0' (Sl, ll+ 8; S2 12+ 2 + 1' 'B3, 13' ' ' ' Sf lf)

Case a (together with case c) if we choose 8 and e equal to +1 gives the
well-known Heisenberg selection rule" for a two electron jump. All cases
verify the Laporte rule.

5. QUALITATIvE REMARKS oN INTENsITIEs QF

MANY-ELECTRON TRANSITIONS

5. Though it is difEicult to give quantitive statements about the intensities
of the two or more electron jumps, we can tell in which cases we can expect
them to be strong. At the outset we can state that the three-electron transi-
tions will be less probable, since an atom with three excited electrons is in a
very high and improbable energy state, often corresponding to an energy
higher than that of the ionized atom. The coefficients with which Z(IN)
occurs in the electrostatic expansion of Z(I) are given by,

Lt2

J (Sl ll 'S2 12''''Sf lf) f(el ll'S2 12' ~ ~ ~ Sflf)dr
f/0

'0 W. Heisenberg, Zeits. f. Physik. 32, 841 (1925).
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The superscript, c, is used to denote the quantum numbers of the c'" eigen-
function occurring in the first expansion.

One of the conditions that the coefficients be large is that the levels E(I)
and E(I ) lie near together. This is a necessary but not a sufficient condition.
For even though two states may lie close together they will only disturb each
other when the quantum numbers obey the demands of (a) and (b) of sec-
tion 3. We may say that the coefficients will be larger or smaller according to
(c) of section 3.

The results obtained in Section 4 can be given the following interpreta-
tion. In order that a many electron transition between a state E(I) and a
state E(II) be possible, it is necessary that there exist a state E(I') which
occurs in the first order expansion of E(I) and which has the property that
there can be a one electron transition between E(I') and E(II). The larger
the coe%cient and the stronger the one electron transition is, the more
probable it will be to actually observe the many electron transition.

6. NQTEs

Note A.

The expression (2.2) written out completely is, if we take the first of (3:1)
as an example,

dr [P p~sPi(wi /zi) Py(el' "/xg) ]r~ sin H~e'»
~kP j

[Psqp;Pi (mi '/xi) ff (neer '/xi)]

Here:
1. my~, ,my' are the m's occurring in the k' combination giving

2m=M
2. m& ', .

,mf'& are the m s occurring in the j'" combination giving
Zm'=M'. Primes denote quantum numbers of the final state.

3. The subscripts of the P's stand for the n, l of the eigenfunctions.

4. P stands for the n'" permutation (of the coordinates) of each com-
bination of the initial state.

5. Ps stands for the i3'~ permutation (of the coordinates) of each com-
bination of the final state.

6. It must be remembered that mi~=m~, '+m„~;
7. p.i and gp, are the coefficients of each product of P's in the linear

combinations forming stabilized eigenfunction, P'
Fix all the summation indices except j and let us look at the first term

of the sum on Ii, namely, rI sin Ole'&r. The integral vanishes unless m„
=m„; m~, &+1=m, ,"; f, '=f, +1; lf, =f„,pi ——pf. With these fixed con-
ditions all the other integrals of the sums over Ii and j vanish either because
of the @or the 0 part of the eigenfunctions. It is obvious that instead of start-
ing with rI sin Ole'&I we might have started with any rp sin 0p'q'~ and the re-
sult would have been the same.
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Similar reasoning will show that the integral is zero unless the permuta-
tion P is the same as n (for the sake of clearness the integral as written has
been taken for the case a=)/l). For each k one will have for each term the
same conditions l~' ——l) + 1; lf~ f2, —— ,(///

——p/. Thus the 5-fold sum reduces
to a 2-fold sum over the permutations n and the combinations k

The calculations show there is no restriction on ni —n. Similar computations
show that the rule 1,' =l, + 1 is the same for the cases (3:2) and (3:3).
Note B.

The perturbed part of the eigenfunction due to the spin-orbit interaction
will now be written more fully,

x Q'c.p'(n ', f '; ~/', l/')

If one carries out the spin-orbit perturbation the coefficients of the ) part
of the eigenfunction are given by,

( a g I aI/)Pa@/I/)(
aPktF

/p 'Sp

JI dr Iy,.(rs,.'/x, ) . yx. (s(/. '/xn)] lP, (rs,"—/x, ) Pf(m, '/x, ) 1
fI/

jV jV

1. c, stands for the coefficient occurring with the a'~ set of n's and l's in
the first order expansion. The bracket under the integral to the right of
l); s);/r), " is the given unperturbed eigenfunction, and hence does not need a
running subscript with it's P's.

2. rn~. ', , m~. ' are the nz's occurring in the t'" combination of this
product (state), giving a definite Zm, = &VI,

3. P/) stands for the P'" permutation over the coordinates of this combina-
tion.

4. m~~, , en~~ are the I's occurring in the k'" combination of the un-
perturbed state giving a definite Zm = 3f

5. P„stands for the n'" permutation over the coordinates of this com-
bination.

6. As given the states are for the n = 1 and P = 1 permutations.

Let us fix our attention on /q sq/rz' This opera. tor does not work on
, f~. Thus the integral vanishes unless p2, =112, , 1f/, =fr. We are

left with the one-electron integrals
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s
dr&, .(mi. '/x. ) —Pi(mi'/x„)

fQf

Z&-p"~-—
jV jV

which are easily shown to vanish unless mi, ' ——mi, li, ——I, . (In passing it
might be mentioned that this demonstrates the fact that the Zm occurring
in the perturbed terms, as well as in the unperturbed terms, must be the
same. ) One gets the same conditions starting with any other Ir Sp/rzb.
n&, may or may not be different from n&. Let nj = nj. With this condition and
the fixed conditions I&. ——Ii, pb, ——pb, , pr, pq,=the integrations over the
other Ir, . Sr/'rr will not vanish. This is the case mentioned in footnote 4. Al-
though in this paper we are not interested in this case, for it provides only
for one-electron jumps, it indicated at least the cause for the anomalies in the
intensities of one-electron transitions; this is so because we see here that the
coefficient of this first order term will be large, for in general the energy
separations between multiplets of the same configuration (the case we have
here) will be smaller than the energy separations between multiplets of differ-
ent configurations.

It also must be mentioned that this case can occur only for extreme
Russell-Saunders coupling. For extreme (jj) coupling, for example neon, one
of the n's must be different.

With n~, @ni and the other fixed conditions the integrations over the
other Ir sr/rrb vanish. Thus, the conditions for the non-vanishing of the
coefficients are the same as in the case n& = n&, but this time the coefficients
will be much smaller.

Note Ci.
The perturbed part of the eigenfunction due to the electrostatic interac-

tion will now be written more fully

p, Q"dbms'(nib, I, ' ebb Iqb)

b» 'I* i b & ~
'I*

~)
b Vr

If one carries out the electrostatic perturbation the coefficients of the
p, part of the eigenfunction are given by

d b Q +a+PPa bib'~
aykt

FG
g2

~f dr [P,.(m,.'/xi) P,.(m, ."/x, ) ]—[P,(m, "/x, ) P, (m, "/x, ) ]
~KG

jV b
—jV

The explanation of the symbols is the same as that given in note B.
Let us fix our attention on e'/rr ri With the given permutation the integral

vanishes unless ebb fb, , fqb ——pr. W——ith these fixed conditions the integra-



tions over all the other e'/rig give zero. Further one sees that the integral
is zero unless n =P. It is obvious that starting with any other e'/rFG we get
the same results, namely, that only such coefficients occur for which two and
no more than two of the n's and l's of the terms of the sum may be different
from two of the n's and L's of the unperturbed eigenfunction. The summation
reduces to

g2

«4&»(?)ii."/zi)y~»(mi. "/xn) y, ())ii /xi)&t, (?)i~'/zix)
rI II

Note C2.

Now puting in the value

r(I)'
I&.&»&(cos g )I&.[»[(cos |) )~i»(4& i&i&)riii;» (i + f?&i

f ) l r(II)'+"

where r(I), r(II) are the radial distances of the two electrons, (r(I) (r(II) ),
the non-radial part of the integral may be written, (dropping the denominator

g)

z z~».".,f [& „„»'«»„„»'(0»-'(~&]

[I '@& (gii)Q & ) (gii)I,. I &(Hii)]if(cos t)i)d(cos 8ii)

X Sm, „„, S~~,„,
' S~,„„S~.. .~

g
—?,{???f(yf)?—?BE{))k—

I mI)@I .P
—i{my{2{)?—mE{2)k+m)/{fdic gy

One sees first that the integral is zero unless

k ~

f58{+) Pl'8{i)
? ~ k

{25)

(If,) l l(2{)

With the spin-orbit interaction we saw that only those terms might enter
in the sum with Znz =constant. Here the limitation is stricter, namely only
those terms enter into the sum that have common Zml and Zm, .

Now the important thing to notice is that the same I';™comes in with
both angles. Each of the product of the two integrals will vanish unless the
sums of the three lower indices be an even number. "This fact in conjuction
with the statement just preceding requires that if 8 =

f
l», —f&

f
and e =

f
4i

—lif that 8+e be even. This verifies the Laporte rule after one considers
transitions.

Another important property of the integral of a product of three spherical
harmonics, given by Gaunt, is that it vanishes unless the absolute value of
the difference of any two of the subscripts is equal to or less than the third.

"Gaunt, Cambridge Phil. Trans. 1929.



236 S. GOUD$3EIT AND I., GROPER

Note C3.

For the first term of the expansion of 1/rr rr, r', =0, the non-radial part of
the integral reduces to

(We can now use the simple m, instead of m, ~ etc. , and leave off the summa-
tion sign since it does not affect the argument. )

This vanishes unless l~&, &

——l&~&', Ir2t, &

——I~2&. The term r(I)'/r(II)'+' reduces
to 1/r(II). Thus in addition to the conditions for the I's a.nd the initial con-
ditions Pay=Ps, . , &trt, =fr, in order that the radial part of the integral is
not zero, one pair of n's must be equal. If both pair. are equal we have the
same situation mentioned in Note 8, about one electron-jumps.

Note C4.

The expansion of 1/rr rr decreases fairly rapidly because of the presence
of the factor (i )m ~)!/(i+—

~
m~ )!.If we go to the second term of the expan-

sion i =1, this approximation is suRicient to give the Heisenberg selection
rule. The two possible integrals are

~f(lf&) 0I ~l(1) 0I COS |I Pf(2b) gII Pl(2) OII COS |II d COS OI ~ COS 0II

OI ~'(0 0I sin oI Ef(2M OII I«2) ' 0II sineII d cosOI d cosoII

which do not vanish under the same conditions, namely, l&(&)
——E(&)+1,

l(2~) =1(2) + 1.The n's are arbitrary in the radial part. As explained in the body
of the paper this condition gives the Heisenberg rule, and in addition, the
possibility of three and (up to this approximation) not more than three-
electron transitions.


