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ABsTRAcT

If w„ the (half) range of glancing angle over which a crystal will reflect mono-
chromatic x-rays, has been determined by the double spectrometer method, it is
possible to calculate what resolving power is attainable from this crystal by photo-
graphic methods. Equations are set up giving the resolving power in terms of a, the
slit width, and R, the distance from slit to photographic plate. Some results are: (1)
No appreciable increase in resolving power is attainable by making a/2R (—,w, . (2) If
c/2R) 3w„ the resolving power does not involve m, . (3) The resolving power attain-
able in the first order is 1/2'l' of that attainable in a double spectrometer with crystals
of equal perfection. Equations are also derived by which observed line widths in

photographic spectrometers may be corrected for slit and crystal diffraction pattern
eA'ects. The results are applied to recent experimental results with photographic spec-
trometers and it is shown that the width of MoZcxi observed photographically is
considerably greater than the values obtained by the double spectrometer.

INTRODUCTION

'HE recently increasing use of the double crystal x-ray spectrometer has
led to comparisons of its resolving power with that attainable in photo-

graphic x-ray spectroscopy. ' ' A pair of crystals which are as nearly identical
as possible (being two previously contiguous sides of a split crystal) can be
investigated in parallel positions of the double spectrometer, and the angular
width of glancing angle over which monochromatic radiation is rejected can
be found. With this information it should be possible to calculate the re-
solving power attainable from one of the crystals if used in a photographic
spectrometer of known slit width and slit-to-plate distance. Such a cal-
culation will be reported in this paper, and extended to the consideration of
measurement of line breadths by photographic methods.

THE WIDTH OF THE DIFFRACTION PATTERN FROM A SINGLE CRYSTAL

Let us at first represent the diff'raction pattern from a single crystal in the
general form

I~ = j'R)

Bergen Davis, Phys. Rev. 35, 209 (1930).
' Valasek, Phys. Rev. 36, 1523 (1930).
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In this expression Ip is the intensity reflected from a crystal at a glancing
angle whose deviation from a reference angle g is $, divided by the intensity
reflected when $ is 0. In the Darwin-Ewald theory ' ' this reference angle is

where
0 = 0p+ 8 sec0p cosec0p

sin go = eX/2d

(2)

and is in the center of the diffraction pattern. Here 8 is the deviation of the
index of refraction from unity, and n, X, and d have their usual signi6cance as
in the Bragg equation. The function Fg) is expressed as follows

60
FP)=, for $ ( —x2rM;

(4)2 gg )1/2

and
F($) = I for ——,'6g ( $ ( -,'6g;

60
F ( for $ & «20.

+ (4)2 Qg )1/2

The expression for 60 is
Ag = (4Fg cosec 2g)/Z

(6)

where F is the structure factor and Z the number of electrons in the unit cell. '
The best experimental evidence for the nature of the function F($) comes
from the shape of the rocking curves obtained in the parallel positions of the
double crystal spectrometer. Such curves do not give F(f) directly, but give a
curve which may be represented as follows'

lg = Ii $ Ii ( —b, d$.

In this equation I~ is the intensity reflected from crystal 8 when 8 is at a
position whose angular deviation from the center of the rocking curve is

divided by the intensity rellected when $// =0.
Since the work of Mark and Ehrenberg7 it has been customary to evaluate

the integral (7) on the assumption that F($) has the form

F(]) /,
—(log, 2/wc ) k (9)

and not that predicted by the Darwin-Ewald theory as in Eqs. (4), (5), (6).
It is seen that Eq. (9) represents a Gaussian error curve of half-width at half
maximum u/, . If we assume that Eq. (9) gives the correct form of F(j), we
can carry out the integration of Eq. (8) with the result

3 Darwin, Phil. Mag. 27', 325 and 675 (1914).
4 Ewald, Phys. Zeits. 20, 29 (1925).
' Allison and Williams, Phys. Rev. 35, 1476 (1930).
' Schwarzschild, Phys. Rev. 32, 162 (1928), Eq. (8) of this paper is Eq. (31) of Schwarz-

schild's paper with slightly different notation.
~ Ehrenberg and Mark, Zeits. f. Physik 42, 807 (1927).



I/2
g- {Iog2I2tuc') &p'

21og 2

Thus the locking cul-ve on cl ystal 8 is Rlso R GRussiRn el ror cuI ve, Rnd lf 'R ls
the half-width at half maximum of the observed curve, Eq. (10), the relation
between m and m, is

If, however, the diffraction pattern curves from a single crystal actually
have the theoretical shape as predicted in Eqs. (4), (5), (6), the rocking curve
of crystal 8 should not be of the Gaussian error curve shape, and the correct
factor for finding the half width at half maximum of a single crystal di«ac-
tion pattern from that of the observed rocking curve is not 2'" as in Eq. (11).

The author has solved Eq. (8) for Iz, assuming Ii is of the Darwin-Ewald
«rm, by graphical methods, thus obtaining the rocking curve predicted by
the theory for parallel positions of the double spectrometer. The resulting
curve divers markedly from the Gaussian error curve shape, and the half
width at half maximum is approximately given by

whereh8 is defined by Eq. P). The half width at half maximum of the theo-
retical single crystal curve (Eqs. (4), (5), (6) ) is

hence on this basis the observed width on the double spectrometer and the
diffraction pattern width are related by

At the time of writing this paper, it is uncertain whether the diAraction
pattern width for a single crystal should be calculated from the obseIved
parallel position rocking curve widths by Eq. (14) or by Eq. (11).The experi-
mental rocking c~rves are very closely of the Gaussian error curve form, Rnd.

hence favor Eq. (11),although no detailed study of the shape in a single case
has been carried out. W'e shall therefore use Eq. (11),as has been the general
practice previously, with the provision that later developxnents may favor
some other factor, as in Eq. (14).

Fig. 1 represents the essentials of a type of high resolving pow«photo-
graphic spectrometer which has been designed by Professor Siegb»n at the
Univesity of Upsala and used there and at the University of Minnesota by
J. Valasek. s Others have also used photographic apparatus of this type. s &n

the figure, x-rays from the target T fall upon the crystal, and a narrow band

8 Duane, Phys. Rev. 3V, 1017 (1931), also unpubljshefI work by J. A. Bearde& j& t»s
laboratory.
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of the reAected rays is selected by the slit of width a. This bundle of x-rays
falls on the photographic plate which is put at a distance R.

Let us assume the radiation to be monochromatic, of wave-length ) . The
dotted line intersecting the photographic plate at 0 passes through the geo-
metrical center of the slit aperture and makes a glancing angle 8 with the cry-
stal, where 8 is the angle calculated from Eq. (2). We will select a point 8 at a

+- X
0 P

Flg. 1.

distance x from 0 and calculate the intensity at this point. From the geom-
etry of Fig. 1 it results that radiation can reach I' which has been reHected
from the crystal over a range of glancing angle from 0 —(a —2x)/2R to
8+(a+2@)/2R. Assuming a single crystal diffraction curve of the form of
Eq. (9), we have then

(a+2+) j2R

I g
—{log2/tnc )$ d(

—(a—2 x)/2Z

Curves for various angular slit widths (u/2R) obtained by graphical in-

tegration of this function are shown in Fig. 2. The abscissae of these curves
are angular deviations from 0, Fig. 1, and the ordinates are intensities. Several
interesting conclusions may be reached from Fig. 2. Let us consider the curve
for a/2K =1/4w, . Here the angular half width at half maximum of the im-

pression on the photographic plate is simply m„which is the angular half
width at half maximum of the crystal di6raction pattern, and the slit width
does not contribute to the observed width at all. %e Inay then state that the
narrowness of the impression on the photographic plate, or in other words the
resolving power of the instrument, is not increased by reducing the half
angular width of the slit below approximately one-four of the half width at
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half maximum of the crystal used. In any given spectrometer this gives a
lower limit to the slit width beyond which nothing is gained by narrowing
the slit. '

In the other direction, at c/2R =3m„ the half width of the impression
on the photographic plate is just what one would expect from the slit dimen-
sions and distance alone, namely, n/2R, and the diffraction pattern from the
crystal plays no appreciable part.

In order to set up an expression for the resolving power, we must now
decide at what angular separation two curves for slightly differing wave-
lengths would be resolved. The author wishes to make the suggestion here

—=&&cQ,

2R.

Fig. 2.

that two curves of the type of Fig. 2 shall be said to be resolved if the separa-
tion of their maxima is twice their half width at half maximum. In the case
of the curves of Fig. 2 which do not greatly deviate from the Gaussian error
curve shape, two such curves at the limit of resolution would have a dip be-
tween them of approximately 93 percent of the intensity at either maximum.
This, of course, is an arbitrary definition of resolution, but is neither more or
less so than the classical definition applying to the resolving power of gratings
in the optical region. Now differentiating the Bragg equation to get the
angular dispersion, we obtain

The highest resolving power attainable is obtained if a/2R I/4w, ; here
m =m, and we get

tan 0

dX 2z,
' U the single crystal diffraction pattern is not of the Gaussian error curve shape, but of

the theoretical Darwin-Ewald form, this lower limit is reached somewhere between u/2R = &&

and e/2R =m„and considerably nearer the higher value than the lower.
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If a/2R& 3ui, we have w = a/2R and

X E tang

dX a

COMPARISON WITH THE MAXIMUM RESOLVING POWER ATTAINABLE

IN THE DOUBLE SPECTROMETER

If the vertical divergence of the beam of x-rays in the double spectrometer
is sufficiently great, it may cause a diminution of resolving power. The cal-
culation of the shape of the rocking curve which combines this geometrical
effect with the diffraction pattern widths of the crystals is considerably more
difficult than in the photographic case previously considered. One can, how-
ever, calculate the two effects separately and estimate the extent to which
geometrical e6ects lower the resolution. The calculation has been carried
out, and it is quite possible, using calcite crystals in the (1, 1) position, to
limit the vertical divergence to the point where geometrical effects do not
enter appreciably, and yet to have sufficient intensity in the beam for meas-
urement. " In the (2, 2) position this is much less easily possible due to the
much lower value of m, in the second order. However, the maximum resolving
power is attainable only by eliminating geometric effects and we will assume
this has been done. If the instrument were operating with a perfectly mono-
chromatic beam of x-rays the half width at half maximum in any position
(mz, es) would be given by

(ui 2 + ~ 2)1/2 (19)

where wg and m~ are the values of m, corresponding to the orders of reHection
n~ and n~. According to the assumption in the second section of this paper
the rocking curve would be of Gaussian error curve shape. |lilt'e have postulated
that two such curves are resolved if separated by twice the half width at half
maximum, or 2m. The dispersion is

deD=-
dX 2d cos Og

+
2d cos Og

(2o)

if the sign of n& is chosen according to a convention suggested previously by
Allison and Williams. Using Eqs. (19) and (20) we find

X DX D)

dpi 2w 2(w '+ ui ')'" (21)

Eq. (21) represents the highest resolving power attainable in the double spec-
trometer for any given values of n& and n&. This can actually be attained
without too great loss of energy in the (1, 1) position, where 14.1 becomes

See Table V of the paper of Allison and Williams previously referred to. In the (1, 1)
position the geometric half width at half maximum was 0.34", whereas the rocking curve half
width at half maximum due to crystal diffraction patterns was 3,0".It would easily have been
possible to decrease the vertical divergence further, but due to the large natural line width,
nothing would be gained,
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X (2)'" tan 8

dX 2x,
(22)

Here m, is the half width at half maximum of the single crystal di8raction
pattern in the first order, and 0 is the corresponding glancing angle.

By a comparison of Eqs. (22) and (17) we see that the maximum resolving
power attainable by the double spectrometer in the (1, 1) position is 1.4 times
that obtainable photographically in the first order from the same crystals.
This conclusion has been previously stated by Valasek. It is, of course, futile
to pretend that the equations for resolving power developed here will be of

0

l~

F1g. 3.

great importance to the investigator seeking to resolve a given pair of x-ray
lines. Many other factors, such as their shapes, their relative intensities, and
the acumen of the observer, enter. The real use of the equations is their ability
to serve as a criterion of the relative resolving powers of different instruments
and methods.

THE PHOTOGRAPHIC MEASUREMENT OF LINE BREADTHS

In order to set up equations for the measurement of line breadths photo-
graphically, we must solve the problem of Eq. (15) in the case in which the
spectrum, instead of being monochromatic, consists of a continuous distribu-
tion of energy over a range of wave-lengths. "We will limit our considerations

"Valasek has corrected his observed line widths by merely subtracting from them a value
of the monochromatic width obtained by adding the angular slit width and the full width at
half maximum of the observed rocking curve on the double spectrometer. In the opinion of the
author, this method is open to criticism, and an attempt is here made to outline a better method
of correction.
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to a spectrum line and assume that the energy is dstributed in a Gaussian
error curve, represented by

~
—('A—'Ap) log2/w), (23)

where I), is the intensity of wave-length ) in terms of the maximum which
occurs at ) p, and w), is the half width at half maximum of the line. In Fig. 3
consider the intensity at point P on the photographic plate due to a wave-
length range dX about ) . P' is the intersection on the photographic plate of a
line passing through the center of the slit aperture and making a glancing
angle eon the crystal (Eq. (2)). If Iq is the intensity of this wave-length in the
original spectrum, an intensity I&dX will be derived from the spectral range
dX. This will be spread out on the photographic plate in an impression the
width of which is determined from Eq. (15), and the contribution to the in-

tensity at P may be written
(a+2m) /2B

dI„= 1)d) &
—(log2) /wc )$ d(

—(a—2 x)/ 28
(24)

where x is now the distance PP and not OP as in Fig. 1. The integral in Eq.
(24) will be one of the curves in Fig. 2; which one depending on the ratio
(a/2R)/w, which is appropriate to the apparatus being used. Let us assume
that this integral in a particular case is F(x/R). Let OP/R in Fig. 3 be 6,
then if D is the angular dispersion,

x/R = 6 —D(X —Xo) (»)
and Eq. (24) becomes

or
dI„=IgdkF I 6 —D(X —Xo) }

I„= I)F 6 —D 'A —Xp dX.

(26)

(27&

The extension of the limits of ) to + ~ is justified by the narrowness of
the lines compared to the spectral range which can get through the slit. Un-
less the form of F(D —D(X —Xo)) is known, the problem cannot be carried out
further. For suggestions as to the form of this function we may inspect Fig. 2.
If we assume that for angular slit widths up to c/2R = w, the function can be
su%.ciently well represented by a Gaussian error curve we can get an app«»-
mate solution of Eq. (27). Setting

P I g D(lj 7 ) } ~
—log2/w (6 D(x—ko)j—(28)

we obtain from Eq. (27) the result

~ ~
—6 log2/(w +wy & )

u (29)

in which a factor similar to that under the radicle sign in Eq. (10) has been
omitted. If 8'is the half width at half maximum of the line as observed on the
photographic plate, in angular units, it follows from Eq. (29) that

W = (w' + D'w&, )'" (3O)
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APPLICATION TO EXPERIMENTAL RESULTS

Valasek' and Duane' have recently reported results obtained with high
resolving power photographic spectrometers. In the case of Duane's work, the
slit to plate distance R was 472.5 cm, but the slit width is not given, hence the
resolving power cannot be calculated.

In Valasek's work results are given for measurements of MoEn&, MoX'P„
AgEn~ and Curn~ in the first order from a high resolving power spectrom-
eter constructed in Siegbahn's laboratory. Measurements in the second
order for the Eo/ lines of Fe, Ni, Co, and Cu are also given. Discussion here
will be con6ned to the experiments on MoXn~ in the erst order, as for the
other values so little is known at present about m, that speculation is very
precarious. We can, however, assume that the crystal used by Valasek had a
ve. equal to that reported by Allison and Williams, and proceed to calculate
the resolving power. The value of R was 296 cm, of a, 0.003 cm, hence a/2R
was 5.06/10 '. Allison and Williams' value of m, is 2.1 seconds of arc, or
1.02X10 ' radans. Hence (a/2R)/w, was 0.496 in Valasek's experiment. We
now look to Fig. 2 to find the type of monochromatic impression on the photo-
graphic plate to be expected. We see that the curve will be of approximately
Gaussian error curve shape and of angular width w = 1.09m, = 1.11 && 10 '. Ap-
plying Eq. (16) we find that )i/d)i=5350. Valasek's own estimate of his
resolving power is 4720. The maximum resolving power obtainable from a
double spectrometer having equally good crystals in the (1, 1) position is
is 8100.

We now proceed to the calculation of vv), from the widths of the photo-
meter curves observed by Valasek for the Motto. , line. We apply Eq. (30).
Valasek's value of W observed was 0.20X.U. In order to apply Eq. (30) we
must change the value of w in Eq. (30) to wave-lengths. The angular disper-
sion of calcite for MoKni (1) is 34.28 seconds per X.U. , hence the w of the
preceding paragraph corresponds to 0.066 X.U. Applying Eq. (30) we find
wq =0.19 X.U. for MoEo.q.

The value of m~ calculated by this method is considerably larger than that
calculated by Valasek froin his own results (0.13 X.U.). If the method of
treatment in this paper is valid, however, his method of correcting the ob-
served Ws, which consists in simply subtracting values of m from them, is
erroneous.

The value of the half width at half maximum of Motto. I calculated here
from Valasek's results (0.19 X.U.) is considerably larger than that obtained
by the most recent results by the double spectrometer method. The value
obtained by Allison and Williams was 0.147 X.U. , and recently Mark and von
Susich" have obtained the values 0.163 and 0.144 X.U. with calcite and topas
crystals respectively. The discrepancy between the photographic and ioniza-
tion double spectrometer methods may be due to lateral spreading of the
image on the photographic plate due to secondary x-rays, or to photoelec-
trons ejected from the plate substance. Also the effective slit width of the
microphotometer used in taking the blackening curve would contribute to the
estimated S', tending to increase it.

"Mark and von Susich, Zeits. f. Physik 65, 253 (1930).


