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ABSTRACT

Many collisions, particularly those in which there is an exchange of electronic
energy from one atom or molecule to another, involve interactions between the col-
liding bodies, which (being treated as perturbations) are too large to be handled by the
ordinary Born method. A method is given for the treatment of such problems. Two
cases must be distinguished, that of good and that of poor resonance, resonance being
good if the transition which takes place at the collision does not involve the transfer
of much energy from internal energy to relative translational energy, or vice versa. The
case of good resonance is handled by Dirac’s perturbation method (variation of con-
stants), and the probability that a transition take place at a collision of given distance
of closest approach found in terms of the perturbation (interaction) matrix component
for that collision. In the case of poor resonance, we first assume the two atoms or
molecules are held at a fixed distance from each other, and apply the perturbation due
to the interaction between them constructing potential energy curves as a function of
the distance, as if the whole system were a large molecule. We then allow the transla-
tional motion to take place. This introduces further perturbations, which in the case
of poor resonance are always small, so that relatively few transitions will occur. Since
the amount of energy which we may have transferred from internal to translational,
or vice versa, and still have the case of good resonance may be determined in special
cases as a function of the distance of closest approach, we may tell in any special case
how close the two molecules or atoms must come to each other in order for there to
be a transition at the collision. Thus a radius of action can be found. In general it is
concluded that if the transition is to take place with a large radius of action (com-
pared with kinetic theory radii), then less energy can be transferred from internal to
translational, or vice versa, than has hitherto been supposed.

§1. INTRODUCTION

ANY collision problems, particularly those in which the transition at
collision involves the exchange of electronic energy from one atom or
molecule to another, bring in interactions between the atoms or molecules,
which (being treated as perturbations in a wave-mechanical perturbation
theory) are so large that the ordinary Born method for handling such prob-
lems breaks down.! The first attempt to treat a case of this kind was made by
Kallmann and London.? As their treatment was not entirely free from objec-
tions, I made an attack on the problem in another way,? as did also Zener,*
but these attempts still leave much to be desired.
It will be the object of this communication to describe a method which I
believe may be made the basis for a satisfactory solution of the problem. I
1 Kallmann and London, Zeits. f. Physik 60, 417 (1930).
% Kallmann and London, Zeits. f. phys. Chem. 2B, 207 (1929).

% Rice, Proc. Nat. Acad. Sci. 17, 34 (1931).
¢ Zener, Phys. Rev. 38, 277 (1931).
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have not as yet completed the application to any particular case, but certain
conclusions of a rather general nature seem possible, and it appears desirable
to describe the procedure in as simple and general a way as possible, without
the encumbrance of the special notation necessary for a special problem. The
results also have an application of general interest with respect to the ques-
tion of distinguishing between adiabatic and nonadiabatic processes, which
we will not enter into in detail, but which the reader may readily see for him-
self.

§2. STATEMENT OF THE PROBLEM

We suppose that we have two molecules or atoms. Neglecting at first any
interaction between them, the state of this pair of molecules or atoms may be
designated by an eigenfunction ¢ which may be written in the form

¥ = XR (1)

where R depends on 7, the distance between the centers of gravity of the two
molecules and X depends on all other coordinates, to be designated as the
internal coordinates. We assume that there are two eigenfunctions X which
need to be considered, X; and X,. Taking the initial state of the system to be
that designated by the subscript 1, we require the probability that on colli-
sion it should go over (due to the action of the mutual attractions or repul-
sions neglected in setting up (1)) to the state designated by subscript 2.

The assumption that there are only these two states X; and X, to be con-
sidered constitutes the chief limitation on our method, because we know that,
on account of the rotational degeneracy, it is always necessary to consider
many states at a time.? Nevertheless I believe that the general character of
the results will not be altered, though this must be investigated in the treat-
ment of special cases.

The physical meaning of the transition from the state 1 to the state 2 may
be illustrated by a typical example, in which X, represents one of the atoms
in an excited electronic state, the other atom being unexcited, while with X,
it is reversed. The transition considered then represents an exchange from
one atom to the other of electronic excitation energy.

Corresponding to the two states X; and X, are two internal energies E;
and FE,, respectively. Corresponding to the initial and final translational ei-
genfunctions R; and R, we have the translational energies 74 and 7%, respec-
tively. The total energies we shall designate as W and W,. Naturally we must

have
W1 = Wz. (2)

If
E1 = E2 (3)

we speak of a condition of exact resonance. This corresponds to no change of
translational into internal energy, or vice versa, at collision. If E; E; and E,
— E, is fairly great** we say the resonance is poor. As is to be expected the

42 When statements of the size of quantities are made we shall always have reference to
their absolute magnitudes.
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probability of transition at a collision depends greatly on whether the reso-
nance is good or poor. We shall find it necessary to use two different methods
of attack for “good” and “poor” resonance, and shall have occasion to define
these terms more exactly later.

In either case our first step is to set up an unperturbed wave equation,
neglecting any mutual interaction between the two atoms or molecules. ¥4

and ¥, obey the wave equations,
H—-W =0
( 2 @
(H - Wz)lﬁz = O

where H is the unperturbed Hamiltonian operator for the system. X; and X,

obey the equations
0

0

(Ho — Ey — L+ 1) /k¥r?) X,

(Ho - E2 - lg(lz + 1)/K27’2)X2 (5)

It

where H, is the part of the Hamiltonian operator which contains derivatives
with respect to the internal coordinates; /; and I, are the quantum numbers
which give the angular momentum which is connected with the free motion
of the two atoms or molecules in the states 1 and 2 respectively; and «*=
8m2M/h* where & is Planck’s constant and M the reduced mass. The terms
involving the I's enter into the equation in the ordinary process of separating
the variables.?

R; and R: can be expressed in terms of quantities F; and F; defined in ac-
cord with the equation

R =F/r (6)
the F’s obeying the equation (subscripts 1 or 2 to be inserted)
d?F/dr? + (2T — I(l + 1)/r)F = 0. @)

The quantity /; plays an important role in our calculations. For it is seen
that F; decreases very rapidly for values of # less than 7, where

Yo = 1101 + 1>/K2T1. (8)

This distance is the distance of closest approach (or at least what would be
the closest approach if there were no forces between the atom or molecules)
of two molecules or atoms with the given relative kinetic energy and angular
momentum in the classical theory, and the same interpretation retains most
of its significance in the quantum theory.

It is evident that in the transition ! will be subject to selection rules, and

we shall now assume
ll = lz (9)

for only in this way can we remain consistent with our original assumption
that only one final state exists which combines with the given state 1. This
condition also demands certain selection rules among the other rotational
quantum numbers. These we will not need, however, to consider further.

5 As in Frenkel, “Wllenmechanik,” Springer, Perlin, 1929, pp. 245-6.
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We now take into account the interaction between the two atoms or mole-
cules, that is, the energy in excess of that they would have if they were an in-
finite distance apart. This can be expressed as a function, V, of the internal
coordinates of the two atoms and the distance 7. The problem is treated as a
perturbation problem, with V the perturbation function. Corresponding to
V will be a matrix

Y11 V12

V21 U29.

(In the matrix as written the exponential time factor is assumed not to be in-
cluded.) First we shall consider the case where® v;; =1, =0. The matrix must
of course be Hermitian so that vy =v1,*, where the asterisk means conjugate
complex.

v12 will be a function of 7y, E1, and Es— E;, and it may readily be seen that
it will be larger in absolute value the smaller” 7, and sz—El [ The fact that
large values of vy, are associated with small values of |E2 —F | is due to the
fact that when |E,—E,| is small |7;— T} | will be small also, since the total
energy cannot change in the collision. If 7 and T are the same the eigen-
functions F; and F: of Eq. (7) will be the same, and the integral by which v,
is determined, the integrand of which contains the factor FiF.dr, will be
large. But if F; and Fs are different, and since they are oscillating functions of
7, the factor FyF, will then have positive and negative parts when considered
as a function of 7; in the integration these will tend to cancel, giving small
values for the integral. The situation is not greatly different from that de-
scribed by Condon in his well-known explanation of the intensities in band
spectra.

§3. CaseE oF Goob RESONANCE

We shall at first assume that E;— E; is so small that v, is not less than,
say, 3 of the value it would have if E;— E;=0. We shall define this as “good”
or “exact” resonance. We may then find the probability of transition per col-
lision in terms of v15. To simplify the notation we shall assume v15* =v15. The
results will hold if this is not the case.

We substitute — (k/2w2)0 /3t for Wy or W, in Eq. (4), put in a more gen-
eral function ¢, and bring in the mutual energy, so that

<H+V—|— h a> =0 (10)
Qi 6t¢_ '

We proceed, according to the Dirac method of variation of constants,? to

8 This is true if the interaction is the dipole interaction described in my preliminary article.
These are probably the only forces we need to consider if we merely wish to discover whether
radii of action larger than kinetic theory radii can occur. (See Kallmann and London, refer-
ence 2.) And, of course, as soon as we have to consider radii of the order of kinetic theory radii
we cannot neglect v;; and vas.

7 See, e.g., the calculation in reference 3. The maximum may not occur exactly at 2 — E1 =0,
and some modification of the statement is necessary if Eq. (9) does not hold.

8 Dirac, Proc. Roy. Soc. 1124, 673-5 (1926).
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find ¢ in terms of the original eigenfunctions, which satisfy the equations of
the type (4). In so doing it is of course to be noted that due to the free motion
of the two atoms or molecules with respect to each other there will be a con-
tinuous series of eigenfunctions and eigenvalues for Eq. (4). It will therefore
be necessary to integrate over the energy, though naturally only states in the
immediate neighborhood of W; will make any appreciable contribution. For
purposes of normalization it is most convenient to introduce a largest value,
71, for 7, the ¢¥’s then being normalized so that, for example,

deT —1 (11)

where dr is the volume element, and where the integration is taken over all
allowable values of the coordinates (r goes from 0 to #1). The introduction of
the largest value, 71, will cause the continuous set of eigenfunctions to become
a very close-spaced set of discrete ones. We will designate the difference be-
tween successive eigenvalues as € (€ or € corresponding to the initial or final
states, respectively). e will be given in terms of 7, and 7" by the following ex-

pression
€ = hTY2/r (2QM)V2 = 27 T2 /y k. (12)

It is seen that there will be a group of eigenfunctions with the internal
part X; and a group with the internal part X,. Any one of the former group we
designate as ¢, of the latter as Yy, the corresponding energy values will be
E; and E;, W, and Wy, T; and Ty. The particular ¢¥’s with energies Wy and
W, will still be ¢ and .

We set

1// = Zzaz\bz €exp (“ 27!'1WJ//Z) + Efdf’,[/f €xXp (*— 27T$Wft/h) (13)

where the a's are coefficients which will be functions of the time, and follow
Dirac by substituting ¥ in Eq. (10), and using relations like (4):

(H—=Wy; =0

(14)
(H — Wy = 0.
we remember that® v;, =v,;,=0 getting thus the following equations:
— (h/2wi)das/dt = Ziay exp {2mi(Wy — W)t/ 1} (15)
— (h/2wi)das/dt = Zapp exp {20i(Wi — Wt/ h}. (16)

We begin with the system in a given state, which means that, at time =0,
all the a;’s are zero and all the a s are zero except a,, which may be taken as 1.
The solution which we get must be consistent with this condition. We start
now by trying, as a solution,

9 This means, of course, that states with the same internal state do not interact with each
other, and that the only transitions which occur directly are transitions which involve a change
from one internal state to another. This, of course, considerably simplifies our problem, but the
method of avoiding the difficulty which one runs into if this is not the case, has been given by
Morse and Stueckelberg, reference 22. See §7.
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a; = k(1 — exp {27i(W; — Wa)t/h]/(W; — W) (17)

where k; is a function of f. In the case in which the perturbation is small %, =
v;1 as was shown by Dirac. We are interested in the case of large perturba-
tions, but it will be seen later that %, nevertheless remains proportional to v,;
if resonance is good. We proceed by substituting (17) into (16) and evaluating
(16) by changing the sum into an integration. (This is done by simply replac-
ing the summation sign by [dW;/¢;.) (16) then goes over, after a slight trans-
formation, into the form:

b da;
T @t (18)
[ kyvgi[cos {20 (W1—=Wp)t/ b} i sin{ 20 (W= W)t/ b} —1]e2mi=woern gy,
B fo Wy — W e

If ¢ is large enough there is no contribution from the sine term in the integrand
of (18) except in the immediate neighborhood of W;=W;; that part of the
integral reduces practically to

Granfed [~ LD gy,
— (tkov2; — - ,
9V24/ €9, . = . f 1

a known form.'? (k, is the value of k; when W,;=W,=W,) The contribution
from the cosine term is negligible. (Any difficulty which might arise from
the singularity at W;— Wi is automatically taken care of by the fact that the
cosine term is equal to 1 at this point, hence the two terms cancel each other.)
Eq. (18) thus reduces to

]’L dai <’l:7rk27)2i i kﬂ)fi de

. e L > 2T W=t/ b, 19
2wt dt € o Wy— Wi ¢ 1)

The remaining integral in (19) can be evaluated roughly. ;;, taken as a func-
tion of Wy, (holding 7 constant) may be expected in general to have a rather
sharp maximum at or near the point where 7y = T';. In the case of exact reso-
nance this is also where W;= W,. In general we may designate the W; which
goes with Ty=T'; as Wy,. If Wy, is not equal or nearly equal to W, the integral
may be considered to have its greatest contribution in the neighborhood of
W;=Wy,. It will be approximately

® kg AWy kivre AWy,

= (20)
o Wi— Wi ¢ Wiy — Wi e
where AWy, is such a quantity that
f vid Wy = v7,:AWy,, (21)
0

and may be called the effective width of the curve v;; plotted against W.
But as Wy, approaches W, that is to say, putting the matter the other way

10 Peirce, “A Short Table of Integrals,” Ginn and Co., Boston, 1910, Formula 484.



COLLISION PROBLEMS 1949

round, as W, approaches W, the value of the integral will eventually become
zero at some point where the positive and negative parts cancel. It may be
seen that roughly its value should not exceed such a value as would be ob-
tained by putting AW, = W; — W,. Since AW, will be small this means that
Wy, is nearly equal to W, which is equal to W, hence that we may substitute
the subscript 2 for f;. Then, putting the matter the other way round, we see
that the 7 subscript will be roughly 7.. Thus
Ry, awy kavas,

Max ~ : (22)
0 W/ - W1 déf €9

If now the state 7, chances to be close to the state 1, that is, if T is nearly
equal to 7 (the case of good resonance) the value of (22) becomes kva/ €
while for ¢ near 1 in (19) it is seen that the right hand side of (19) will be of
the order of its first term. If we assume as a first approximation that we may
neglect the second term in (19) we may write (for W; near W)

(h/2wi)das/dt = (irkywn/es) exp {2mi(Ws — Wi)t/h} . (23)

The word “near” means: “Defined about as closely as good resonance is de-
fined.”

Eq. (23) will not hold unless we have good resonance, for when ¢ is 1 the
second term in the parentheses in (19) becomes by (20):

[kflvfll/(Wfl - Wl) ]AWh/efl- (24)

This is to be compared with the first term, ¢mkyv21/€2. Now if resonance is not
good vz will be small compared with v;; which is, of course, the maximum
value of ;. Furthermore, we may in general expect that v;; will fall off more
rapidly than 1/(W;—W1) as W;— Wi becomes greater than AW;,. So the
second term of (19) becomes then predominant unless k;, is sufficiently
smaller than ks which it will not be (23) was derived on the assumption that
the first term predominated. Since we shall base our subsequent deductions
in this part of the paper on (23), they will hold roughly for the case of good
resonance, that is 7'y must be near enough T so v, is within a factor of 2 or
so of the maximum value.
Integrating (23) and making ¢;=0 at =0 we get (note vy =1y5)

a; = ikzrvlg[exp{Zri(W,' - Wl)i/h} —_ 1]/62(W¢ - Wl). (25)

We can substitute this into Eq. (15) and proceed in the same way that we
have just done. We must note, however, that at #=0 we have a1=1. As 1—1
the value of (25) becomes — 2n%ksv15t/ €2k It seems, therefore, entirely natural
to set!!

a1 = 1+ lim ikamoss[exp {20i(Wi — Wi)t/h} — 1] /(Wi — W1). (26)

When we evaluate (15) and integrate we get (for W; near W)

1 It is necessary to retain a; in this form in order to get reasonable results in our subsequent
calculations.
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ay = (7]12 - k27'l‘27)122/€162) [1 — €exp {27T’I:(Wf - Wl)t/h} ]/(Wf - Wl). (27)

But this must coincide with the expression (17) for a;. Equating these two for
ax we get an equation for &y, which yields

k2 = '1)12/(1 —I— 121)122/6162)- (28)

In order to find the total number of systems in the second state we must
evaluate Y ;asa;*. With the aid of (17) and (28) we find by turning the sum-
mation into an integration

Efdfdf* = 47T27)122t/h(1 + 727)122/616-2)262. (29)

Thus the rate of transfer from the state 1 to all the states f, which rate we may
call vz is given by

Yiz = 4:71'2‘1)122/]1(1 + 71'27)122/6162)262. (30)

Now the eigenfunction ¥, represents a system in a certain internal con-
dition with translational energy 73, moving hence from 7, to 7; and back
again with velocity (27/M)Y2. In unit time it will go from 7, to 7; and back
again approximately (27/M)'2/2r, times which may be taken as the number
of collisions per unit time of a system in the state 1. This is equal to €/, by
(12), hence the probability of transition per collision may be obtained by di-
viding (30) by €;/k and is given by 2

N12 = 4:’1'(‘27)122/(1 + 71'27)122/6162)26162. (31)

It is seen that Ny, first increases then decreases as 915 increases and hence as
7o the distance of closest approach, decreases. When

20192 €16 = 1 (32)

Ny =1. It never becomes greater than this, as of course it must not. The
value of 7, for which (32) holds may be taken as a rough measure of the effec-
tive radius of action in any case of exact resonance, since v will usually in-
crease very rapidly as 7o increases. This gives a rough justification for the
method used in my preliminary article, as far as that is concerned with exact
resonance, and, therefore, a justification, except for a numerical factor, of
Kallmann and London’s result for that case. Eq. (31) is of course not an ab-
solutely exact equation and depends on the validity of the approximations
which have been made.

It may be remarked that the quantity on the left hand side of (32) is in-
dependent of 7; as it must be. Since the parts of the integration at great dis-
tances 7 contribute nothing to i, the latter quantity will depend inversely
on 71, due to the normalization of ¥; and ¥», while the same dependence is
true for €; and e, as is seen from (12).

Eq. (31) solves the transition problem for the case of exact resonance,
whether the perturbation is large or small. It reduces, of course, to the usual
result for small perturbations if 12 e€s. It has been pointed out that there

12 Because we have the case of exact resonance, ¢ = e.
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will be obstacles in the way of obtaining a similar result if the resonance is
not exact. We might, however, expect that we could at least treat the cases
where 1,2 €16, by the usual formula for small perturbations. Unfortunately
this is not true, however. The difficulty arises from the fact that, in the case
of poor resonance, v is not as large as v1y,, so that though v,? is small com-
pared to €€ it may not be true that 12 will be, so we really do not have the
case of small perturbations after all. The criterion for small perturbations is
that the second term of (13) should always and for all values of 7, but par-
ticularly such values as are of importance in the integral which defines a per-
turbation matrix component, v, be small compared with the first term. At
time ¢ =0 the r-factor of the first term is simply Fy. The r-factor of the second
term should never approach this in magnitude. To find the conditions under
which this will be true, let us evaluate Z; a;F; exp (—2miWyt/h). Since if the
perturbation is small we have k; =v;; we shall simply substitute this value in
(17) and use this expression. In a manner similar to that in which we obtained
Eq. (19) we get (¢ large)

EfafFf(eXp (— 27TZWft/l’l) = —< ’i?TF27)21/€2

—— —— ) exp (— 2wiWit/h).
s S esp (= 2nita/i)
It is seen that if 951/ €; is small the first term will always be small, but we must
evaluate the integral. Now the range of W; over which v;; has a large value
is just that range over which F; does not get appreciably out of phase in those
regions (the important regions) of # which contribute to the integral giving
v;1. Thus we set F;=F;, for that region of 7, and evaluate the integral as we
did the integral in (19), obtaining as a rough value v, Fr AW /€, (Wy, —
W1). If this is small we can use the small perturbation approximation. Since,
if resonance is poor, AW, KW, — Wy it is always safe to use the approxima-
tion if v;1/€;, is not greater than about 1. That is, we may surely use the ap-
proximation for small perturbations provided this approximation would be
correct, even if we had exact resonance. Any attempt to carry the small per-
turbation case up toward the region where v1:%/ €€, itself is large, as was done
in our preliminary article® will be inadmissible except for getting an upper
limit, as, indeed, we stated to be the case at the time. (though, due to the rap-
id decrease of vis as |E;— E: | increases, this may nevertheless turn out to be
a pretty good approximation). The method of §5 allows us to show that in the
case of poor resonance the transition probability at collision will always be
small (except, perhaps, at the very boundary of good resonance, i.e. not very
poor resonance). If we have to contrast this with cases where the probability
of transition approaches unity, this is entirely satisfactory—transition proba-
bilities, if resonance is poor, are negligible. In many cases, however, transi-
tion probabilities of the order of 1 never occur—we are interested in compar-
ing very much smaller probabilities. Here the calculations for small pertur-
bations hold, and no further analysis is required.
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§4. DiscussioN OF §3

Since in §3 we have really given only an outline of the derivation of (28), it may be well
to discuss further some of the points involved, as well as give an interpretation of the results
in terms of an incoming wave and outgoing waves of particles.

In the first place our deductions are based on the assumption that (for state f very far
from 2)

ko/ky = v12/vis (33)
and more or less implicitly on the assumption that (for state ¢ very far from 1)
ki/ki = 021/ 02 (34)

But are these assumptions consistent with each other and with Eq. (19) and with the
equation similar to (19) but involving das/dt instead of das/dt, for all values of ¢ and f? The
answer is yes. For Eq. (34) follows from (19) provided the first term on the right-hand side of
(19) is large compared with the second, and this condition is fulfilled provided (33) is true.
Using (33) we have to show that

| iwkzvgi/ezl > [ kz'Ulfi'LyiiAWji/vlz(Wfi — Wl)efi ! (35)

Since 97;;~v12 and v7,~vy; and e~e¢,; and AW, <KWy, — W this is seen to be true.’® Similarly
(33) follows from (19) and (34). They are therefore consistent, and so we have gone a step
further in the construction of the complete consistent solution of the Dirac equations (15)
and (16), at least within the limits which the approximations for ¢ and f not far from 1 and 2,
respectively, allow.

We may next consider the question of the constant of integration in the expressions for as
and a;. This has been chosen to make the quantities have the proper values, in general zero,
at £=0. But it will have been noted that the evaluation of da;/dt from (18) depends upon the
assumption that ¢ is great. Specifically it may be seen from (18) that it must be so great that
exp 2miAW; t/h has gone through a considerable number of periods. This being the case, the
expression (19) for da;/dt does not hold from the moment ¢=0, and the same may be said for
the similar expression for da,/d:. This will affect the constant of integration. However, if 7 is
near enough to 1, it is obvious that exp 2mi(W;— W)t/k will (because | Wi— W:| <KAW})
have gone through but a fraction of a period after the expression (19) has begun to hold. There-
fore, the constant of integration must be approximately correct if 7 is near 1 (and similarly if
fis near 2), which is all that is necessary. In fact, the exact value of the constant of integration
is not important so long as it does not vary rapidly with ¢ when 7 is in the neighborhood of 1
(or with f when f is in the neighborhood of 2), for it would not matter, for example, if the last
term in (19) were multiplied by a factor, which might be complex, but in all events would of the
order of 1 in absolute value.

One of the most satisfactory checks of the general correctness of the procedure in §3 will
be afforded by the ability to express the results in terms of ingoing and outgoing waves of
pairs of atoms or molecules. We may now consider how this may be done.

Consider first the eigenfunctions Fy. At great distances, they are of the form,

Ff = sin KTfI/QT (36)
ignoring a possible phase constant and the normalization factor. The part of the complete
eigenfunction with the final internal state which depends on 7 is given by

—omi (Tr—To)t/h s 9, _
E/afFfe‘z‘”Tft/h — gmiTalh f @ k/(e i(Ty=Ty) l) sin (KTfl/ 7) d(Tf Tz) .
o Ty — T, €

We have substituted from (17) for ay, since we have decided that (17) will hold if W is near
enough to W; or Wi and as we may see only such states contribute appreciably to the integral'*

(37

13 Actually some of our deductions are based on the assumption that T4, T3, and all T and
Ty are of the same order of magnitude. This will include a range of values very much greater
than such a difference T3 — T as would be necessary in order for resonance to be poor, and can-
not invalidate our conclusions.

14 Since this is true, it is permissible to take the limits from — « to «, when we change
over to the variable Ty— 7% instead of T}.
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in (37). Also we have made the obviously correct substitution Ty — T for W;— W,. We can also
substitute sin {73!/ +xr(Ty— T9)/2 T312} for sin (xTy'%r) and then perform the integration.
We obtain?®

ks Ky 2t
~omiTrt/h — TR kT2, ; e
ZrasFre I3 " eikT’s if 2T < 7 (38)
. K7 2t
=0 f >
2T 12 h

This represents a wave of pairs of particles traveling outward from each other with a relative
particle velocity equal to (27%/M)'2 and with a definite wave front which moves out with the
relative particle velocity. Now, in similar fashion, using (25) and (26), we find
Za:F; exp (— 2mwiT it/ k)
= (im?12ke/ere0) exp (ikT1M%) + sin («Tyr) if &r/2T12 < 2xt/h (39)
= sin (kTyr) if kr/2T12 > 2ari/h.

This may be interpreted as the original stationary state with index 1, represented by the
sine term, plus a negative wave of pairs of particles, with relative particle velocity equal to
(2T1/ M)*? and a definite wave front with the relative particle velocity, corresponding to those
which have been removed and are going out in the wave represented by (38). To show that
this is true note that sin (k71}/%) = —3¢ [exp (ixT1'/%)—exp (— i« T1/%)] so that the first equa-
tion of (39) becomes

ZiaiF; exp (— 2wiTyt/h) (40)
= — i(3 — 12ks/e1e2) exp (ixT1Y%) + §i exp (— ik T\1%).

It may readily be shown (with the aid of (28)) that the square of the absolute value of the
coefficient of exp (¢xT11/%) in (40) plus the square of the absolute value of the coefficient of
exp (ZxT2%7) in (38) is equal to the square of the absolute value of the coefficient of exp
(—4xTi'%) in (40). Thus we see that our solution represents a groups of pairs of particles
coming inward in the state represented by the index 1, and two groups of pairs of particles
going outward (i.e., pairs of particles in which a collision has occurred), one of which groups
represents pairs of particles in which the transition in which we are interested has occurred,
the other pairs of particles in which the transition has not occurred, and that we have con-
servation of matter. We must remember that we are considering the case of exact resonance
SO T1= Tz, and €1 = €2.

§5. CasE oF PoOR RESONANCE

For the case of poor resonance we shall need a different method of attack.
In effect, we shall treat the two atoms as an unstable molecule. We first find
the internal eigenfunctions when we hold 7 fixed but take the interaction be-
tween the two atoms into account. There will, of course, be two of these
eigenfunctions, which we designate as x; and x.. If we divide the Hamiltonian
H into the two parts, Hy, which contains the derivatives with respect to all
the internal coordinates, and H, which contains the derivatives with respect
to 7 then x; and x» will satisfy the equations®®

(Ho +V—-U, - 11(l1 + 1>/K21’2)X1
(Ho + V - U2 —_ l1(ll + 1)//(27’2))(2

where U; and U are the eigenvalues (which will of course be functions of 7).

(41)

5 We change the exponentials into the sine-cosine form, and expand the expression for
sin {kTqM2r +xr (T — T3)/2T:2}, using the formula for the sine of the sum of two angles. The
integral finally reduces to integrals of the form of Formula 484 in Peirce, reference 10.

16 See Eq. (9).
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So by ordinary perturbation methods we can find x; and x. in terms of
X1 and X, (which obey Eqgs. (5)) and U; and U, in terms of E; and E,. We
will have

x1 = anX1+ anX,
X2 = @12X1 + 422X

where the coefficients a1, @19, @21 and as will be functions of 7, though X; and
X, are, of course, not. In setting up the perturbation matrix components
(matrix components of V) for this problem we integrate with respect to all
variables but # and the matrix components, which we call

(42)

U1 U12
U21 Uas

will be functions of . We take #1; =2 =0. (This is the only way, in general,
that it is possible to have vy; =9, =0). The solution of the perturbation prob-
lem gives us'” (assuming E;> E, and U;> Us)

Ui = (Ei+ E: + ((Ex — E5)? + 4uyp2)12)/2
Us = (Ey + Ey — ((Ey — E9)? + 4uys?)1/2)/2
— azl/au = a12/d22 = Mlg/(Eg — Ul) = M12/(U2 _ El)- (44)

The actual values of the a's can be obtained from the normalization of the
x’s but are not necessary for our purposes. It is only necessary to note (a)
that the ratio in (44) changes from 0 to 1 as u;» becomes large, which means
as 7 becomes small; and (b) that this change takes place in the neighborhood
of such a value of 7 that ujs~E;—E,. On account of the normalization ay
and ag, change from 1 to 22 and @y and @y from 0 to 2172,

Now in considering the result of a collision we are not really interested in
what happens during the collision itself, but only in the difference in the con-
dition of the system before and after the collision. Since for large 7 we see
that x; coincides with X; and x. with X5, a change from x; to x2 is essentially
the same thing as a change from X; to X,, and if we can find the probability
of such a change at a collision we have solved the problem.

Thus far we have not talked about the relative translational motion in
this case. Now we can use the energies U; and U, as effective potential energies
(the usual thing in the treatment of molecules) and set up wave equations of
the form

(43)

(Hr + U, + ll(ll + 1)/7’2 - WI)SI =0
(HT + U2 + ll(ll + 1)/72 — Wz)Sz 0
where S; and S are to be the translational eigenfunctions and W; and W,
the total energies. Naturally, as before, Wi =W, and we must remember that

the Egs. (45) have continuous sets of eigenfunctions. As before we use the
subscripts 7 and f to designate functions of the initial and final types.

(45)

i

17 This method of calculating energy curves was suggested by London, Zeits. . phys. Chem.
11B, 222 (1930). It was also suggested to me by Dr. Clarence Zener before the appearance of
London’s article. The subsequent handling of the transition problem is, as far as I am aware,
new.
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The procedure which is ordinarily used in the case of molecules, and which
we follow here, is as follows. We try for eigenfunctions expressions of the
form x1S; and x.S: and substitute them into the exact wave equation, which
is of the form (4). Such functions do not fit the wave equation exactly, and
we have certain terms left over which may be treated, following Slater,'8
as a perturbation. We have a perturbation matrix, which we write out:

P11 Pre
Po1 Poo.

We may now use these matrix components and attempt to solve with
them the problem of the transition from state x; to state x: as we solved the
problem of the transition from X; to X, in §3 by the use of the perturbation
matrix components 75, etc. One might expect to run into difficulties in this
attempt, but we shall now show that in the case of poor resonance the matrix
components must always be small, so that the possibility of transition can
be entirely neglected.

As in analogous cases'® we may write these matrix components (we take
a general one which we call p,.,,) as follows:

o = — f (nGo /1) [/ 1) (@20 07?)
+ (2/7)(dG,/dr)(3x./0r) |d'v2dr (46)

where G,, =7S., etc., d7’ is the volume element, excluding d», and the in-
tegration is taken over all allowed values of the coordinates. Now G, will
roughly be a sinusoidal function of the argument «7T,,}%r (where T, is the
translational energy) and amplitude of (2/7)*% (on account of the normal-
ization), and similarly for G,. The value of the derivatives of the x’s will
depend upon the derivatives of the ¢’s in terms of which the x’s are expressed
(Eq. (42)). Now ay will change practically from 2!/2 to 1 in some distance,
equal, say to Ar with an average da;;/dr of roughly 1—2'2 and similarly for
the other a’s. Then it is seen that the integral with respect to # need be carried
over a region equal to only Ar. We can say roughly that

xm S X1
Axn/0r T X1/Ar (47)
9%, /072 < X1/ (Ar)2.
(The choosing of the subscript 1 for these expressions rather than 2 is purely

arbitrary—either would give the order of magnitude satisfactorily.)
Also we may write

dG,/dr ~ kT,'°G,’ (48)

where G, is the derivative of G, with respect to its argument. Using (47)
and (48) in (46) we see that®

18 Slater, Proc. Nat. Acad. Sci. 13, 423 (1927).
19 See Rice, Phys. Rev. 35, 1552 ff (1930).
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P S — K_zf(Xle/f) [Go/r) (X 1/ (A)2) + (2/7) (kTG (X1/Ar) |dr'v2dy
and noting that [X?d7'=1 we have
bom S — K2 f GG/ (AP)? + 2KT1°Go Gt /A1) (49)

If the two sinusoidal functions G and G, (or G, and G,’) are in phase P,
will have its largest possible value. Remembering then what we have said
about extending the integration with respect to 7 over a region equal to Ar
and our statement about the amplitude of G, of G, we may write

Pon S 1/k2riAr 4 27,12 /kry. (50)

Now if T, is of the order of the translational energy of an atom or mole-
cule at room temperature 1/7,Y% will be of the order of 10—? cm. It is not to
be expected that any interaction between the atoms will cause the a’s to
change appreciably in much less than this distance, so we may write
Ar>107? cm, so the right hand side of (50) will be of the order of its second
term. Thus we may write

mn S 2T M2 Jkry. (51)
By Eq. (12) we may write
DPmn 5 en/ﬂ" (52)

Now this is just large enough, (assuming €;~e€,) so that if we substitute 12
for v15 in Eq. (31), N1y becomes of the order of 1. But the right hand side of
(52) gives the maximum value that p., can take. In the case of poor reso-
nance pn, will be much less because then the sinusoidal functions in (49) will
be out of phase?® and have different periods, if #ns£m. We rapidly get into the
regions of small perturbations and negligible transition probabilities (see end
§3). This situation will be only accentuated by the original effect of the per-
turbation #;; on the potential energy between the atoms, as indicated in (43)
inasmuch as it pushes the energy curves away from each other. We must also
consider the case where m =#. It may be shown that the second term on the
right of (46) is zero when integrated if?! m =n—this leaves only the first term
to consider. It may be taken into account by simply adding increments® to
U, and U, and solving this new problem (that is, we use the new eigen-
functions for Egs. (45). The cross terms of the matrix component will be
changed, and the diagonal ones will then be zero). The increment to be added
is the part of the integral which is integrated with respect to all variables
except 7, that is — k™2/xn(8%xn/072)d7’. It may be shown to have the same

20 The fact that we have to deal with G, instead of G, makes a little change in what we will
define as good or exact resonance, but not enough to make much difference, especially for the
rather rough considerations we have in mind.

21 Similar to Rice, Phys. Rev. 35, 1555 (1930).

22 Morse and Stueckelberg, Ann. d. Physik 9, 579 (1931).
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value whether m is 1 or 2, by the use of (44) and the relations a1®-+as?
=ap’+ax’=1. Since U; and U, are affected in the same way, the question
of whether resonance occurs or not is not greatly affected, especially as the
size of the term added to the U’s will usually be small. It will be of the order
1/k2(A7)? at the value of  where it is greatest and even if the colliding atoms
were hydrogen, for which « is smallest A» would have to be as small as 3 X107
cm for the additional energy term to be equal to the average translational
energy of an atom at room temperature.

The question may arise as to why it is that we can assume that poor
resonance for the matrix components vy, etc., is also poor resonance for the
matrix components pi, etc. This can be seen from the Eq. (44) and for the
expression for pn,, which is to be compared to the expression v s, = [ Fy Fott mndr.
(#mn already contains the integration for all variables besides 7.) If we go
from large to small values of 7, it will be seen from (44) that u,, will at first
have the same general characteristics as a function of 7 as the nonoscillating
part of the integrand of (46), but the latter eventually approaches zero as 7
decreases (at the point where the a’s become practically all equal) while %,
continues to increase. If the nonoscillating part of the integrand of (46) de-
creases (as 7—0) at a point 7<7, (where 7, is defined in (8) —r7, gives the
point where the oscillating part decreases) then it is obvious that the proper-
ties of p . will be similar to those of v,,. If the decrease takes place at a
greater value of 7 this means that the contributions to the integral for .,
occur at greater values of 7 than those for v,.,, and consequently at a point
where the integrand will be changing more gradually. Thus the relatively
important contributions to $.., will be spread over a relatively greater range
of » than those of v,,, and this means that the two oscillating factors in the
integration will more quickly get out of phase with each other in the case of
DPma than in the case of v,,. Thus poor resonance for v,, will certainly be
poor resonance for puy.

One may also question why the method of this section could not be used
for cases of exact resonance, as well. It might of course, theoretically at least,
be used, but complications will arise. As may be seen from (43) and (44) the
change in the values of the a’s would take place at greater and greater values
of 7 the less E;— E; became.** This would introduce great complications both
in the calculation and its interpretation. It seems best, therefore, to stick to
the easily worked out and easily interpreted method of §3.

§6. SUMMARY OF THE RESULTS

It thus appears that we may say that, if resonance is good, transitions
will take place provided the atoms or molecules come roughly within a cer-
tain minimum distance of each other. Outside that distance no appreciable
exchange of energy will take place.

But, exact resonance, as it is defined in §3, depends upon how closely the
atoms do approach, because the matrix components depend on this. Hence,
provided they approach within the maximum distance described in the above
paragraph, we may say that they will or will not exchange energy, depending
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on how closely the energies E; and E, match. Conversely, we may say, given
E,— E,, exchange of energy will take place provided the distance of approach
is less than a certain critical distance. This distance may be found as a func-
tion of E,— E;. In general it will be greater the smaller® E,— E,.

It is not my desire to enter into particular cases here. But it may not be
amiss to mention that cases 2 and 3 of my preliminary article are roughly the
cases of poor resonance. An unfortunate typographical error occurred in the
definition of these cases.?® In both instances the expression (7¢nEj,) Y2 should
have been (rgnE;?)~L. The present result, if it may be applied directly to
the case where many final and initial states are involved, says that practi-
cally no transfer of energy will take place if the resonance is poor. It would
be difficult to imagine the possibility of radii of action larger than kinetic
theory of radii if the resonance difference were greater than a millivolt, a case
which practically does not occur unless the exchange is between identical
atoms. As far as our results go they thus say that abnormally large radii of
action do not occur. Zemansky has recently shown that, in the cases of inter-
action of mercury atoms with other atoms, many of the large radii of action
formerly believed to exist are due to misinterpretation of the experimental
data. A careful evaluation of the quantities involved, even if resonance is
exact, shows that a reasonably favorable situation is required in order to give
exceptionally large radii, and the present results at least strongly indicate that
such an evaluation will usually be much too sanguine. I believe therefore,
that all cases (except some in which resonance is exact) in which experimental
results are reported which give large radii of action that they should be very
carefully scrutinized. In many cases, I believe, it will be found that a re-
interpretation of the data does away with the necessity of assuming that large
radii of action actually exist.

§7. CasE oF NoNzZERO Di1AGONAL MATRIX COMPONENTS

The case where the components #1; and u2; of the matrix of §5 and there-
fore v1; and vy, of the matrix of §3 are not zero may probably be dealt with by
use of the two methods described above. #1; and u., may simply be added in
the Eq. (7) or (45) as potential energies? (uy; in the first equation in either
case, uy, in the second). Then we proceed to take care of the cross terms in the
matrix as above.

The corrected potential energy curves may have various complex forms.
In particular the curves for the two states may cross. We may expect the
case in which transitions may be probable to be that in which the relative
translational energy in the initial state is such that the two atoms or mole-
cules would just come to rest with respect to each other at the point where the
curves cross. The results of this expectation have been discussed in a recent

28 Due to an error in V, the expression for 7, in Case 1 should be increased by about 40 per-
cent a change which is, however, about canceled by the substitution of the expression in the
Eq. (32) for that of Eq. (4) of the earlier article. The 7,'s for cases 2 and 3 will also be slightly
modified, but these results are no longer of so much interest being superceded by the present
results.
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note.?* It is hoped, however, that it will be possible to take some definite,
though hypothetical case, and work it through in some detail, so further dis-
cussion of this case will be left for a future communication.

As mentioned above in a footnote® the case of zero diagonal matrix com-
ponents can hold only when the collisions which need to be considered have
a distance or closest approach greater than kinetic theory radii. This means
that either the radius of action is so large that such close collisions do not
contribute an appreciable amount to the total number of transitions, or else
we are only interested in seeing whether large radii of action occur or not.
But in many cases the radii of action are of the order of kinetic theory radii,
and this means that undoubtedly the interactions are too large to be con-
sidered by the ordinary Born collision method or the modifications of it
which have thus far appeared. Such cases require the treatment indicated by
the present section, and they probably occur more often than the cases where
the diagonal matrix components can be neglected. The discussion in the pre-
vious sections of this paper, therefore, must be considered as illustrative of
the type of thing one must expect where large interactions occur, and not as
something to be compared directly with much of the experimental data
which is at hand. It is, however, of particular interest, as indicating the
entirely different treatment of the case of poor resonance necessary when
the interactions are large, and the relatively low probabilities of transition
in this case as compared with the probabilities when resonance is good.

§8. DiscussioN

It may be of interest to compare my results with those of the recent
article by Zener,* in which the problem of inelastic collisions is attacked by a
method based partly on classical theory and partly on quantum theory.
While I feel that the correctness of his Eq. (1), on which his conclusions are
based, is not entirely self-evident, I believe that it should give good results as
long as the interactions are small. By this, I mean that the interaction
(called here u;; and by Zener V, »") must everywhere be so small that the
probability of energy exchange would be small if the resonance were exact,
and this definition holds even in the case where resonance is poor (see end
§3). I do not believe that Zener would concur in this definition, but I use it
as the basis for discussion. If the interaction is small, then the probability of
transition may be found by the Born or the Dirac method. This consists in
the evaluation of Eq. (3) of my preliminary article,® and Zener has shown
that this method gives essentially identical results in the particular case
discussed in my article. The transition probabilities thus considered are always
so small we would neglect them in the case of large interactions. In the case
where the interaction is large Zener proposes to use and generalize the method
I suggested,® except that he is going to substitute the probability he calcu-
lates by his method for the probability I calculate by mine. This can give
only an upper limit, as it gave in my case; as stated above (end §3) this may

* Rice, Phys. Rev. 37, 1187, 1551 (1931); see also Jablosiski, Zeits. f. Physik 70, 730 (1931).
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be a good approximation, but it is harder to judge how good in Zener’s
treatment than in mine. The advantage of Zener’s method, in those cases in
which it can be applied, lies in the case with which the calculations can be
made and the results envisioned.

The recent paper of Morse and Stueckelberg?? does not attempt to treat
the case of large interactions, but introduces a device which prevents large
interactions from artificially appearing where they really do not belong. The
general results obtained are very interesting, but before even the theory of
small perturbations can be said to be in final form it will need very consider-
able modifications. Their theory bears the same relation to the true theory
of small perturbations, as the main part of this paper bears to the more
general problem outlined in §7.



