THE RAMAN EFFECT AND THE CARBON-HALOGEN BOND

BY WILLIAM D. HARKINS AND HAROLD E. BOWERS GEORGE HERBERT JONES CHEMICAL LABORATORY, UNIVERSITY OF CHICAGO

(Received September 14, 1931)

Abstract

By far the most intense line in the Raman spectra of (organic) aliphatic bromides exhibits a Raman wave number $(\Delta \bar{\nu})$ of about 600 cm⁻¹ in the methyl derivative, of 564 cm⁻¹ if from two to five carbon atoms are present in the normal chain, and of about 539 cm⁻¹ if the chain is branched sufficiently close to the bromine atom. These frequencies are the most characteristic of the carbon-bromine bond. It is assumed that these Raman lines, and the corresponding most intense lines in the spectra of the chlorides and of the iodides, are produced by a decrease (or increase in anti-stokes lines) by unity in the vibrational quantum number. On the basis of this assumption the use in the calculations of this paper of only the first term in the brackets of the more general equation

$\epsilon^{v} = hc \left[\overline{w}_{e}(v + \frac{1}{2}) - x_{2}(v + \frac{1}{2})^{2} + \cdots \right]$

may be considered to give only a small error, possibly of the order of one percent. Here w is the wave number, but the w used elsewhere in this paper gives the frequency, since for simplicity it includes the hc term. Although the fundamental frequency associated with the carbon-halogen bond in normal aliphatic compounds decreases by about 8 percent if the number of carbon atoms in the molecule is increased from one to two, a further increase in the length of the molecule up to 5 carbon atoms does not give any further decrease; that is, the frequency is independent of the length of the molecule. The fundamental frequencies which for the methyl halides are associated with this bond are 2.13×10^{13} for the chloride, 1.81×10^{13} for the bromide, and 1.60×10^{13} per second for the iodide. The value 1.81×10^{13} for the bromide with one carbon atom, is reduced to 1.69×10^{13} if three, four or five carbon atoms are present in the molecule. If it is assumed that the mechanical frequency (w_0) is, for a value of $\Delta v = \pm 1$, related approximately by the equation

$$\Delta \nu = w_0(v' - v'') = \frac{1}{2\pi} \left(\frac{f}{\mu}\right)^{1/2} (v' - v'')$$

to the Raman frequency $(\Delta \epsilon)$ which is associated with this bond, then the vibration of the bromine atom with respect to the adjacent part of the hydrocarbon chain, has a frequency which is independent of the length of the molecule, provided more than one carbon atom is present. The conclusion from these results is that the force constant which corresponds to the carbon-bromine bond, and therefore, presumably, the strength of the bond, either remains constant, or else increases only slightly as the length of the molecule increases. However, the force constant for methyl halides may be appreciably higher than those for the longer chain compounds. This indicates that the characteristic frequency of this bond corresponds to an inner vibration: that is, in general only a part of the rest of the organic molecule vibrates with respect to the halogen atom to give this frequency. The force constant characteristic of the carbonhalogen bond is found to have, for the methyl halides, values of about 3.0 for the chloride, 2.6 for the bromide, and 2.2×10^{-5} dynes per cm for the iodide. Thus the values decrease in the same order as the corresponding heats of dissociation. The values are much less than that (5 $\times 10^{-5}$ dynes per cm) previously found for single bonds (C:C, C-O, and C-N) in organic compounds. Another frequency, about 53

WILLIAM D. HARKINS AND HAROLD E. BOWERS

percent of that more distinctly characteristic, and with a value of about 300 $\rm cm^{-1}$ for the wave number, seems to be also associated with carbon-bromine bond, possibly with some type of transverse vibration. A not too distant branching of the chain of the aliphatic hydrocarbon causes a decrease of about 5 percent in the characteristic frequency associated with the carbon-bromine bond, and probably indicates a decrease in the strength of the bond. The value 1638 cm^{-1} is obtained for the wave number which is associated with the double bond of allyl bromide, while Dadieu and Kahlausch obtain 1639 cm⁻¹ for the chloride and 1645 cm⁻¹ for the alcohol. This illustrates the smallness of the effect of the change of mass of the substituted group upon the frequency at the double bond, which seems to indicate an inner and not an outer vibration. Experimental data are presented for the Raman spectra of nine (organic) aliphatic bromides. The spectra were taken by a large three prism Steinheil G.H.glass spectrograph, by the use of two constricted quartz mercury arcs. The ultraviolet light from these arcs was filtered out by special glass filters in order to prevent the appearance of a brown color in the liquid, and the resultant continuous fluorescence spectrum.

1. INTRODUCTION

WHILE very extensive researches have been carried out to determine the Raman frequencies most closely associated with various substituted radicals in organic compounds, there have been no investigations which show in a satisfactory way the effect of a change of length of the organic molecule upon any such frequency.¹ The work reported here was begun in 1929 to remedy this deficiency. In order to prevent the extra complication which arises when several atoms are present in the radical, it was decided to study the frequencies associated with a single halogen atom in the molecule.

2. Experimental Method

The Raman spectra were taken by the use of a large Steinheil three prism glass spectrograph. The Pyrex tube used to hold the liquid is similar in shape to that designed by Wood. The liquid, after purification by distillation, is put into a glass bulb (Fig. 1) which is kept sealed to the Raman tube. After evacuation of the tube, the liquid is distilled over into the Raman tube. This liquid is then poured back into the tube, and this process repeated several times to give an "optically empty" liquid.

The source of light was a set of vertical constricted 220 volt quartz mercury arcs. It was found that these arcs work smoothly if started on a 220 volt D.C. circuit, but the quartz of the capillary deteriorates rapidly when the arc is in operation. Thus the best Raman spectra are obtained if the capillary is replaced by a new one after each day of operation.

Organic bromides are changed chemically and colored brown by the action of ultraviolet light. The colored liquid thus produced gives rise in such work to a continuous fluorescence spectrum which obscures the Raman lines to some extent. To prevent this photochemical action various Corning glass filters were used to absorb wave-lengths below $\lambda 3650$ A.

When two 220 volt constricted arcs were used it was found that in the presence of the filters it was necessary to give an exposure of 10 to 12 hours

¹ A. Dadieu and K. W. F. Kohlrausch, however, have (J. Opt. Soc. Am. **21**, 298 (1931)) published values for molecules up to 4 carbon atoms in length.

1846

to obtain an entirely satisfactory Raman spectra. Without the filters the time is greatly reduced, but many lines are partly obscured by the continuous spectrum. With chlorides or hydrocarbons, the filters are not in general necessary.

3. WAVE-LENGTHS AND SHIFT OF FREQUENCY

The approximate wave-length of each line was obtained by direct comparison with the spectrum of an iron arc, but the final values were calculated by the use of the Hartmann formula, from the wave-lengths of adjacent well-known lines in the mercury spectrum.

Many of the Raman lines are broad and diffuse. This seems to be due in some cases to the overlapping of Raman lines, excited by two or more lines of the incident spectrum. The shift of frequency $(\Delta \nu)$ was obtained by calcu-

Fig. 1. Raman tube of the Wood type as modified by Langer and Meggers.

lating all of the possible frequency shifts with reference to the strong mercury lines in the adjacent spectrum. The shifts selected as real were those which gave the same value if the Raman lines were caused by two or more exciting lines. In the relatively few cases in which there was no such coincidence in the values, the scattered line was assigned to the nearest mercury line of high intensity. A few doubtful selections are indicated by question marks. This is the usual method employed when the mercury arc, with its great number of lines, is used as the exciting source. Without doubt this method gives rise to the inclusion in tables of data, of frequency shifts which are not real, and to the omission of certain true shifts.

This is illustrated by Table I, which gives the Raman frequencies as determined by the writers (H.B.), by Dadieu and Kohlrausch² (D.K.), by Bhagavantam and Venkateswaren³ (C.D.), and by Cleeton and Dufford⁴

² A. Dadieu and K. W. F. Kohlrausch, J. Opt. Soc. Am. 5, 286-322 (1931).

³ S. Bhagavantam and S. Venkateswaren, Proc. Roy. Soc. A127, 360 (1930).

⁴ Cleeton and Dufford, Phys. Rev.

(C.D.) for allyl bromide ($CH_2 = CHCH_2Br$), and for n-propyl bromide ($CH_3CH_2CH_2Br$).

Н.В.	Allyl bromide D.K.	B.V.	Н.В.	Propyl bromid D.K.	e C.D.
254 (3)	252	259	312 (2)	314	308
	385	-		397	
535 (2)	526	535	459 (2)		and and a second
695 (2)	687	690	563 (1)	564	566
	926		648 (2)	647	
1000 (2)			778 (1)	773	
1193 (2)	1190			836	
1215 (2)	1212	1209		885	
1296 (4)	1292	1301			968
1320 (2)		1321	1023 (2)	1024	
1378 (2)				100 Loga	1079
1410 (2)	1406	1414	1143 (2)	1131	
1638 (2)	1633	1641	1165 (2)	A	
2157 (2)			1185 (2)		
2986 (2)	2966	2975	1229 (2)		1254
	3011		1435 (1)	1430	1456
	3085				2736
			2896 (2)	2862	2875
			2933 (2)	2935	2923
			2965 (2)	2959	2976
			2993 (3)	3000	

TABLE I. Wave numbers of bromides.

TABLE II. Raman wave numbers for bromides. Average $\Delta \overline{p}$ values.

iso-propyl bromide	n-butyl bromide	Secondary butyl bromide	iso-butyl bromide	Tertiary butyl bromide	n-amyl bromide	iso-amyl bromide
	HBDK					
172 (1)297 (3)353 (2)409 (2)423 (1)540 (4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 291 (4) \\ 317 (1) \\ 347 (2) \\ 455 (2) \\ 482 (2) \\ 533 (2) \\ 612 (1) \end{array}$	303 (4) 421 (2) 470 (2) 495 (2) 517 (2) 572 (2)	$\begin{array}{c} 301 (6) \\ 515 (5) \\ 538 (2) \\ 615 (2) \\ 803 (2) \\ 954 (2) \\ 1144 (2) \end{array}$	$\begin{array}{c} 219 \ (1) \\ 436 \ (1) \\ 473 \ (1) \\ 564 \ (3) \\ 642 \ (3) \\ 703 \ (2) \\ 747 \ (3) \end{array}$	288 (2) 564 (2) 619 (2) 636 (2) 648 (2) 749 (2) 822 (2)
882 (2) 964 (1) 1040 (3)	198 (3) 194 867 (3) 853 893 (2)	612 (1) 635 (2) 840 (2)	653 (4) 796 (1)	1141(2) 1260(2) 1456(1)	747 (2) 780 (2) 1057 (2)	$\begin{array}{c} 822 (2) \\ 1297 (2) \\ 2872 (2) \end{array}$
1096 (2)	$ \begin{array}{c}$	956 (1)	812 (2)	2923 (3)	1113 (2)	2932 (3)
1227 (3)	1170 (2)	1077 (1)	1144 (2)	2970 (2)	1208 (2)	2962 (2)
1284 (2) 1441 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1103 (1) 1212 (2)	1198 (2) 1234 (2)	3025 (2)	1248 (3) 1302 (3)	
2927 (2) 2958 (3) 2983 (2) 2993 (2)	1491 (2) — 2874 (2) 2865 2935 (4) 2930 2964 (4) 2962	1263 (2) 1451 (2) 2877 (2) 2922 (3) 2974 (2)	1313 (1) 1454 (1) 2871 (2) 2962 (3)		1436 (2) 1491 (2) 2824 (2) 2936 (2) 2968 (4) 3013 (2) 3068 (2)	

NOTE: The figures in parentheses give the number of values from which the average value was obtained.

1848

RAMAN EFFECT

For allyl bromide the values of Dadieu and Kohlrausch are from 2 to 9 wave numbers smaller than ours, while those of Bhagavantam and Venkateswaren vary from ours by from +5 to -6. Where the differences are much greater it is possible that the same lines were not measured.

The Raman wave number 459 for n-propyl bromide was found only by ourselves, and not by the two other workers. That it may correspond to a real frequency is indicated by its occurrence with the value 457 in n-butyl bromide and 455 in secondary butyl bromide. A vibration of about this wave number is attributed by Andrews to a transverse vibration in the -C-C-C chain.

The wave numbers which correspond to the Raman shifts for other organic bromides are listed in Table II and Fig. 2. It may be seen that namyl bromide gives a surprisingly large number of values, but it is possible

	FREQUENCY SHIF	TS
	$\Delta V \rightarrow$	
	500 1000 1500 2000 25	<i>00 3000</i>
BROMIDE		1
m-PROPYL		1111
BRUMIDE Iso-PROPYL		in.
BROMIDE		
BROMIDE		11
SECONDARY BUTYL		111
BROMIDE iso-BUTYL		11
TERTIARY		
BROMIDE	1 81 1 1 1 1 1	
BROMIDE		
iso-AMYL BROMIDE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11
ι.		

Fig. 2.

that some of them do not correspond to real shifts. One difficulty, which is not sufficiently recognized in connection with the Raman spectra of such compounds, is that it is exceedingly difficult to obtain such organic liquids free from isomers or other compounds similar in properties.

The data from which the mean values of the Raman shifts given in Tables I and II have been obtained, are given in Table III. The few anti-Stokes lines are designated by a negative $\Delta \bar{\nu}$. In general the variation in the value of $\Delta \bar{\nu}$ for what seems to be the same Raman shift is not more than 3 units.

4. THE CARBON-HALOGEN BOND WITH A SINGLE CARBON ATOM

As is indicated in Table IV the frequency which corresponds to the carbon-chlorine bond is 2.13×10^{13} , to the carbon-bromine bond, 1.81×10^{13} , and to the carbon-iodine bond 1.60×10^{13} per second, when only one carbon atom is present. If more than one carbon atom is in the molecule these

characteristic frequencies are reduced by from 6 to 11 percent for bromides and probably somewhat more for chlorides, as is shown in the next section.

The equation for the Raman frequency $(\Delta \nu)$ may be written in a simple approximate form as 1/9

$$\Delta \nu = \omega_0 (v' - v'') = \frac{1}{2\pi} \left(\frac{f}{\mu} \right)^{1/2} (v' - v'')$$

						1.	
Raman line	Excitin	g line	A =	Raman line	e Excitin	g line	4 2
ν	Λ	ν	$\Delta \nu$	ν	^	ν	
			Allyl	bromide			
24451	4046.56	24705	254	21997	4347.50	22995	998
24174	4046.56	24705	531	21744	4339.24	23039	1295
24010	4046.56	24705	695	21744	4358.34	22938	1194
23514	4046.56	24705	1191	21721	4046.56	24705	2984
23514	4077.84	24516	1002	21721	4339.24	23039	1318
23492	4046.56	24705	1213	21721	4358.34	22938	1217
23408	4040.50	24705	1297	21099	4347.50	22995	1290
23328	4040.50	24705	1377	21042	4358 34	22938	1321
23290	4040.50	24705	1637	21617	4347 50	22995	1378
23008	4330 24	23039	253	21528	4077 84	24516	2988
22180	4358 34	22938	256	21528	4358 34	22938	1410
22546	4046.56?	24705	2159	21299	4358.34	22938	1639
22400	4358.34	22938	538	20885	4339.24?	23039	2154
22243	4358.34	22938	695				
			n prop	vl bromide			
24304	3663 27	27290	2896	21830	4347 50	22995	1165
24394	3650 14	27290	2094	21800	4046 56	24705	2896
24394	4046 56	24705	311	21809	4339.24	23039	1230
24057	4046.56	24705	648	21809	4347.50	22995	1186
24057	4077.84	24516	459	21793	4358.34	22938	1145
22626	4358.34	22938	312	21774	4046.56	24705	2931
22536	4347.50	22995	459	21774	4358.34	22938	1164
22375	4358.34	22938	563	21742	4046.56	24705	2963
22291	4358.34	22938	647	21711	4046.56	24705	2994
22160	4358.34	22938	778	21711	4358.34	22938	1227
21970	4347.50	22995	1025	21503	4358.34	22938	1435
21918	4358.34	22938	1020	20003	4347.50	22995	2992
21855	4339.24	23039	1184	20003	4358.34	22938	2933
21855	4347.30	22995		19972	4338.34		2700
	0.050 4:	07200	iso-pro	pyl bromide	4250 24	00028	1041
24407	3650.14	27388	2981	21897	4358.34	22938	1041
24407	4040.50	24705	298	21844	4338.34	22930	1094
24298	3003.27	27290	2992 407	21012	4046 56	23039	2927
24298	4040.50	24705	540	217740	4046 56	24705	2956
24105	4077 84	24516	351	21711	4046.56	24705	2994
23975	4077.84	24516	541	21711	4347.50	22995	1284
23824	4046.56	24705	881	21711	4358.34	22938	1227
23664	4046.56	24705	1041	21556	4077.84	24516	2960
23477	4046.56	.24705	1228	21556	4347.50	22995	1439
23477	4077.84	24516	1039	21495	4358.34	22938	1443
23232	4077.84	24516	1284	20011	4347.50	22995	2984
22641	4347.50	22995	354	20011	4358.34	22938	2927
22641	4358.34	22938	297	19980	4358.34	22938	2958
22528	4358.34	22938	410	18135	5460.74	18307	172
22399	4358.34	22938	539	18010	5400.74	18307	491
22050	4358.34	22938	882 064	17768	5400.74	18307	5.39
21974	4338.34	22930	1008	11100	5100.71	10007	
21071	1011 00	44770	1020				

TABLE III. Wave-lengths of Raman and exciting lines.

RAMAN EFFECT

TABLE	III.	(Continued)	

Raman line	Excitin	ig line	A ==	Raman line	Exciting	g line	41
ν	Λ	ν	$\Delta \nu$	ν	~	ν	
			n-buty	l bromide			
24425	3650.14	27388	2963	22197	4347.50	22995	798
24425	4046.56	24705	280	22139	4358.34	22938	799
24143	4046.56	24705	562	22070	4358.34	22938	868
24061	4046.56	24705	644	22045	4358.34	22938	893
24061	4077.84	24516	455	21891	4347.50	22995	1104
23961	4046.56	24705	744	21870	4339.24	23039	1169
23907	4046.56	24705	798	21836	4358.34	22938	1102
23877	4077 84	24516	639	21768	4046.56	24705	2937
23838	4046.56	24705	867	21768	4358.34	22938	1170
23813	4046 56	24705	892	21741	4046.56	24705	2964
23813	4077 84	24516	703	21741	4339.24	23039	1298
23650	4077 84	24516	866	21676	4339 24	23039	1363
23603	4046 56	24705	1102	21643	4077 84	24516	2873
23216	4046 56	24705	1480	21577	4077 84	24516	2939
23210	4077 84	24705	1300	21577	4358 34	22938	1361
23210	1258 21	21010	270	21553	4077 84	24516	2963
22039	4330.34	22938	459	21503	4347 50	22005	1492
22400	4338.34	22938	430	21303	4347 50	22995	2031
22373	4338.34	22938	505	20004	4347.30	22995	2931
22294	4339.24	23039	745	20004	4330.34	22930	2014
22294 .	4347.50	22995	701	20004	4338.34	22930	2934
	4358.34	. 22938	044	19974	4338.34		2904
	2650 44	27200	Secondary	butyl bror	nide	00020	E 2 0
24414	3650.14	27388	2974	22406	4358.34	22938	534
24414	3663.27	27290	2876	22359	4347.50	22995	612
24414	4046.56	24705	291	22326	4358.34	22938	012
24224	4046.56	24705	481	22154	4347.50	22995	041
24224	4077.84	24516	292	22099	4358.34	22938	839
24171	4046.56	24705	534	21982	4358.34	22938	950
24171	4077.84	24516	345	21892	4347.50	22995	1103
23253	4046.56	24705	1452	21861	4358.34	22938	1077
23253	4077.84	24516	1263	21828	4046.56	24705	2877
23229	4358.34	22938	-291	21828	4339.24	23039	1211
22647	4347.50	22995	348	21783	4046.56	24705	2922
22647	4358.34	22938	291	21783	4347.50	22995	1212
22621	4358.34	2293	317	21732	4046.56	24705	2973
22586	4339.24	23039	453	21732	4347.50	22995	1263
22482	4358.34	22938	456	21593	4077.84	24516	2923
22455	4358.34	22938	483	21488	4358.34	22938	1450
22406	4339.24	23039	633	20018	4358.34	22938	2920
			iso-butyl	bromide			
24401	4046.56	24705	304	22518	4358.34	22938	420
24283	4046.56	24705	422	22469	4339.24	23039	570
24235	4046.56	24705	470	22469	4358.34	22938	469
24212	4046.56	24705	493	22421	4347.50	22995	574
24212	4077.84	24516	304	22421	4358.34	22938	517
24189	4046.56	24795	516	22316	4358.34	22938	622
24083	4046.56	24705	622	22285	4358.34	22938	653
24052	4046.56	24705	653	22142	4358.34	22938	796
23893	4046.56	24705	812	22126	4358.34	22938	812
23893	4077.84	24516	623	21833	4046.56	24705	2872
23861	4077.84	24516	655	21796	4347.50	22995	1199
23590	4358.34	22938	-652	21796	4358.34	22938	1142
23560	4046.56	24705	1145	21741	4046.56	24705	2964
20000	4046.56	24705	1235	21741	4358.34	22938	119
23470	1016 56	24705	1313	21705	4358.34	22938	1233
$23470 \\ 23392$	4040.00					21516	007
$23300 \\ 23470 \\ 23392 \\ 23239$	4358.34	22938	-301	21555	4077.84	24510	290.
$233470 \\ 23392 \\ 23239 \\ 22634$	4358.34 4358.34	$22938 \\ 22938$	-301 304	$21555 \\ 21484$	$4077.84 \\ 4358.34$	24516 22938	296. 1454
$23470 \\ 23392 \\ 23239 \\ 22634 \\ 22542$	4040.30 4358.34 4358.34 4339.24	$22938 \\ 22938 \\ 23039$	$-301 \\ 304 \\ 497$	$21555 \\ 21484 \\ 20068$	$4077.84 \\ 4358.34 \\ 4358.34$	24516 22938 22938	296. 1454 2870

Raman line 7	Excitin λ	ng line 7	$\Delta \overline{\nu}$	Raman line 7	Exciting λ	line $\overline{\nu}$	$\Delta \overline{\nu}$
			Tertiary	butyl bromid	le	-	
25005 24403 24214 24189	$\begin{array}{r} 4046.56 \\ 4046.56 \\ 4077.84 \\ 4046.56 \end{array}$	$24705 \\ 24705 \\ 24516 \\ 24705 \\ $	$-300 \\ 302 \\ 302 \\ 516$	22134 21982 21797 21781	$\begin{array}{r} 4358.34 \\ 4358.34 \\ 4358.34 \\ 4046.56 \end{array}$	22938 22938 22938 22938 24705	$804 \\ 956 \\ 1141 \\ 2924$
24167 24000 23903 23903 23564	4046.56 4077.84 4046.56 4077.84 4046.56	$\begin{array}{r} 24705 \\ 24516 \\ 24705 \\ 24516 \\ 24516 \\ 24705 \end{array}$	538 516 802 613 1141	$21781 \\ 21734 \\ 21734 \\ 21594 \\ 21482$	$\begin{array}{r} 4339.24\\ 4046.56\\ 4347.50\\ 4077.84\\ 4358.34\end{array}$	$\begin{array}{r} 23039 \\ 24705 \\ 22995 \\ 24516 \\ 22938 \end{array}$	$ \begin{array}{r} 1258 \\ 2971 \\ 1261 \\ 2922 \\ 1456 \\ \end{array} $
23564 23453 23240 22635 22422 22422 22422 22400	4077.84 4358.34 4358.34 4358.34 4339.24 4358.34 4358.34 4358.34	24516 22938 22938 22938 23039 22938 22938 22938	$\begin{array}{r} 952 \\ -515 \\ -302 \\ 303 \\ 617 \\ 516 \\ 538 \end{array}$	20015 20015 19970 19970 18008 17793	$\begin{array}{r} 4339.24\\ 4358.34\\ 4358.34\\ 4347.50\\ 4358.34\\ 5460.74\\ 5460.74\\ \end{array}$	23039 22938 22995 22938 18307 18307	3024 2923 3025 2968 299 514
			n-amvl	bromide			
$\begin{array}{c} 24141\\ 24062\\ 23956\\ 23923\\ 23877\\ 23811\\ 23739\\ 23647\\ 23499\\ 23454\\ 23403\\ 23403\\ 23403\\ 23269\\ 23269\\ 23269\\ 22719\\ 22502\\ 22465\\ 22430\\ 22375\\ 22294\\ 22294\\ 22294\end{array}$	$\begin{array}{c} 4046.56\\ 4046.56\\ 4046.56\\ 4046.56\\ 4077.84\\ 4077.84\\ 4077.84\\ 4046.56\\ 4046.56\\ 4046.56\\ 4046.56\\ 4046.56\\ 4077.84\\ 4046.56\\ 4077.84\\ 4358.34\\ 4358.34\\ 4358.34\\ 4358.34\\ 4358.34\\ 4338.34\\ 4339.24\\ 4339.24\\ 4347.50\\ 4358.34\\ 4358.34\\ 4358.$	$\begin{array}{r} 24705\\ 24705\\ 24705\\ 24705\\ 24516\\ 24516\\ 24516\\ 24705\\ 24705\\ 24705\\ 24705\\ 24516\\ 24705\\ 24516\\ 24938\\ 22938\\ 22938\\ 22995\\ 22938\\ 23039\\ 22995\\ 22938\\ \end{array}$	$\begin{array}{c} \text{n-amy}\\ -\text{amy}\\ 564\\ 643\\ 749\\ 782\\ 639\\ 705\\ 777\\ 1058\\ 1206\\ 1251\\ 1302\\ 1113\\ 1436\\ 1247\\ 219\\ 436\\ 1247\\ 219\\ 436\\ 473\\ 565\\ 563\\ 745\\ 563\\ 701\\ 644\\ \end{array}$	21882 21882 21882 21830 21739 21739 21739 21692 21692 21692 21692 21637 21637 21637 21637 21549 21549 21549 21503 21503 21503 21503 21503	$\begin{array}{r} 4347.50\\ 4358.34\\ 4046.56\\ 4339.24\\ 4046.56\\ 4046.56\\ 4046.56\\ 4046.56\\ 4077.84\\ 4347.50\\ 4358.34\\ 4046.56\\ 4077.84\\ 4358.34\\ 4077.84\\ 4339.24\\ 4347.50\\ 4358.34\\ 4339.24\\ 4339.24\\ 4339.24\\ \end{array}$	$\begin{array}{c} 22995\\ 22938\\ 24705\\ 23039\\ 24705\\ 24705\\ 23039\\ 24705\\ 24516\\ 22995\\ 24516\\ 22938\\ 24705\\ 24516\\ 22938\\ 24516\\ 22995\\ 22938\\ 24516\\ 22995\\ 22938\\ 23039\\ 22938\\ 23039\end{array}$	$\begin{array}{c} 1113\\ 1056\\ 2875\\ 1209\\ 2937\\ 2966\\ 1300\\ 3013\\ 2824\\ 1303\\ 1246\\ 30068\\ 2879\\ 1301\\ 2967\\ 1490\\ 3013\\ 1492\\ 1435\\ 2971\\ 2934\\ 3068\\ \end{array}$
	4046.56	24705	2823	19971	4358.34	22938	2967
$\begin{array}{c} 24142\\ 24055\\ 23955\\ 23883\\ 23883\\ 22707\\ 22651\\ 22400\\ 22374\\ 22374\\ 223\\ 22\\ 3\end{array}$	$\begin{array}{c} 4046.56\\ 4046.56\\ 4046.56\\ 4046.56\\ 4047.84\\ 4347.50\\ 4358.34\\ 4347.50\\ 4358.34\\ 4347.30\\ 4358.34\\ 4358.34\\ \end{array}$	$\begin{array}{c} 24705\\ 24705\\ 24705\\ 24705\\ 24705\\ 24516\\ 22995\\ 22938\\ 23039\\ 22995\\ 22938\\ 22938\\ \end{array}$	180-an 563 650 750 822 633 288 287 639 621 564 616	191 bromide 22190 22116 21834 21768 21743 21743 21641 20065 20008 19976	$\begin{array}{r} 4358.34\\ 4358.34\\ 4046.56\\ 4046.56\\ 4046.56\\ 4339.24\\ 4358.34\\ 4358.34\\ 4358.34\\ 4358.34\\ 4358.34\\ \end{array}$	22938 22938 24705 24705 24705 23039 22938 22995 22995 22938 22938	$748\\822\\2871\\2937\\2962\\1296\\1297\\2930\\2873\\2930\\2930\\2930$
22294 22294 22294 21882 24142 24055 23955 23883 23883 22707 22651 22400 22374 22374 22374 22374 22374	$\begin{array}{r} 4339.24\\ 4347.50\\ 4358.34\\ 4046.56\\ 4046.56\\ 4046.56\\ 4046.56\\ 4046.56\\ 4046.56\\ 4077.84\\ 4347.50\\ 4358.34\\ 4358.34\\ 4358.34\\ 4358.34\\ 4358.34\\ \end{array}$	23039 22995 22938 24705 24705 24705 24705 24705 24705 24516 22995 22938 23039 22995 22938 22938 22938	745 701 644 2823 iso-an 563 650 750 822 633 288 287 639 621 564 616 646	20068 20004 19971 19971 ayl bromide 22190 22116 21834 21768 21743 21743 21743 21641 20065 20065 20008 19976	$\begin{array}{r} 4339.24\\ 4358.34\\ 4339.24\\ 4358.34\\ \hline \\ 4358.34\\ 4358.34\\ 4046.56\\ 4046.56\\ 4046.56\\ 4046.56\\ 4046.56\\ 4339.24\\ 4358.34\\ 4358.34\\ 4358.34\\ 4358.34\\ \hline \\ 4358.34\\ \hline \\ 4358.34\\ \hline \\ \end{array}$	23039 22938 23039 22938 22938 22938 22938 24705 24705 24705 23039 22938 22938 22995 22938 22938 22938	

TABLE III. (Continued).

in which v represents a quantum number, μ the mutual mass, w_0 is sometimes considered as the fundamental mechanical frequency, and f as the force con-

RAMAN EFFECT

stant. The values of f for the methyl halides are given in Table IV. It is assumed that in the emission of these intense Raman lines $v'-v''=\pm 1$.

The force constant (a) is calculated in the ordinary way, and it is considered that the methyl group vibrates as a unit with respect to the halogen atom. In (b) a slight, somewhat arbitrary allowance has been made for the fact that this is not strictly true.

Com- pound	Wave Number cm ⁻¹	$ \begin{array}{c} \nu \\ Frequency \\ per \\ Second \\ \times 10^{-13} \end{array} $	Force (×10 ⁵ a	Constant f dynes b	$\begin{array}{c} \text{Amplite} \\ v = \frac{1}{2} \end{array}$	ude $\times 10 \text{ cm}$ $v = 1\frac{1}{2}$	$v = \frac{\frac{1}{2}fa}{\frac{1}{2}}$	$\frac{\times 10}{v=1\frac{1}{2}}$
CH₃Cl CH₃Br CH₃I	712 603 534	$2.135 \\ 1.808 \\ 1.601$	$3.136 \\ 2.695 \\ 2.246$	3.02 2.60 2.17	$ \begin{array}{r} 6.7 \\ 6.65 \\ 6.9 \\ \end{array} $	11.6 11.5 11.9	$2.0 \\ 1.7 \\ 1.5$	3.5 3.0 2.6

TABLE IV. Values for the carbon-halogen bond.

The force constant decreases from the chloride to the iodide. The values are much smaller than those of the single bonds listed by Dadieu and Kohlrausch which are, in 10^5 dynes per cm, equal to 4.31 for C \cdot C in ethane, 4.96 for C \cdot C in methyl alcohol, and 4.89 for C \cdot N in methyl amine.

Thus if f represents the strength of the bond, the carbon-halogen bond seems to be much weaker than the most common of the other single bonds found in organic compounds. That the strength of the bond decreases rapidly from chloride to bromide to iodide, is in agreement, not only with the heats of dissociation, but also with the other known relations.

The meaning of the amplitude a' is definite in the classical quantum theory, but loses this definiteness in the newer quantum mechanics.

Since $\epsilon = \frac{fa^2}{2} = (v + \frac{1}{2})w_0h$

$$a = \left(\frac{2\epsilon}{f}\right)^{1/2} = \left(\frac{(2v+1)hw_0}{f}\right)^{1/2}$$

in which (ϵ) is the energy and w_0 is the mechanical frequency. The values for this amplitude for $v = \frac{1}{2}$ and v = 3/2 are given in Table IV.

Dadieu and Kohlrausch give the mean value of the force as $\frac{1}{2}fa$, and consider this to be more characteristic of the bond than the force constant.

For $v = \frac{1}{2}$ the values of $\frac{1}{2}fa$ in 10^{-4} dyne cm are 2.0, 1.7, and 1.5 for methyl chloride, bromide, and iodide, respectively, while Dadieu and Kohlrausch give 2.04 for the C \cdot C bond in methane, 2.27 for the C \cdot O bond in methyl alcohol, 2.23 for the C \cdot N bond in methyl amine, 4.13 for the double bond in ethylene, 4.4 for the carbonyl C \cdot O bond, 4.14 for the oxygen bond in O₂, and 6.28 for the bond in carbon monoxide.

5. The Effect of a Lengthening of the Chain Upon the Carbon-Halogen Bond

The effect of a lengthening of the hydrocarbon chain upon the characteristic carbon-bromine frequency is exhibited in Table V.

1854 WILLIAM D. HARKINS AND HAROLD E. BOWERS

This is the most intense line in the Raman spectrum of the bromides. The remarkable fact revealed by our data is that while the carbon-bromine frequency is reduced by about 6 percent if the number of carbon atoms in the chain is increased from one to two, a further increase from two to five carbon atoms produces no appreciable effect.

TABLE V. Characteristic wave numbers for the carbon-bromine bond in organic bromides .

		na an a
CH₃Br	603 (C.D.)	594 (D.K.)
C_2H_5Br	566 (C.D.)	557 (D.K.)
$n - C_3 H_7 Br$	563 (H.B.)	564 (D.K.)
n C ₄ H ₉ Br	563 (H.B.)	557 (D.K.)
$C_5H_{11}Br$	564 (H.B.)	. ,
$(CH_3)_2CH (CH_2)_2Br$	564 (H.B.)	

If an attempt is now made to apply Eq. (1) to determine the value of the force constant f and thus, presumably, the strength of the bond, it is apparent that the equation cannot be solved without additional knowledge or an additional assumption. It seems to have been customary to assume that all of the hydrocarbon chain vibrates with respect to the bromine atom: —or more complicated equations are used which indicate a change of the single fundamental frequency into two values.

The constancy of the fundamental carbon-bromine frequency seems to suggest that neither of these assumptions is valid in this case.

Thus it seems apparent from the constant value of the frequency for normal compounds that *the organic radical cannot vibrate as a whole with respect to the bromine atom*, for such an assumption leads to an absurd value of the force constant for very long chains.

Thus, on the basis of the assumption that the effective mass of the methyl group with respect to the vibration toward bromine is 14.4 atomic weight units, the force constant for methyl bromide is 2.60×10^5 dyne/cm (or 2.70 if CH₃ vibrates as a single unit of mass 15). If now the amyl group vibrates as a unit the force constant for amyl bromide would be 7.0×10^5 dyne/cm, or more than two and a half times larger than for methyl bromide. This is much too large.

If the force constant in all of the normal bromides is assumed to be constant and equal to 2.60×10^5 dyne/cm, the effective mass of the portion of the hydrocarbon chain of two or more carbon atoms, which vibrates (with respect to the bromine) is 17. This indicates that the CH₂ group adjacent to the bromine possesses most of the mass which is effective. That is the CH₂ group vibrates, but its effective mass is increased by the constraint due to its union with the rest of the hydrocarbon chain.

If it is assumed that the force constant decreases with the length of the chain, then the amount of mass in the radical R which vibrates, also decreases with increase of mass of the radical, which seems to be improbable, except for the increase from one to two carbon atoms. Thus these facts, together with the equation $\nu = 1/2\pi (f/\mu)^{1/2} (v'-v'')$, lead to the idea that (1) the force constant remains constant as the length of the chain increases, or

RAMAN EFFECT

(2) the force constant increases as the length of the chain increases, and at the same rate as the mutual mass (μ) of the vibrating parts increases.

From what is known from the standpoint of organic chemistry, it seems that the strength of the carbon-halogen bond does not increase rapidly with the length of the chain.

Thus the final conclusions reached are: (1) The force constant either remains constant, or else it increases only slightly with an increase in length and mass of the normal hydrocarbon chain. (2) As indicated before, only a part of the radical R vibrates with respect to the halogen atom in the process in which the characteristic frequency is emitted.

The values of Dadieu and Kohlrausch suggest that the characteristic frequency of this bond may be higher if an odd number of carbon atoms is present in the molecule than if this number is even. The variation in value is, however, very small, and is not exhibited by our data.

The data of a recent paper by West and Farnsworth⁵ indicates the probability that the chlorides exhibit the same relations as the bromides. Unfortunately for the purpose of the present paper, their work does not extend to chains of more than 3 carbon atoms.

an east comparison and an experimental second and and an								
1.	2. Cl	3. Br	4. I	5. Cl-Br	6. Br-I	7. $Cl^2-Br^2 \times 10^{-3}$	$8. \\ { m Br^2-I^2} \\ imes 10^{-3}$	$\frac{\overset{9.}{\operatorname{Br}^2 - I^2}}{\operatorname{Cl}^2 - \operatorname{Br}^2}$
Methyl Ethyl n-Propyl n-Butyl n-Amyl	711 (W.F.) 655 (W.F.) 650 (W.F.)	603 (C.D.) 556 (C.D.) 563 (H.B.) 563 (H.B.) 564 (H.B.)	522 (D.K.) 499 (D.K.)	108 89 87	81 67	142 109 105	91 71	.64 .65

TABLE VI. Characteristic wave numbers for the carbon-halogen bond.

Since, with a constant mutual mass, the force constant varies as the square of the frequency, it is apparent from column 9 of Table VI, that the decrease in the value of the force constant is only 65 percent as great between the bromide and iodide as it is between the chloride and bromide.

6. The Effect of a Branching of the Chain Upon the Fundamental Frequency Associated with the Carbon-Halogen Bond

The branching of the hydrocarbon chain seems to have no effect upon the fundamental frequency associated with the carbon-halogen bond, provided the branching occurs sufficiently distant from the halogen atom. Thus iso-amyl bromide $((CH_3)_2 \cdot CH \cdot CH_2 \cdot CH_2 \cdot Br)$ gives the wave number 564, which is the same as that associated with n-amyl, n-butyl, and n-propyl bromides. However, if the branching is considerably less distant, the frequency is reduced considerably. Thus with iso-compounds, or if the halogen atom is attached to a secondary or tertiary carbon atom, the wave number is reduced from 564 to about 537 cm⁻¹ (Table VII).

⁵ W. West and M. Farnsworth, Trans. Faraday Soc. 27, 145 (1931).

1856 WILLIAM D. HARKINS AND HAROLD E. BOWERS

Thus a branching of the chain sufficiently close to the substituted halogen atom either lowers the force constant and presumably weakens the bond, or else it lowers the effective mass of the part of the hydrocarbon chain which vibrates. The former of these seems the more probable.

The frequency for iso-butyl bromide (wave number 572 cm^{-1}) seems exceptional in that it is higher than for the normal compound. However, a lower frequency also appears.

TABLE VII. Characteristic wave numbers for the carbon-halogen bond with branched chains.

(Normal)	711	(564)
ISO propyl (CH ₃) ₂ CH X Secondary butyl CH ₃ CH ₂ CHX CH ₃ Tertiary butyl (CH ₃) ₃ C X ISO amyl (CH ₃) ₂ CH CH ₂ CH ₂ X ISO butyl (CH ₃) ₂ CH CH ₂ Br	616 (W.F.) 564 (D.K.)	540 537 538 (564) (572) and (517)

7. A Lower Characteristic Frequency Seemingly Associated with the Carbon-Bromide Bond

A wave number of about 300 cm⁻¹ has been found for all of the organic monobromides investigated by us, with the exception of allyl bromide, in which a double carbon bond is present. A similar value of about 330 cm⁻¹ has been found for chlorides by West and Farnsworth, and with ethyl iodide a value of 260 cm⁻¹ was found by Dadieu and Kohlrausch.

Table VIII gives a list of these wave numbers for different chlorides and bromides, and a single value for an iodide.

The values for the bromides (in the upper part of Table VIII) may be associated with some type of transverse vibration at the carbon-bromine bond. Unlike the frequency which the writers have associated with a longitudinal vibration at this bond, the values for iso- or secondary compounds do not exhibit any general differentiation from those of the normal compounds. A few examples are listed to show that if two or more halogen atoms are present the frequencies due to carbon-halogen bonds are greatly modified. Thus, according to Dadieu and Kohlrausch, carbon tetrachloride is represented by the wave numbers 216 (4), 313 (4), 455 (4), 755 (2), 782 (2), in which the numbers in parenthesis represent the intensities. The more intense lines have wave numbers which are smaller than the most characteristic of the carbon-halogen bond in aliphatic compounds. This is probably due in part at least to a greater mutual mass of the vibrating parts of the molecule.

8. Wave Numbers between 1400 and 1460 cm^{-1}

Almost all of the hydrocarbons of the paraffin series and their derivatives exhibit a Raman wave number between 1400 and 1460 cm^{-1} .

This has been attributed by Dadieu and Kohlrausch to a transverse vibration of the hydrogen atoms in the CH_2 group, and by Daure to the single carbon-carbon bond. There seems to be much evidence which indicates the probability that one of these points of view is correct, and certain different

KAMAN EFFECT

details of evidence which seem to speak against each of these ideas. Present opinion seems on the whole more in favor of the former of these conclusions. Table IX lists frequencies in this range as found in monobromides.

TABLE VIII. Lower wave numbers presumably characteristic of the carbon-halogen bond.

· · · · · · · · · · · · · · · · · · ·	-	-	-
	Cl	Br	I
Methyl Ethyl n-propyl n-butyl Isopropyl Isobutyl Isoamyl Secondary butyl β Chloropropylene	372 (W.F.) 327 (W.F.) 333 (W.F.) 330 (W.F.) 	290 312 280 297 303 288 291	260 (D.K.)

The above values are changed considerably if more than one halogen atom is present.

CX_4 CHX_3 CH_2X_2 $XH_2C - CH_2X$ $X_2HC - CHX_2$ 1-3 dibromopropane	216–313 (D.K.) 259–364 (D.K.) 283 (D.K.) 295 (D.K.) 287–351 (D.K.)	154–221 (D.K.) 178 (D.K.) 188 (D.K.) 218 (D.K.) 371 (D.K.)	119 (D.K.)
--	--	--	------------

TABLE IX. Wave numbers of about 1450 cm^{-1} for monobromides.

ethyl bromide n-propyl bromide	1439 (D.K.) 1435 (H.B.)	isopropyl bromide	1441
n-butyl bromide	1440 (D.K.)	isobutyl bromide	1454
	1491 (H.B.)	secondary butyl bromide	1451
n-amyl bromide	1436 (H.B.)	tertiary butyl bromide	1456
	1491 (H.B.)	allyl bromide	1410

9. Frequency Characteristic of the Double Bond Between Carbon Atoms

Dadieu and Kohlrausch have found 1639 cm^{-1} as the wave number characteristic of the double carbon bond in allyl chloride. The writers obtain the value 1638 for the bromide, so the increase of mass of the halogen has little effect upon the frequency. Dadieu and Kohlrausch point out that the frequency, characteristic of the double bond, is moderately constant. Thus their values for di-chlor, tri-chlor, and tetra-chlor ethylene indicate values of 1583, 1585, and 1569, respectively.

The writers are indebted to a Grant-in-Aid of the National Research Council which was used for the purchase of the spectrograph used in this work.