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ABSTRACT

In the first part of this paper the conditions for the existence of self-perpetuating
electric moments in crystals are discussed. If these conditions are satisfied, the crystals
must either show macroscopic electric moments or they will necessarily possess a
definite type of a secondary structure. Certain complications may come in, however,
if one is dealing with metals. Finally, the analogous magnetic case is qualitatively
discussed.

$1. INTRODUCTION

'HE theory of the ideal crystal lattices must be regarded as a complete
failure as far as the treatment of structure sensitive properties is con-

cerned. I have recently endeavored to show that a satisfactory theory of the
physics of solids can be developed by introducing a secondary structure of
crystal lattices. This structure in general may be described as a periodic,
very slight variation in density. I arrived at the conception of a secondary
structure from purely theoretical arguments which threw doubt on the cur-
rent conception of ideal crystals being thermally stable. Although many im-
portant conclusions of this theory were verified experimentally, its founda-
tions are not very satisfactory for the following reasons.

In the first place, the procedure which I followed did not supply any un-
ambiguous way of determining the exact nature of the deviations which trans-
form an ideal lattice into a real and thermally stable crystal.

In the second place, it was very difficult to account for dimensions of the
secondary lattice larger than a few hundred Angstroms, such as we have been
finding in single crystals of metals. Although the theory does not really
enable one to derive accurate values for the lattice constant D of the second-
ary structure there are strong reasons for assuming that approximately

D = d/(1 —dp/d)

Here d is the ordinary lattice constant and d„ the corresponding spacing of
a single plane of atoms which in itself is assumed to be in equilibrium under
its own forces. The relative change from d to d„can be estimated to be of the
order of one percent, which according to (1) makes values of D larger than
100d very improbable. It also has been objected that it would be very hard to
understand how actions over such large distances come about.

In the third place, experimental investigations carried out on single
crystals suggest that there are secondary lattices of very different types. The
theory therefore is confronted with the task of finding as many effects as

F. Zwicky, Proc. Nat. Acad. Sci. 15, 816 (1929); Helvetica Physica Acta 3, 269 (1930);
and 4, 49 (1931).
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possible which will render an ideal crystal thermally unstable. In addition,
one has to try to find, if possible, a common denominator for all these effects.
In a recent publication' I have advanced a tentative solution of this latter
problem. The essence of my proposal was that those effects which are mainly
responsible for the formation of a crystal at the same time necessitate a
secondary structure. Those effects were recognized to be simultaneous co-
operative actions between many particles. It seems therefore desirable to
investigate more closely the characteristics of such actions. In this paper one
very special phenomenon which depends on the cooperation of many particles
will be considered. Its character will be best understood by studying some of
its essential features in relation to a simple lattice.

Fig. 1. Lattice of self-perpetuating dipoles.

f2. GENERAL REMARKS oN SELF-PERPETUATING ELEcTRIc MQMENTS

The essential part of this paper is devoted to a generalization of K. F.
Herzfeld's considerations concerning the characteristics of metals. Herzfeld
derives a criterion which decides whether or not an element will occur as a
metal. His argument is roughly as follows

Consider a simple cubic lattice occupied by atoms whose dielectric
constant is o.. (See Fig. 1.) Suppose that all the atoms except A are endowed
with an infinitely small electric dipole p. Then because of the action of the
p's there will be an electric field at A which is equal to FI, =47rP/3 =4s.Xp/3,
where N is the number of atoms per unit volume and I' the polarization per
unit volume. 4 The average field throughout the crystal of course is zero,

' F. Zwicky, Proc. Nat. Acad. Sci. September, 1931.
3 H, F. Herzfeld, Phys. Rev. 29, 701 (1926).' See for instance P. Debye in Handbuch d. Radiologic, Vol. VI, p. 600.
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provided that the lattice is infinitely extended. The so-called Lorentz field
deforms the atom A and endows it with a moment p'

p' = 4sSpn/3.
Suppose now that

4s.lVn/3 = 4sNnp/3M = Ep/M ) 1 (3)

where R is the molar refractivity, p the density, 2' the molecular weight, and
N =6.06X10".It then follows that

p'& p.
This means that the assembly of the induced dipoles is a self perpetuating
configuration of ever increasing moment. The process stops, of course, as soon
as all the atoms are stripped of their loosest electrons. Condition (3) therefore
is a condition for the element to be a metal.

It is very important to notice that the conclusions drawn above are valid
only if o. either increases or at least stays constant with increasing p, . This is
probably generally true if n is the polarizability of an atom. We may, how-
ever, generalize Herzfeld's theory to systems with elementary units other than
atoms, as will be shown in the next section. It then happens that the respec-
tive dielectric constant decreases with increasing polarization. The system
involved may then jump into a configuration of permanent electric polariza-
tion without this process resulting in a collapse of the elementary particles,
such as the stripping of atoms of their electrons. The permanent electric
polarization need not be apparent in macroscopic dimensions, as will be shown
later. In the case of a resulting macroscopic moment we are dealing with a
crystal which possesses the characteristics of an electret. If only microscopic
regions are electrically polar, they may compensate each other over large
distances. We then obtain a peculiar type of a secondary structure.

In the next section we shall discuss the properties of a definite simple
lattice which, however, is chosen so as to exhibit all the general features in
which we are interested in our discussion.

)3. PERMANENT ELECTRIC POLARIZATION IN CUBIC

FACE CENTERED IONIC LATTICES

We investigate the properties of a lattice which is built up of positive and
negative ions. We assume that for the mutual potential energy of two ions i
and k we may write, as usually adopted for a first approximation,

e;q = e;eq/r;q + A/r;&

where A and p for simplicity are taken to be the same for all the three pos-
sible combinations of the two ions.

The average energy e of an ion in the face centered cubic lattice can be
shown to be

e = —1.747e'/r + TA/r~

with r designating the usual lattice constant. Numerical values of y for differ-

ent p's are tabulated in Table I.
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166 269

TABLE I.
7

478 1700 3287

Now for this lattice to be in equilibrium we must require

8e—=0 for r=d
5r

or
A = 1.747e'd" '/Py. (6')

It is usually assumed that this condition is all that is required in order to
make a lattice of the described type dynamically stable. Indeed, in all the
cases dealt with in the literature it was found that a lattice of the above type,
with A equal to (6 ) is also stable against a linear extension, shearing, or
against a displacement of the whole negative lattice relative to the positive
lattice, etc. However, there was known no general proof that condition (6)
insures the complete dynamic stability of the lattice. In fact, it can be shown
that this is not at all the case. For this purpose we shall investigate more
closely the stability of our model with regard to relative displacements of the
negative and the positive lattice. Such displacements evidently may be
caused by external electric fields. It is well known that the characteristic
frequencies involved correspond to the frequencies of the residual rays.

Suppose that the lattice of the positive ions is given a uniform infinitesi-
mal displacement $ in the direction of the [100] axis. At the location of each
ion a Lorentz field

Fr, ——4+F/3

is created, with (7') P =Net/2 and N= 8/d'

Fr, = 16~eg/3d'.

The energy per molecule (negative and positive ion) is equal to

hu- = —egFr/2 = —Sxe'P/3d'

There is also a change of energy Au+ due to the forces of repulsion. Sum-
ming up the individual contributions of all the neighboring atoms one finds
for Au+ per molecule

4 2 & A+ + I ~ ~ P (1o)
9 3 d @+2

Values of the numerical factor (k) for different P's are tabulated in Table II.

2680 7860

TABLE Il.
7

21800 57700 148000

10

369000
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For the total change of energy per molecule we obtain, therefore,

Ae = [—8.4e'/d'+ hA/if"+']P
= 1.75e'/d' && [—4.8+ h/Py]P

The numerical values of Ii/py are given in Table III.

p 5

5/py , 3.23 4.87

TABLE IIl.
7

6.51 8.10 9.67

10

11.2

From this table we derive the remarkable conclusion that ~u for P slightly
smaller than 6 becomes negative. This is a very remarkable result indeed. It
means that a cubic crystal of the described kind will voluntarily jump into a
state of permanent electric polarization. Unlike the analogous case of atoms,
no destruction of the lattice will take place because of the fact that it becomes

I

I

I

I

I

I

I
s s n n

Fig. 2.

more and more difficult to move the two lattices apart as $ increases. The
self-perpetuating movement of the two lattices will therefore stop at some
definite value f, of $. Fig. 2 shows the energies hu plotted schematically as a
function of $ for different values of p. The ideal crystal is dynamically stable
with regard to a variation f only if P )6. For p (6 it is dynamically unstable.
The equilibrium position in this case is given by the minimum of An. It cor-
responds to a state of permanent electric polarization.

The most important result of the above investigation is this. Suppose that
we build up a model of a crystal lattice by assuming a certain potential energy
function for the mutual interaction of the two particles in the lattice. This
energy function may contain certain parameters, A and p in our case. If A
and p are determined by adjusting certain characteristics of our model to
certain given experimental data (lattice constant, compressibility), one can-
not be assured that the model is dynamically stable. Indeed, the particular
model discussed above is stable against a uniform pressure because of A hav-
ing been properly adjusted by (6'). The model also turns out to be stable if a
linear extension or a shear is considered. However, for p (6 it is unstable
against a relative motion of the positive and negative partial lattices.
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f4. GENERALIZATION OF THE MODEL USED IN THE PREVIOUS SECTION

It is obvious that the computations given in the previous section need to
be generalized in various ways.

In the first place, our calculation involves implicitly the assumption that
no change of dimensions normal to the relative displacement $ of the two
partial lattices is involved. This is certainly not correct, and additional terms
must be introduced. For the present discussion it is sufficient to notice that
this lateral effect can only increase the initial instability of the lattice.

In the second place, it will be necessary to compute Au to higher order
terms in $ in order to determine the final equilibrium position $,. It will, how-

ever, be of interest to do so only if one is sure that a certain model actually
is a good approximation of the real crystal. More about this will be said in
section 5.

In the third place, we must take into account that the ions themselves
are deformable. The Lorentz field is as before Fz 4+8/3.——The expression
(7') for the total moment I' per cm' is changed to

with
P = IV IJ/2 + EIJ,P

@=ed pp=nFL,

(12)

(13)

if we use the same notation as in the previous section. Therefore

or
Fz = 4+$/3 re//2 + nFz]j

Fz = 27rlVe$/(3 —4prXn).

(14)

It is evident from the order of magnitudes of N 10"cm ' and n 10 "cm'
that the denominator may be considerably smaller than 3, or I"I, considerably
larger than the corresponding expression with 0. equal to zero.

In order to get an idea about the magnitude of the Lorentz fields and the
corresponding energies involved, we assume that our model has a lattice con-
stant equal to that of rock salt, d =3.6, &&10 cm. For $, =10 "cm we obtain
Ill, = 1.36 0&10'volts. The energy per molecule due to this field is

aN- = Au, —+ sup
—= —e$/2 —epF&'/2 (16)

or in our case Au&
—= —1,06y10 '6ergs. The energy Au is proportional to

P. It therefore can easily assume values equal to leT say near to the melting
point, with P amounting to only a few percent of the lattice constant. This is
very important because of the fact that certain phenomena may be observed
calorimetrically without being easily detectable by a structure investigation
with x-rays.

)5. ON A NEW TYPE OF A SECONDARY STRUCTURE

We are now coming back to some of the ideas which have already been
mentioned in the introduction.

Suppose that we are dealing with an ionic cubic face centered lattice
whose equilibrium configuration is characterized by a permanent elec«&c
polarization, due to a value p (6 in relation (4). It is obvious that there a«
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forces operative during the growth of the crystal which tend to prevent its
building up an electric moment. These forces originate on the necessarily
existing surfaces. If, for instance, the crystal grows as a large plate a de-

polarizing field equal to 4zI' will be set up by the surfaces if I' is directed
normal to the plate. This because of the bound surface charges originated by
the electric polarization itself. If the external shape is a sphere or a cube the
depolarizing field will be 4~2/3, which still is sufficient to compensate for the
Lorentz field. The neutralizing action of the surfaces can be disregarded only
if the crystal grows in form of a long needle or if there are charges present
which compensate for the action of the surfaces by covering them with
charged layers. The bound and the real charges on a surface in this case form
double layers with no corresponding external fields. It seems very artificial
and unsatisfactory to introduce accidental conditions of this kind. If possible
the crystal will favor some kind of an arrangement which allows it to assume

I
c-, -- -gl

Fig. 3. Permanent electric polarization in crystals.

the configuration of lowest energy without making use of any special external
condition. Arrangements of this kind probably must possess the same sym-
metry character as the primary structure. Fig. 3 gives an illustration of a
possible arrangement. It is based on the idea of avoiding neutralizing surfaces

by arranging the Lorentz field vectors in circles or in squares conforming with
the cubic character of the primary structure as nearly as possible.

In a three-dimensional lattice the secondary structure resulting from &

self-perpetuating polarization may be derived by the following»mple
method, which has been suggested to me by Dr. H. M. Evjen. First think of
the crystal being subdivided into identical square needles which are parallel
to the [100] direction. Polarize these needles alternately in the [100 and

[100] directions. This process is now repeated for the [010] and t"e [0011
direction in such a way that each intersection of three needles is a. cube- The
resulting vectors representing the polarization evidently will »e in one of the
four space diagonals of the cube.

From Fig. 3 it is evident that the crystal will exhibit a certain pec»»r
type of secondary structure. In the thermodynamically stable stat~ t»s
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structure may be expected to be an absolutely regular one characterized by a
greater lattice constant D. An approximate relation between D and the usual
smaller lattice constant d may be derived as follows:

The permanent electric polarization causes a relative change 6 in dimen-
sion lateral to it. We consider two adjacent regions whose vectors I' are at
right angles to each other. These two regions can be approximately in phase
with each other only over a distance smaller than D =d/A. In fact, if a positive
and negative ion face each other at A, then at a distance D/2 away from A,
two ions of the same sign are in opposition, provided that the dividing line
between the two parts of the crystal is of the type [100].We therefore have to
keep our regions in Fig. 3 smaller than D or we will begin to loose energy along
their boundaries. This means that the new type of a secondary structure pro-
posed in this section is characterized by a greater lattice constant approx-
imately equal to

D = d/h. (17)

We have seen in section 4 that values of $, equal to 10 ' cm lead to reasonable
moments such as have been observed in certain crystals, Rochelle salt, for
instance. The quantity' will of course depend on (, and therefore have a very
wide spread. In general 6 will be very small. Therefore

D» d.

This is a very satisfactory result, inasmuch as it may provide an under-
standing of such remarkably large spacings of the order of 1p as we have ob-
served for the secondary structure of certain metals. It is a very interesting
problem to find out whether the observed secondary structure of metal single
crystals can be traced back to the origin proposed here. Although I cannot
offer a complete solution of this problem, I should like to advance some
tentative suggestions which might prove valuable.

According to the theory of Herzfeld which I have sketched in section 2,
electrons are stripped from-suf6ciently dielectric atoms embedded in solid
matter. If the polarizability is increasing with increasing moment, we must
conclude that the electrons try to get away from the remaining ions as far
as possible. This behaviour, which seems very strange at first sight, is due to
the existence of a self perpetuating polarization. We therefore arrive at the
following picture of a metal with say one stripped or free electron per atom.
We suppose these atoms to be arranged in a face centered cubic lattice. The
electrons will exhibit a tendency to arrange themselves in a similar lattice
which, however, is displaced by half the lattice constant in one of the prin-
cipal directions say [100].Electrons and ions are thus in the same relative
position to each other as the ions in NaC1. This is the picture of a simple metal
which F. Haber has advanced many years ago. Of course one must not think
of such an arrangement as a static one. If it were static the lattice formed by
the electrons could be detected with x-rays, which is not the case. The prob-
lem to be solved is to find the interaction between the electron lattice or
electron gas and the remaining ions. From the fact that a static arrangement
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of charges is unstable (law of Earnshaw), it seems probable that the inter-
action between the two lattices is such that a simplified expression for the
mutual energy of an electron and an ion would require an exponent p(6.
This suggests that metals form crystals whose equilibrium configurations are
characterized by permanent electric moments. The formation of macroscopic
moments would again be prevented by the building up of a secondary struc-
ture. From this viewpoint the large lattice constants D = 5000—20000A which
we have observed in different metals appear comprehensible.

Finally, a few words about the alkali-halides. For most of them p&6.
Therefore they do not fall within the range of our present considerations,
unless a combination of a relatively small P together with a large polarizabil-
ity o. makes them eligible for a secondary structure of the type described
above. This may be the case, for instance, for PbS. According to (15) FI,
must be multiplied by a factor

f = 3/(3 —2x/I')

if n is not neglected. Here P = a'/2n and a =d/2. Now for PbS we have I' = 2.34
and therefore f 6 This w. ould put PbS into the 'category of crystals with
permanent moments in microscopic regions, for almost any value of p, which
may be the explanation of why PbS and PbTe behave so differently from the
other alkali-halides.

)6. PERMANENT MAGNETIC MOMENTS OF CRYSTALS

A ferromagnetic crystal may in some respects be regarded as the magnetic
analogue to a crystal possessing a permanent electric moment. However,
there are some conspicuous differences between the two cases. In the electric
case the back coupling of the induced dipoles in established by the Lorentz
field FI, =4+8/3. To account for the ferromagnetism in Fe, Ni, Co, etc. ac-
cording to P. gneiss back-coupling fields of the order 10000 3f must be intro-
duced, where M is the magnetic polarization per unit volume. In spite of this
enormous back-coupling factor, namely 10000 instead of 4s./3, a single crys-
tal of iron is not magnetic as a whole. This is a very puzzling fact. Indeed it is
hard to understand why the crystal should not be uniformly magnetized, as
the largest possible demagnetizing factor 4~ falls far too short from compen-
sating the enormous factor 10000. This problem has not found a satisfactory
solution so far. Whatever this solution may be, it seems safe to conclude that
it must involve the existence of a secondary structure of magnetic origin. For,
although an iron crystal is not magnetized as a whole it must be magnetized
in parts, because of the magnetization betraying itself in the caloric behavior
of the crystal (rise of the specific heat below the Curie point, etc ) Amagn. e.tie
secondary structure therefore exists. Off hand it is impossible to say whether
the elementary regions are fibers or cubic blocks or of some other shape.
However considerations analogous to those leading to Fig. 3 make it possible
to determine the exact shape. Assuming them to be cubic, F. Bitter' has sug-
gested various ways for estimating their size. He finds that they contain

' F. Bitter, Phys. Rev. 3'7, 91 (1931).
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approximately 350000 atoms each. If we wish to make a theoretical estimate
we must apply some relation similar to the one used in the electric case (17)

where 5 now stands for the relative change in length due to magnetostriction
caused by the magnetic saturation. Unfortunately there is no way so far to
obtain A. If Bitter's estimates are correct, then 6 must be of the order of i
percent.

It is very interesting to notice that ferromagnetic crystals behave ab-
normally in regard to plastic deformation. Single crystals ordinarily glide
along certain planes belonging to a discrete crystallographically determined
set. In iron, however, only the [111]direction is distinguished, but any plane
through it may be a slip plane. ' This becomes comprehensible if one considers
that the elementary parts of the magnetic secondary structure of iron are
slightly tetragonal. Adjacent blocks are in phase only for distances less than
200A making use of Bitter's estimate. Iron is therefore, in a way, much more
similar to an amorphous substance than to other metal crystals whose
secondary structures are characterized by spacings of the order of 1p. It is to
be hoped that if iron single crystals are annealed and distorted in a magnetic
field that they also will exhibit definite crystallographic slip planes. Experi-
ments to check this are being carried out at this Institute.

(7. CONCLUDING REMARKS

I have recently proposed a scheme which was intended to provide a
general working basis for the physics of crystals. I showed that those phe-
nomena which essentially characterize the crystalline state are due to the
simultaneous cooperation of many particles in regard to a line-up in space.
There are different types of such cooperative e8ects. The main purpose of
this paper is to point out two of them which are related to the formation
of permanent electric and magnetic moments in crystals. I also attempted to
show in which way these two effects may be the cause of a secondary struc-
ture of crystals.

6 G. I. Taylor and C. F. Elam, Proc. Roy. Sac. A112, 337 (1926).


