
XOVE&MBFR 1, 1931 I'IIFSICA J. BEVIES VOL, U2IM 3g

DIFFUSION OF ELECTRONS BACK TO AN EMITTING
ELECTRODE IN A GAS

BY IRVING LANGMUIR

GENERAL ELECTRIC COMPANY) SCHENECTADY) N. Y.
(Received September 23, 1931)

ABSTRACT

An expression is derived for the current i between two electrodes, one of which
emits (with uniform current density Io) electrons with an initial volt velocity, Uo,
when the electrodes are placed in a gas at such a pressure that the electrons suffer only
elastic collisions. If U is the voltage between the electrodes, X the mean free path of an
electron, 'the current is given by

i = (16~/3)Ip) Cy

where C is the electrostatic capacitance between the electrodes and

~ = (U/Uo)l (1 + U/U).
If the emitted electrons have a Maxwellian velocity distribution, this equation is
applicable with slightly modified values of @, Up now being replaced by T/11600
volts.

l
'N SOME recent investigations' it was observed that the electron current

&- from a negatively charged electron-emitting electrode in neon at 1 mm
pressure did not reach a saturation value, but continued to increase with
increasing applied potential, although the currents were so small that space
charge effects could be neglected. The conditions of the experiment were
such that the electrons, which were probably emitted with a uniform initial
velocity, suffered elastic collisions with gas atoms, and the mean free path was
so short that the energy gained from the field between collisions was small
compared to the initial velocity of electrons. It was thought that under these
conditions, electrons leaving the electrode would, as a resLlt of the elastic
collisions, diffuse back to the cathode. The following paper contains the der-
ivation of an expression for the current from an electron-emitting electrode
as a function of voltage under these conditions.

The motion of slow electrons moving in a gas under the inHuence of an
electric field has been considered theoretically by Hertz' for conditions similar
to those stated above except that the electrons were assumed to have zero
initial velocity. In these investigations he obtained the following expression
for the drift velocity of an electron

vX 1 de
8~—

3 8 3 'S &S

where v is the velocity of an electron along its path; v, the drift velocity of an
electron in direction of the field; y = (e/nz)(d V/dx) is the acceleration of an
electron in the direction of the electric field; and ) is the electronic mean free

See a recent letter to the editor. I. Langmuir and C. G. Found, Phys. Rev. 36, 604 (1930).
' Hertz, Zeits. f. Physik 32, 278 (1925).
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path. In this equation the 2nd term in the right member represents the effect
of diffusion, the diffusion coefficient D being

D = (-', )vx.

If the electron velocities were everywhere uniform throughout the gas as
has often previously been assumed in considering the mobility of electrons,
the effect of the field would be to cause a drift with velocity v, = pX/v.

The 1st term in the right member of Eq. (1), however, is only 1/3 as great
as this expression for the mobility. This is due to the fact that in Hertz's deri-
vation the electrons were assumed to make only elastic collisions with gas
molecules and thus their velocities increase as they move into regions of more
positive potential. There is thus a thermal elusion effect by which the elec-
trons tend to move back against the field. The result is that the net drift is
only 1/3 as great as if no increase of electron velocity occurred.

Assuming that the electrons start from the electrode (0) with a uniform
velocity corresponding to Vp volts, and that they suffer only elastic collisions
with gas atoms, their velocity at any point is given by

(-,')mv' = (V+ Vo)e

where V is the potential at the point relative to that of the emitting elec-
trode.

Differentiating, we obtain

and the concentration gradient is thus

Combining Eqs. (1) and (3), the drift velocity is

It is not, in general, necessary that the maximum concentration gradient
should lie in a direction coinciding with that of the maximum potential gra-
dient. For the sake of simplicity, however, let us consider those cases in which
at each point these two directions do coincide. The equipotential surfaces are
then also surfaces of equal concentration n, and e is thus a single-valued func-
tion of V. We shall also restrict ourselves to cases in which the currents are so
small that space charge effects are negligible, i.e., the potential distribution is
given by integration of Laplace's equation.

Consider now a tube of force of small cross-section reaching from the
emitting electrode (0) to a second electrode (1) which is at potential Vq. Let
A be the cross-sectional area of the tube at any distance s measured along the
tube and let I. be the number of lines of force (JE,dA) contained in the tube.
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Then

dU/ds = L/A.

The acceleration is then

e L
~ ~

m A
(6)

The drift current i~ along the tube of force is

i~ ——A eev, .

Therefore, combining Eqs. (6) and (7)

Vs ZgSS

ee'L

Substituting in Eq. (4) we obtain

3igm e de

e9L V du

Assuming that the free path ) is the same throughout the length of the
tube of force, then since s'~ is also constant Eq. (9) may be integrated giving

3z~mv c
(10)

where c is a constant of integration.
To determine the integration constant we can insert the boundary condi-

tion that the concentration at the electrode 1 (anode) is zero.
Putting n =0 for v = v& we find c = v& and Eq. (10) becomes

3zgmv vy

At any point in the gas the random current density' is

I, = (~~)eev. (12)

Inserting the value of rs from Eq. (11) and expressing v in terms of U in

accord with Eq. (2) we obtain

3
' (V+ V, ) V +V)I ln

4 LX U + t/'p
(13)

In Eq. (9),i~ andI. are constant along the tube of force. We have, however,

postulated that the equipotential surfaces lying between the two electrodes

are identical with the surfaces of equal concentration and therefore n, v and

dn/dv are constant over any equipotential surface. We see then by Eq. ('9)

that the ratio s&/L, which is constant along any tube, must also have the

' See I. Langmuir and K. T. Compton, Rev. Mod. Phys. 3, 221 (1931).
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same value for all tubes in the field and thus must be equal to i/L& wherei is
the total current between the electrodes and Li is the total number of lines
of force passing between the electrodes.

If all the lines of force which emanate from one electrode pass to the other,
i.e. , if the algebraic sum of the charges of the two electrodes is zero, then

J-f, = 4vrViC

where C is the electrostatic capacitance between the electrodes in cm.
Replacing i~ and I. in Eq. (13) byi and L, we thus obtain the result

3 i V+ Vp Up+Up

Let us denote by Ip the random current density at the surface of the ca-
thode as calculated from this equation, by placing V=O. In order that the
presence of the electrode shall be compatible with the conditions that we have
assumed in the neighboring gas it is clearly necessary that the electrode should
emit electrons (of uniform velocity corresponding to U, volts) with a uni-
form curreut density Ip which thus corresponds to the saturation current den-
sity. The electrons must also be emitted in random directions, i.e. , according
to Lambert's cosine law.

If we have an emitting electrode which fu16ls these conditions, we may
thus calculate the currenti that passes to the anode:

16m Ip) CP
3

where the function p is defined by

Ug/Up

Vp+ Vi.
(17)

Values of P for various values of U'/Up are given in Table I.
TABLE I. Clrrents produced by electrons emitted with Nniforns velocity.

g is defined by Egs. (16) and (17).

V1/Vo

—1.0—0 ~ 99—0 ~ 9—0 ~ 8—0 ~ 6—0 ~ 4—0 ~ 2—0 ~ 1
0

0
0 ' 206
0 ' 390
0 ' 496
0 ' 655
0 ' 784
0 ' 895
0 ' 949
1.000

V1/Vo

0.1
0 ~ 2
0 ~ 3
0.4
0 ' 6
0, 8
1.0
1 ' 5
2.0

1 ~ 049
1 ' 097
1 ' 140
1 ' 189
1 ' 276
1 ' 360
1 ' 445
1.637
1.820

V&/ Vo

3

5
6
8

10
15
20
30

2 ' 165
2 ' 480
2 ' 79
3.08
3 ' 64
4.16
5.42
6.58
8 ' 75

» the anode voltage is raised the current increases in proportion to @.
Since the electrons are emitted with velocities corresponding to Vp volts, the
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anode current falls to zero only when a retarding voltage of Vp volts is ap-
plied. With accelerating voltages the current increases slowly but continu-
ously.

If both electrodes emit electrons with velocity Vp and if the potential of
one with respect to the other lies between —Vp and + Vp, the current must
flow both ways so that the net current is to be obtained by applying Eq. (16)
for each electrode in turn and taking the diiference of these two currents (or
algebraic sum). When the voltage lies outside of the range —Vp to + Vp, oiie
or the other of the currents becomes zero so that a single application of Eq.
(16) suffices.

It should be kept in mind that Eq. (16) is strictly applicable only at such
high pressures that the electron free path is small compared to the distance
between the electrodes. Otherwise the boundary conditions which we have
used, such as n = 0 at the anode, are not valid.

We have seen that it was necessary for us to assume that Ip is uniform
over the cathode surface. If this condition is not fulfilled the surfaces of equal
concentration no longer coincide with the equipotential surfaces and the prob-
lem of the current flow is then far more complicated than for the case we have
treated.

It is also clear for the same reason that the foregoing method is not appli-
able when there are tao anodes at different potentials. This difficulty is ap-
parent when we consider that according to our procedure n must be placed
equal to zero at each of these surfaces, although they are at different poten-
tials. This violates our postulate that n is a single valued function of V. Two
anodes at the same potential may, of course, be regarded as a single anode
and Eqs. (16) and (17) are then applicable.

Practical applications of Eq. (16) will usually be made with electrodes of
simple shapes. Substituting the well-known expressions for the capacitance4
in Eq. (16) we obtain:

For parallel planes, the net current per unit area Rowing between the elec-
trodes is

I, = (4/3)I pyX/a.

The current that Hows is thus inversely proportional to the pressure and
at high pressures may be very small compared to the saturation electron emis-
sion Ip.

For coaxial cylinders the net current per unit length is

ii = (8pr/3)Ip&X/ln (ri/rp). (19)
7

Here Ip is the current density of the electron emission corresponding to
saturation from the emitting electrode regardless of whether this is the outer or
the inner cylinder. The radii of the cylinders are r& and r p.

For concentric spheres the total current is

' See p. 198 of reference 3,

(16pr/3)IpgXrpri/(ri —rp) ~ (20)
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It should be noted that if the saturation current density Io from the inner
and the outer cylindrical (or spherical) electrodes are equal, the actual cur-

rents remain unchanged if the relative polarity of the electrodes is reversed, al-

though the total saturation currents, if they could be obtained, would be pro-
portional to the areas of the emitting electrodes. This conclusion can readily
be tested by experiment.

The source of the electrons from the emitting electrode may be one of
many kinds, for example, photoelectric or thermionic. A case of particular in-

terest in connection with a study of the un-ionized (or weakly ionized) re-

gions beyond the end of a neon arc' is the liberation of high velocity electrons
(ca. 10 volts) from the surfaces of electrodes by the action of metastable atoms
which diffuse to these electrodes. The metastable atoms are generated
throughout the gas by the action of ultraviolet light (broadened resonance
lines) from the arc, at a rate proportional to the inverse cube of the distance
from the end of the arc. Let us calculate the relative current densities I& of
emitted electrons from the inner and outer cylinders under these conditions.

If the electrodes are at a considerable distance from the end of the arc
and the radiation passes parallel to the axis, then within the space between
two cylindrical electrodes of short lengths we may assume a uniform rate of
production of metastable atoms. The diffusion of these to the two electrodes
is a problem essentially similar to that' of the potential distribution between
cylinders if the space contains a uniform space charge p.

Imposing the boundary conditions V=O at the surface of both cylinders,
we find that the potential gradient at any point of radius r is

dV (r ' —rP)= mp - —2r
dr r ln (r2/r~)

where r2 and r& are the radii of the outer and inner cylinders respectively. By
substituting first r =r~ and then r =r2 we find the potential gradients at the
surfaces of the two electrodes. The ratio of these two gradients is equal to the
ratio of the corresponding rates of arrival of metastable atoms per unit crea
and therefore should be proportional to the ratio I,/I2 of the saturation cur-
rent densities (Io) of the emitted electrons from the two electrodes. In this
way we find

Iq r2 [r2' —r&' —2r&' ln (r2/r~) ]
Ir r~ [r~' —r~' —2r2' ln (r&/rq) ]

(22)

For example, if r2/r~ ——10 this gives I&/I2 = —2.62 (the negative sign merely
indicates that the currents flow in opposite directions).

The corresponding equation for concentric spheres is

Ij r, (r, + 2r, )

I, r, (r, + 2r2)

which gives I~/I2 ———5.72 when r2/r~ ——10.
' See p. 213 of reference 3.

(231
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Thus we see that the current density Ip at the inner electrode is greater
than at the outer electrode if the electrons owe their origin to metastable
atoms produced uniformly throughout the gas. It therefore follows from Eq.
(19) that the net current will be greater (2.62 fold for rp/rp =10) when the
small inner cylindrical electrode is cathode than when the larger electrode is
cathode, although if the currents were saturated the current in the former
case would be smaller instead of larger (0.26 instead of 2.6 fold).

We have thus far assumed that all the electrons are emitted with the same
velocity Vp volts. Although this may be roughly true for electrons emitted
under the influence of metastable atoms, it will certainly not be a satisfac-
tory approximation for thermal emission of electrons. By summation of the
currents from each velocity group, we may calculate the net current produced
by a Maxwellian velocity distribution.

The total number of electrons per unit volume which have speeds (irre-
spective of direction) lying between c and c+dc is given by'

4prn(m/2prkT)'" exp (—mc'/2kT)c'dc.

Because of the relation expressed by Eq. (12) it follows that the contri-
bution of these electrons to the random current density crossing any given
plane is

dI = pren(m/2prkT)"' exp (—mc'/2kT)c'dc (24)

Applying this to the surface of an electrode which emits electrons with a
Maxwellian velocity ditribution corresponding to temperature T and current
density Ip, and integrating from c = 0 to c = ~ we find

Ip ——ne(k T/27rm) '" (25)

Eliminating n between Eqs. (24) and (25) we obtain

dI = Ipe &ogpdgp

where

(26)

gp ——mc'/2kT = Vpe/kT = 11600Vp/T

if Vp is the emission velocity in volts.
To calculate the net current between the two electrodes, we may insert the

value of dI in 'Place of Ip in Eq. (16) and integrate from Plp = 0 to Plp = Po.

In this integration the value of @ is obtained from Eq. (17) by placing

Ug/Vp ——g/q p

which by Eq. (27) is equivalent to

if V~ is in volts.

g = V,e/kT = 11600U,/T (28)

6 This is obtained from Eq. (71) of Compton and Langmuir's article, Rev. Mod. Phys.
2, 205 (1930), by replacing h by 1/2kT.
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In this way we find

where

or

i = (16s./3)IOXcyr

f e 'ds
if q)0

J p ln (1 + g/x)

e 'dx
— if g&0

„ ln (1 + q/x)

(29)

(3o)

The reason that the lower limit of integration must be changed when g
is negative is that electrons whose initial velocities give go & —g cannot reach
the collector.

TABLE II. Currents produced by electrons emitted with Maxmellian velocities at temPerature T;
@&is defined by Zgs. (Z9) and (30); regis given by Zg. (Z8).

—4—3—2—1—0.8—0.6—0.4

0.042
0.100
0.236
0.516
0.600
0.688
0, 787

—0.2
0

+0.1
0.5
1
2
3

0.892
1.000
1.034
1.217
1.408
1.748
2.051

6
8

10
20
30
50

2.358
2.908
3.421
3.913
5.895
8.170

11.892

The values of g given in Table II have been calculated from Eqs. (30)
by Simpson's rule or by series expansion. They are believed to be accurate
within one or two units in the last figure. Comparison with Table I shows that
for values of g and Uy/Up which are equal, the values of P& and @ are very
nearly equal when g is greater than about —0.6. By Eq. (28) we see that
this means that, except for large negative voltages, no great error is made if
the thermally emitted electrons are considered to have a uniform energy
corresponding to T/11600 volts.

Experiments which will probably be described in a paper by C. G. Found
and the writer have given results which are explicable in terms of the theories
here presented. The writer is much indebted to Mr. Found for assistance in
the preparation of this paper.


