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ABSTRACT

Following the method of Giittinger and Pauli! four angular momentum vectors
are treated in matrix mechanics. Analytic formulas are obtained for the matrix com-
ponents of the spin-orbit interaction of two electrons in LS coupling. Since the elec-
trostatic energy in LS coupling is a diagonal matrix whose elements may be calculated
by Slater’s method, this gives the complete energy matrix. Then for any two electron
configuration one easily obtains the secular equations whose roots give the energy
levels in intermediate coupling. In this manner the secular equations are worked out for
the configurations ¢?, p- p, d?, d-d,and d- p.

INTRODUCTION

N THE theory of complex spectra the effect of the electrostatic repulsion
of the electrons on the energy levels of an atom has been reduced in many
cases to the calculation of a few radial integrals.? By this method it is always
possible to calculate the multiplet separations for two electron configurations
with such accuracy as is afforded by a first order perturbation theory. In
order to obtain more detailed information about the energy levels it is neces-
sary to include in the perturbation problem the interaction of the spin each
electron with its own orbital motion. This has been done for two electrons
when one is in an s state.? Also partial information (in some simple cases com-
plete) about the secular equations has been obtained by Goudsmit.*

It is easy to see why the spin-orbit interaction has not been dealt with by
Slater’s method. In this method it is not necessary to find the wave function
for a given state of the atom. For due to the high degree of degeneracy re-
maining in the problem after the application of the perturbation, it is possible
to find all the energy levels from the invariance of diagonal sums. When the
spin-orbit interaction is included, much of this degeneracy is removed so the
diagonal sum method loses its effectiveness.

The essential difficulty with Slater’s wave functions is that the square of
the total angular momentum, J2, which is an integral of the equations of mo-
tion, is not diagonal when these wave functions are used. Consequently the
secular determinant when computed with these functions, is not factored ac-
cording to J values as it should be. The proper linear combination of Slater’s
functions to make J2 diagonal may be found by studying the angular momen-
tum operators.’ With these proper functions as a basis the matrix of the spin-

! Giittinger and Pauli, Zeits. f. Physik 67, 743 (1931). This will be referred to as 1.

2 J. C. Slater, Phys. Rev. 34, 1293 (1929).

3 Houston, Phys. Rev. 33, 297 (1929).

4 Goudsmit, Phys. Rev. 35, 1325 (1930). This method has recently been extended by D.R
Inglis, Phys: Rev. 38, 862 (1931).

§ Gray and Wills, Phys. Rev. 38, 248 (1931).
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orbit interaction would be factored according to J values. However for the
general two electron configuration this appears to be a lengthy process. So in
this paper we attempt to calculate the spin-orbit interaction in LS coupling
directly from the matrix equations.$

ELIMINATION OF THE QUANTUM NUMBER M,

If L is the total orbital angular momentum, S is the total spin angular
momentum and J their resultant, then

J=L+S
L=1+1 (1
S=51+Sz

where I; and I, are the orbital and s; and s; are the spin angular momenta of
electrons 1 and 2 respectively. Then the following commutation relations are
valid

Jed.] =0
[Jod4,] = [4.,7,] = id. 2)
[J.,B] =0

where A is any vector which is a function of the spin and orbital momentum
vectors and B is any scalar formed from these vectors. In these equations
angular momentum is measured in units of %/2w. In particular Eqs. (2)
hold for I, L, s; and s;. Now we suppose that J? is diagonal with the charac-
teristic values J(J-+1) and J, is a diagonal with the characteristic values M7,
|11, <J. Then from reference 1 we find that the solutions of Egs. (2) are

U, + id)ls = AN + M)U F My + 1)}
A =AMy
s+ id ) s = Alna(E D{U F My 4+ DU F M, + 2}
Agand = Ay {7 + 1) — M2} ®)
s+ id,)rnies = ATa(F V{0 + M) + My — 1)}

J MJ J
Aoy, = Ay (J? — M2)12,

In particular if A=J, then 47=1 and Aﬁrl =0.

CALCULATION OF L AND S

The calculation of S'is exactly the same as in reference 1. We now suppose
that L? and .S? are also diagonal with the characteristic values L(L-+1) and

¢ We should also note another possible method of obtaining the matrix of the spin-orbit
interaction by those famous £'s and 4’s, which may be simple for one experienced in their pe-
culiarities. H. Weyl, Gruppentheorie und Quantenmechanick Kap. III; H. A. Kramers, Amst.
Akad. 33, 953 (1930).
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S(S+1I). This is possible since the matrices L2, S?, J? and J, all commute with
one another. Then from reference 1 we find for S

s _JU+D+SE+ ) —LIL+1)
27(J + 1)
S, = ((L+S+ 1-NL+S+1 —{—J)(J—L—I-S)(J~S+L)>”2 @
- 47227 — 1)(2T + 1)

J J—1
Sr_1=8r .

The last equation follows from the Hermitean character of the components
of S.

The results for L may be obtained from the above by interchanging L and
S. This gives

o U DFLE 4D - SE+
27(J + 1)
oo _((S+L+1—J)(S—I—L+1+J)(J—S+ L)(J—L-{—S))l/z o
47727 — 1)(2T + 1)

J J—1
Ly,=1L; .

The minus sign before the component nondiagonal in J occurs in extracting a
square root. The minus sign must be used in order that (LI+SZ)Q§§1_L1%§=O
as is required by the fact that J? commutes with all components of J. Of
course all components of L and S are diagonal in L and S as all components

of both L and S commute with L? and S2.

DEPENDENCE OF I;, 15, s; AND S; ON THE QUANTUM NUMBER J

In the following formulas we use I for /; and /, and s for s; and s; when-
ever the formulas apply for both subscripts. We find the dependence of 7 on
J from the equation

. L 8J’' M,
[S. — iSy, lzJL'SJ"M;«H = 0.
The calculation is exactly the same as the calculation of the coordinate
matrix in reference 1. Hence we have the result

LSJ lLsJ(f+ DH+LL+1)—-SES+1)

LSJ = tL8 2J(J+ 1)
lzg;ﬂ " <(L-|~S+J'+2)([1*{—5“-’)(J—I-l—I-L—S)(J-I-1—L-I-S)>1/2
4 + 12T + 12T+ 3)
st s((J—L+S+2)(]—L+S+1)(L+S—I—J)(L+S—J) 12
peasm T e 40 + 12Q7 + DT + 3)

bisr = lp-is 0 + 1)
L sJ L s((]—{—L—S——1)(J+L—S)(L+S+1-}-])(L_|_S+_]) 1/2

(6)
li187—1=1lr_ .
L—18J—1 L—18 22T YT )

L 87 L s((f—l—L—-S)(]—-L—[—S—I—1)(L—I—S—|—1+J)(L+S_]);1/2
)
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The remaining terms may be obtained by interchanging the upper and lower
indices.
For the dependence of s on J we use the equation

. LS J' M,
L, - iL,, Sz]LS’J"M:;-{-l = 0.
With J’=J—1 and J''=J+1 we have

L8J—-1 s J L8J—-1_L8'J
Liss SLss+1 = Spgvg Lisigyr. (7)

With J'=J, J”=J+1 and with J'=J, J''=J—1 we obtain the following
two equations in exactly the same manner as Eqgs. (15’) and (16’) are ob-
tained in reference 1.

LSJ L8 T4, LS J LS LS T

{(J 4+ DLisr — (J + 2)Lisri1}ssrer — Lisrsasesy = 0 8
LSS L8J-1, L8 T 187 L3 T

{JLisr — (J — ) Liss—1}siss—1 + Lisiz—1szss = 0. 9

With S’=Sin Eq. (7) we obtain

LSJ LS_LSJ
Srere1 = — SpsLlrgry1

s (LH+S=DNELAS+IT+2)(J+1+L—-S) (J+1+S—L)\12
= SL3< ) (103,)
47 + 1227 — 1)(2T + 1)

From Eq. (8) with S’=S we have

18T _LST L8J 87 LST+1
stsrLlisrer = Stsra{(J + DLisr — (J + Z)LLSJ:I}

R _sLsJ(J+1)+S(S+1)—L(L+1) ‘ (10b)
LST = SLg TER)

From Eq. (7) with S’=S5—1 we have
L8SJ—-1 LS J LS J-1 LS—-1J

LSS SLS—1741. = SLS—1J Lis—1741
or

((L—l—S-}— 1 —J)(J—S+1:)>1/2 Ls
47227 — 1)(2J + 1) ST

_((L-I-S—f" 1)(J—S+L+2) U2 s g

"\ WU F DN+ DT +3) Srsmw

s J Ls ((L-i-S—J—-1)(L+S—f)(f~*5+L+2)(J—S+L+1) 1z

S18-17+1 = — SLg-1 ) (10c)
40 + 1)2(27 + 1)(2T + 3)

From Eq. (8) with S’=5—1 we have

LS 17 -
SLS——I..; Lig—-;.ﬂd = S;S{1§+1{(f + I)LII:‘SS.{ -+ Z)Lf:_ll,;]:;}
s J s [((LHS—=T)J—=S+L+1)JT+S—L)YL+S+T+1)\2
SLS—1J = — Srs-1 ) (10d)
472 + 1)
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Finally from Eq. (9) with §’=S—1 we obtain

s g s <(L+S-I—])(]——L+S—1)(J+S—L)(L+S+J_|_1)>1/z o
. 4227 — 1)(2T + 1) S e

The remaining components may be obtained by interchanging the upper and
lower indices. Formulas (10a) to (10e) can, except for sign, be obtained from
Egs. (6) by interchanging L and .S.

DETERMINATION OF /3 ETC.

If we suppose that L2, .S?, L, and S, are diagonal, then L, I, and L will be
related to each other in the same manner as J, L and S in the above calcula-
tion. S, s;, and s, will also be related in this manner. Then we can obtain the
components of 7, and I, and of s; and s, in this representation by a substitu-
tion of the appropriate quantum numbers in Egs. (4) and (5). Now suppose
we make a unitary transformation to a representation in which J?, L2, §? and
J. are diagonal. Such a transformation leaves L?, S? and J, invariant and so
can only have components between states of the same L, S and 3, values.
Between two sets of L, S and M values, the matrix components of I and s
will have a constant factor I%3 and s%. This factor which is determined by
the substitution of the appropriate quantum numbers in Eqgs. (4) and (5),
will not depend on J and will remain after the transformation. The other fac-
tor will depend on J and is just the factor we have determined above. Hence
we have

s LIL+ 1)+ LU+ 1) —LU+1)

liLs LI+ 1)
. Ls LIL+ 1)+ L+ 1) — L+ 1)
S 2L(L + 1) (11)
L 8 ((ll+l2_L+1)(l1+l2+L+1)(L_l1+l‘z)(L_l2+ll)>1/2 L 8
llL—lS = = — l2L-18
4I2(2L — 1)(2L + 1)
s SIS+ 1) Fsilsi+ 1) — sa(se + 1)
S8 =
25(S + 1)
s Ls S(S + 1) -+ 82(52 -+ 1) - 51(31 -+ 1)
s 25(S + 1)
L8 ((31+52_S+1)(51+52+S+1)(S_sl+32)(5_32+51)>1/2 L
Si1Ls—1 = = — SaL8—1.
452(2S — 1)(2S + 1)

Remembering that in our case s; =s: =%, the formulas for s; and s; reduce to

LS LS

S1L8 = S2L8 = %
- L ;< 2+ =) )1/2
1L8—-1 2LS—1 2 (25__ 1)(25+ 1) .
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SUMMARY OF FORMULAS

LS JM, J 8 IMy LsJ
(: x ilu)LbJMjIl/lLSJ = (s; £ 7/sy)LSJMJ¢1/SLSJ

={(U £ M)NU F Ms+ 1)}102

LSJIMy LSJ L 8IMy, LSJ
lzLSJMJ/lLSJ = SesaMy/Ssy = My

My I M L8J
(. +zl,,)1, s J+1M xl/lL = (Sz & ”y)L '8 J+1M5?F1/SL 'S1T41

=+ {UF M;4+ 1) F Ms+2)}12

LSS LsJ LSJ My, LSJ
lzL '8 J+1MJ/ZL s T4 = S8 J+1MJ/SL s = {(J + 1) —
My SJ My LSJ
(% dy)LSJ—lMJTFl/lL ’8 J—l = (s, £ %‘y)lxs J—-IMJ¥1/SL '8’ J—1

FlU £ MU + My — 1)}
LSJ My, LSJ LSJ My LSJ
Livsa—uty/losg—1 = SzL's*J—le/é‘L -1 = (J* — M;*)?

MJ2}1/2

ZLSJ /l o <(L-*—S-|-J-I—2)(L—l-S—J)(J—|—1-|—L——S)(J+1-I-S—L))l/2
wsria/lis 4(J + 1227 + 1T + 3)
sy, s JUT+1) =SS +1)+LIELA+1)
ILss/ls = -
2J(J + 1)
((L+S+J+ NDEL+S+1 —f)(J+L-—S)(J+S—L)>”2
47227 — 1)(2 + 1)
L (L—l—S—J-—1)(L+S—])(J—L-|—S+2)(J—L-|—S+1))1/2
lL-lSJ+1/lL 1s = (
: )

L8J
lLSJ_l/lLs = -

4 + 1)2(27 + 1)(2T + 3)
L ST oL S8 <( +S—NUT—L+S+1DUT+L=S)L+S+T+ 1\

lL—lSJ/lL—-IS =

47%(J + 1)2
L+S+NT+L=S—1)T+L=SL+S+J+ 1)\
472(2] — 1)(2J + 1) >
L st ((L+S+J-!-2)(J+L—S+1)(f-|-L—S—l-2)(L~I~S—I—J—!~3')>”2

L 8J L S
lL—lSJ—-l/lL 18 =

! Iris =
crsri/lisis 4(J + 1227 + DT + 3)
L SJ, L 8 <(L+S—J—I—1)(J—L—I—S)(J+L—S+1)(L+S+J+2)

Ioyiss/litis =

47°(J + 1)?
Lsr LS L+S—T+D)(L+S—T+2)(J—L+S)(J —L+S—1)\2
lL—HSJ— /lL+lS = '—< )
47227 — 1)(2J + 1)

L8J LS (L+S—J)(L+S+J-|—2)(J+1+L—S)(J+1—L—I—S) 1/2
SLSJ+1/SLs =
4(J + 1227 + 1)(27 + 3)
sr, s JUT+1)—L(L+1) + S+ 1)
SLSJ/SLS =
27 + 1)
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LSS, LS ((L+S—J+1)(L+S+J+1)(J+L"S)(J“L+S) 12
SLSJ—1/SLS =
47227 — 1)(2J 4- 1)

5 /SLS _ <(L+S-J—1)(L+S-J)(J—S+L+2)(]——S+L—|-1) 12
L8S—1J+1/SL8—1 4(] T 1)2(2] T 1)(2] n 3) >
LS J , LS ((L+S“])(]—‘S+L+1)(J+S"‘L)(L+S+J+1)>”2

SLs—lJ/SLs—1= - 4]2(J T 1)2
LS J LS <(L+S+J)(]"L+S_1)(]+5—L)(L+S+J+l) 12
SLs-u_x/SLs--l =
47227 — 1)(2J + 1)

Ls J 1S LAS+T+2)(J—L+S+1)(JT+S—L+2)(L+S+T+3)\/2
SLs+1J+1/ SLS+1 =
4(J + 1)2(2J + 1)(2J + 3)
LS 7, LS LAS—T+1) =S+L)Y(JT+S—L+1)(L+S+T+2)\/?
SLS+1J/SLS+1 = —
473(J + 1)*

LS 7 LS ((L-I—S—J—I—1)(L—I—S—J+2)(J—S+L)(]—S+L——1) 12
SLs+1J—1/SLs+1 = - )
4722 — 1)(2J + 1)

Ls _ LIL+1)4+ 4L+ 1) —L0.+1) LS LLA41)+10:41) =115 +1)

1S 2L(L + 1) 28 2L(L + 1)

L 8 L 8 (h+la— L+ 1)+l L+ 1) (L~ 14 1) (L—1a 1)\ V2
hiis = = lerag = )

A12(2L — 1)(2L + 1)

L s L s (hAle—=L) (A le+L+2) (L1 =1L+ 1L) (L4 1—14-1)\ /2

llL—HS = - 12L+1s = >
4L + 1)L + )L + 3)

LS LS 1
SiLs SeLs = 3

Sllfl:—1 = — 8255—1 = %< (2 — S)(2 + S) >1/2
(28 — 1)(2S + 1)

31£§+1 = - Sszsg-u = %( (1 — S)(3 + S) )1/2
(25 + 1)(2S + 3)

THE MATRIX OF THE SPIN-ORBIT INTERACTION
We wish to obtain the matrix of ai1(J;-s1) +a2(l2-s2). From Egs. (2) we
know that this expression commutes with J? and J,. It will therefore be di-
agonal with respect to the quantum numbers J and M. By matrix multi-
plication we have
LS JMy L 8T My . (LS JTMy1
(I'S)L’S'JMJ = Z%(Zz - 1ly)L'SJ"MJ+1(Sz -+ N‘y)ys'.’ My
-
. LSJ My . I'S J"'My—1 LSJ Mjg L'SJ'"Mg
+ 50 + il vsrn,—1(sz — sy s ay F lenissraSstr

L8J L8 J41 LSS L8T
v+ DT+ 3)lL’SJ+lsL’S’J+ +JU + Dirsrsnss

i
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L 87 L'§ J-1
+ J@J = DipsraSpss
Substitution from our previous formulas into the above equation yields the
following result for the matrix components of the spin-orbit interaction.
L 8 JMy

1-s) L-18—17M
L—18

= 3 ) { LS =D LAS—T = 1) (L+S+I)LAS+T+1) 12

L 8IM
(1-s) L—lSJMj
L—18

= 3(0718) (51238) { LAS=T) (T = L+S+1) (J+L—S) (L+S+T+1)} 172
(1) z-15rt]

=3(15) (11500 { U~ LHS+2) (T = L+S+1) (T —=S+L) (T =S+ L—1) } 2
(I-s) 22—1‘2;2

= —3(028) (5281 { LS =T) T +L—=S+1) L+S+T+1)(J—L+S5) } 172

LSIMJ
(I-8)Lssms

= %(lfg) (sfg) {(JU+1)—LELA1)—SES+1)}

LS JM
(1-s) s+ IJM:;

= —3058) (szss) { LAHS—T+1) T +L—=S) LAS+T+2)(J —L+S+1) } 112
(1)t 15ty
309 Grisn) { U=L+S) (I —LA+S—1) T+ L—S+1)(J+L—S+2)} 112

L 8SJIMy
(I-s) L+187M
L+18.

=3 ST { LAS =T+ )T —L+8) T +L—S+ 1) L+S+T+2)} 12
(I'S) i+1§+15}&1‘§j
= = 3025) rase) { TS —T+H1) (LS =T 4+2) (LASHT+2) (LAS+T+3) 12
These formulas apply for both electrons. In conjunction with the expressions
given above for I/ and sk they completely determine the matrix of the
spin-orbit interaction.
THE CONFIGURATION p?

In this case l; =l =1 and a; =a;=a. The multiplets are 1D, 3P and 1S. The
energy matrix calculated from the above formulas is given below. It is suffi-
cient to give separate matrices for each J value as there are no components
between states of different J value.

D, 8Py
D, |0 ()
Py | B af2
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sp,
J=1 Py | —a/2
3P0 lSo
3P _— — 2 1/2
7 =0 0 a (2)!%a
1S, | —(2)1%a 0

From Slater’s paper we find for the electrostatic energies in terms of his

radial integrals
1D: F° 4 1/25F*

sp: FY — 5/25F2
1§: FY 4 10/25F2.
We now measure energies from the 3P; level. Then adding the electrostatic

energies to the diagonal terms and setting the determinant of the energy
matrix equal to zero, we obtain the following secular equations.

J=2 W?—W(3/2a+ 6/25F?) + 6/25F% = 0
J=1 W=0
J=0 W?— W(15/25F2) — 9/4a® — 15/50F% = 0.

These equations determine the energy levels in intermediate coupling in
terms of the coupling parameters ¢ and F2. They have been previously ob-
tained and discussed by Goudsmit.”

THE CONFIGURATION - p

In this case also /; =I; but now a;#a.. The multiplets are singlet and trip-
let D, P and S. From our formulas, the energy matrix is

3D,
J =3 | L(a: + a0
3Dy 1Dy 3Py
Dy | —Hata) - 36/27(a— ) 13)7He — e
J =2 1D, | —1(3/2)1%(a; — as) 0 1) (a1 + av)
| 3@ G- ) 1Y@t Hata
3D, 3P, 1p, 35,
D[ —Haita) 16/ (a—ar) —110/3)P(eta) 0
Py /D — a)  —Hata)  —1QVHa—a) G)V(e—)
P —3(10/3) (et an) —1Q)M@—as) 0 53Vt
) 0 BVa—a) 3O+ a) 0

7 Reference 4. To agree with Goudsmit’s results we must set a/2=4 and 3/25 F*=X in the

above equations.
* In the secular equations the parameters never appear in the denominators of fractions.

An expression such as 6/25 F? must always be taken to mean (6/25) F2.
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3.P0 150
F=0 3Py —%(a1+a2) —3(2)'*(a1—av)
ISU —%(2)”2(01_02) 0

For the electrostatic energies referred to the 3D multiplet we find by Slater’s

method?
3D: 0

1D: 26" 4 2/25G% = a

SP: — 6/25F% + 2G° — 4/25G* = B8
1P — 6/25F% 4 6/25G2 = v

3§51 9/25F% — 9/25G2 = — 3/2y
151 9/25F 4 2G° 4 11/25G2 = 5.

Measuring the energy levels from the 3D; we obtain the following secular
equations

J=3 W=
J=2 — Wi+ W2{a+ B — 3/2(a1 + as)} — W{aB — %(a1 + a2)(4a + 58)
+ 9/4a1a5} — 3/4(a1 + as)aB + Zaras(a + 28) = 0

J=1 W= W8 =3y — 3(a1+ @)} + W{— 3v(8 + 3v)
+ 3(a1 4 a2)(— 98 + 5v) + 9/4(a:® + as® + 3a1a5) }
— W{—=3/28v* + ¥(a1 + a2) (78 + 24v) + 3/32(a1 + @2)*(128 — 77)
— 3/32(ay — ad)y — 27/8a1as(ay + 02)} +15/8(a1 + a2)By2 — 5/8(243
+ 293 4 Sa1a5)v2 =0

J=0 W2—W{B+06—3/2(a1+ as)} + B5 — $(a1+ a2) (B + 26) + 2¢1a5 = 0.

TuE CONFIGURATION d2?

In this case /; =/, =2 and a; =ay=a. The multiplets are !G, 3F, 1D, 3P and
1S. From our formulas the magnetic energy matrix is

Gy W,
Lo, 0 a4
4 a 3/2a
3,
J=3% | —1a
Wy 1D, 3P,
97, — 24— 2(3/5)'% 0
J =21, | —2(3/5)" 0 (21/10)12a
3P, 0 (21/10)12¢ g

8 E. U. Condon and G. H. Shortley, Phys. Rev. 37, 1025 (1931).
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3p,
J =1 3P, - %a
8Py 1S
3P, —a — (6)2q.
J=0
1So | — (6)Y2% 0

By Slater’'s method® we find for the electrostatic energies referred to the 3F
multiplet

1G: 12/49F% + 10/441F* = «
F: 0

1D: 5/40F2 4 45/441F4 = B
SP:  15/49F% — 75/441F* = ~
1ST 22/49F? 4 135/441F* = 6.

Measuring energies from the 3F; level, we find the following secular equations.

J=4 W?— W(a+5/2a) + 2aaa =0

J=3 —W=0

J=2 — W4+ W@+7) — W{By — $a(B + 2v) — 25/4a>} — 3/2aBy
— 3/20a2(108 + 21y) = 0

J=1 —-—W+~vy=0

J=0 W2— W(y +8) +v6 + 3aly — 8) — 25/4a% = 0.

THE CONFIGURATION d-d

In this case i =05=2 but a;7a.. The multiplets are singlet and triplet
S, P, D, F and G. From our formulas the magnetic energy matrix is

3(;5
J7=5 G lai+a
3G4 1G4 3F4
G — (a1 + a2) — 301 — a2)  1(5)Y*(ar — a2)
J =4 1G, | — 1(5)"%(ar — ay) 0 $(a1 + a2)
3Fy 192 (ay — an) 3(a1 + a2) i(a1 -+ a2)
SGa 3F3 1F3 3D3
Gy S/t a) G/ (@a—a) —3/20/D e+ a) 0
J =3 3 1Q/NV*a1 — a2) — i(a + a2) = 303)*(a1 — a2) 2(1/7)4%(a1 — a»)
WFy | =3/2(1/DV a1+ a) — 3(3)Y*(ar — a2) 0 (3/NV*(a1 + a2)
2 0 2(1/ V(a1 —a2) @B/NV*(a1+a5) 3 ar+a)
af, 3D, 1D, 3Py
17 — (a1 + @) /5 a1 — @) — (3/5)V*(a1 + a2) 0
72 Dy (2/3)1%(ar — a2) — (a1 + a) — 1®)V(ar —a))  H7/5)Va1— a2)
D | — @B/ ar+ a))  — 1(6)V*(ar — a2) 0 $(21/10)%(a1+az)
Py 0 2(7/5V% e — @) 3(21/10)V%(a; + a2) Har+ a)
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Dy 4Py 1Py 85
Dy — {(a1+ a2) 1(NY(ar— @) — (1901 + a2) 0
J=1 Py 1NV — a2) — (a1 + @) — 1(2)Y%(a1 — a2) a1 — a
Py | = i(19Y(a + ) — 12)V%a1 — @) 0 3(2)*(a1 + a2)
38 0 4 — a 3@)12(ay + a) 0
3p, 15,
Jogo Po =¥+ a) — 3(6)*(a1 + a2)
1So | — 3(6)4%(a1 + a2) 0

Now we could proceed as before, that is add the electrostatic energies to
the diagonal terms of the above matrix and then expand the determinant of
the matrix in order to obtain the secular equations. But in this case the ex-
panded fourth order equations are so complicated that it seems preferable to
leave them in the form of fourth order determinants, as the determinants are
probably easier than the expanded form to handle numerically. For this rea-
son we do not give the expanded form for the secular equations.

THE CONFIGURATION d- p

In this case we have /;=2 and /;=1. The multiplets are singlet and triplet
P, D and F. From our formulas the magnetic energy matrix is

3F4
J =4 3F, %(204 + 02)
3F3 1F3 3D3
Fs | —1/6Q2a1 + @) — (V2201 — @) 32)V(a1 — @)
J=3 W |- 0¥Ca— a) 0 /6)(a + az)
Dy | 32)V¥ai— as)  (1/6)V%(a1 + as) 1/6(5a1 + a2)
3F, 3D, 1D, 3P,y
5Fy — 3Qa1 + @) 3(7/5)% (a1 — @) —%(21/10)%(a1+a2) 0
J=2 Dy | 3T/ — @) — 11250+ @) —3(1/6)*(Sm—a)  §(3/5)V(ar— a5)
Dy | —3(21/10)2%(a+as) —3(1/6)V2%(Sa1—as) | Y $2/5)1% (a1 + @)
8Py 0 1@/V(m—a)  §2/5)V%ar + a2) 1Ba1 — a2)
3D1 3P1 IP‘
Dy — 1(5a1 + @2) 13)%(a1 — as) = 1(6)*(a1 + a2)
J=1 3P| i3)V¥(e1— @) — 1B — @) — 1(@2V2Ba1 + av)
Py | — {6V + @) — 1(2)V2(3a1 + a2) 0
SPO

J=0 3]’0] —3Ga — @)’

For the same reason as the previous case we do not give the expanded form of
the secular equations.

MaNY ELECTRON CONFIGURATIONS

Our formulas for four vectors may be applied to give the secular equations
relating the levels arising from a common parent term. We take I; and s; for
the orbital and spin momentum of the ion and I and s, for the orbital and
spin momentum of the added electron. Then the formulas for the matrix of
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the spin-orbit interaction apply directly when we remember that s; is no
longer restricted to the value 1/2. We must use Egs. (11) for s;¥%.

We consider first the addition of an s electron to a 3P multiplet, a case al-
ready treated by Goudsmit.* The multiplets are *P and 2P. Remembering
that h=Il=L, s;=1, [,=0 and s;=1/2 we have from Egs. (11)

lis = 1
lzig =0
s S(S+1)+5/4 (2/3 for 4P
ST TSNS+ ) {4/3 for 2P
1 _ ((25/4 = SY(St — Py
R ( 452(45° — 1) ) '
Our formulas for the matrix of the spin-orbit interaction give
4I’5/2
J=5/2 Pyl a
B 4Py tPy/2
7 =32 ‘P32 — 3a — 3(5)"%a,
2Py | — 5(5)an 301
‘P12 2P1sa
J=1 P12 - 5/3m — 3(2)Y%a, .
2Pia | — 3(2)"2ay — §a1

Let o be the electrostatic energy of the 2P multiplet referred to the *P. Then
measuring energies from the 4Py, level we obtain the following secular equa-
tions

J=5/2 —W =0
J =32 W2 — (& — 2a)W — 5/3aa; = 0
] = % W2 - (a - Sal)W hand 8/30’,(11 + 6&12 = 0.

As another example we consider the addition of a p electron to a P mul-
tiplet. The multiplets are %S, 2P and 2D. From Egs. (11), remembering that
L=1,5=0,L=1,s5=1/2=S, we have

LS

sizg = 0
LS

Sers = 1
L8

1

lars = %

lL s _ —1_<9 _Lz)xlz
2L=18 2 4r2—1 .
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Then we find for the matrix of the spin-orbit interaction

2Ds/2
J =5/2 Dy | tay
2D3/2 2P3/2
7 =32 *Dsy2 — %a 1(5)'%ay
2Pya | £(5)M%az 10,
2-P1/2 2‘5‘1/2
J=1 *Pua| — a2 3(2/5)'a: '
2S12 | 2(2/5)12a, 0

Let « be the electrostatic energy of the 2P multiplet referred to the 2D and
B be the electrostatic energy of the 2S referred to the 2D. Measuring energies
from the 2D;;2 level we obtain the following secular equations.

J=15/2 —W=0
J =3/2 W? — (a — 2a2)W + 5/8as(as — 20) = 0
J=3 W2 — (a+ 8 — 3/2a)W + aff — 3as(a + 28) + 2/5a,2 = 0

THE ADJUSTMENT OF THE PARAMETERS

In the secular equations that we have given the coefficients are functions
of the radial integrals F*, G* and a; and a.. Until these integrals can be calcu-
lated they must be treated as parameters which may be adjusted to fit the
experimental data. In simple cases this may be accomplished easily by using
the sums of energies for each J value. These sums are always linear in the
parameters so that if we set the various sums equal to their experimental
values, we obtain a linear set of equations for the parameters. In more com-
plicated cases we will not obtain enough equations to determine the parame-
ters in this way and more laborious calculations will have to be made. How-
ever these calculations will be useful for other quantities besides the energy
levels may be found in terms of the same parameters. Thus in the following
paper the g values for intermediate coupling are calculated in terms of these
parameters and in a later paper the writer will treat the question of intensi-
ties in intermediate coupling.

In conclusion the writer wishes to thank Professor Pauli for suggesting
the method of treating this problem.



