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ABSTRACT

Following the method of Guttinger and Pauli' four angular momentum vectors
are treated in matrix mechanics. Analytic formulas are obtained for the matrix com-
ponents of the spin-orbit interaction of two electrons in I.S coupling. Since the elec-
trostatic energy in LS coupling is a diagonal matrix whose elements may be calculated
by Slater's method, this gives the complete energy matrix. Then for any two electron
configuration one easily obtains the secular equations whose roots give the energy
levels in intermediate coupling. In this manner the secular equations are worked out for
thecon6gurations p', p p, d', d d, andd p.

INTRoDUcTIQN

N THE theory of complex spectra the effect of the electrostatic repulsion
- - of the electrons on the energy levels of an atom has been reduced in many
cases to the calculation of a few radial integrals. ' By this method it is always
possible to calculate the multiplet separations for two electron configurations
with such accuracy as is afforded by a first order perturbation theory. In
order to obtain more detailed information about the energy levels it is neces-
sary to include in the perturbation problem the interaction of the spin each
electron with its own orbital motion. This has been done for two electrons
when one is in an s state. Also partial information (in some simple cases com-
plete) about the secular equations has been obtained by Goudsmit. '

It is easy to see why the spin-orbit interaction has not been dealt with by
Slater's method. In this method it is not necessary to find the wave function
for a given state of the atom. For due to the high degree of degeneracy re-
maining in the problem after the application of the perturbation, it is possible
to find all the energy levels from the invariance of diagonal sums. When the
spin-orbit interaction is included, much of this degeneracy is removed so the
diagonal sum method loses its effectiveness.

The essential difficulty with Slater's wave functions is that the square of
the total angular momentum, J', which is an integral of the equations of mo-

tion, is not diagonal when these wave functions are used. Consequently the
secular determinant when computed with these functions, is not factored ac-
cording to J values as it should be. The proper linear combination of Slater's
functions to make J' diagonal may be found by studying the angular momen-

tum operators. ' With these proper functions as a basis the matrix of the spin-

Guttinger and Pauli, Zeits. f. Physik O'7, 743 (1931).This will be referred to as 1.
2 J. C. Slater, Phys. Rev. 34, 1293 (1929),
3 Houston, Phys. Rev. 33, 297 (1929).
' Goudsmit, Phys, Rev. 35, 1325 {1930).This method has recently been extended by D,R

Inglis, Phys Rev. 38, 862 (1931).
' Gray and Wills, Phys. Rev. 38, 248 (1931).
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orbit interaction would be factored according to J values. However for the
general two electron configuration this appears to be a lengthy process. So in

this paper we attempt to calculate the spin-orbit interaction in IS coupling
directly from the matrix equations. '

EI.IMINATION OF THE QUANTUM NUMBER Mg

If I is the total orbital angular momentum, 8 is the total spin angular
momentum and J their resultant, then

J= I +8
I =11+12
8 = s1 + 82

where l1 and 12 are the orbital and s1 and 82 are the spin angular momenta of
electrons 1 and 2 respectively. Then the following commutation relations are
valid

[J„A,] = 0

[J',A„] = [A,J„]= iA.

[J.,21] = 0

(2)

where A is any vector which is a function of the spin and orbital momentum
vectors and 8 is any scalar formed from these vectors. In these equations
angular momentum is measured in units of fI/2s. In particular Eqs. (2)
hold for 11, I2, s1 and s2. Now we suppose that J' is diagonal with the charac-
teristic values J(J+I) and J, is'a diagonal with the characteristic values MJ,
~Mz

~

~J. Then from reference 1 we find that the solutions of Eqs. (2) are

JMJ
(A g + ZA y) Jclfg T 1

JMJ
~zJMJ

J 3Q.
(A ~ + zA &)zyyv

J MJ
~zJ+lMJ
J MJ

(A~ + zA&)z

J MJ
~ zJ+1MJ

Ag[(J + Mg)(J + Mg + 1) j'I~
J

AJMJ

AJ+1(+ 1) [(I ~ Mz + 1)(J y Mz + 2) ]'"
Amp'[(J + 1)' —Mg'] ""

AJ g(y 1)[(J + Mg)(J + M~ —1)]'t2

Ag &(J' —Mg')'".

In particular if A= J, then AJ=1 and Ay+1=0.

CALCULATION OI L AND 8
The calculation of 8 is exactly the same as in reference 1.We now suppose

that I.' and 5' are also diagonal with the characteristic values I.(I.+I) and

' YVe should also note another possible method of obtaining the matrix of the spin-orbit
interaction by those famous ('s and g's, which may be simple for one experienced in their pe-
culiarities. H. Acyl, Gruppentheorie und Quantenmechanick Kap. III; H. A. Kramers, Amst.
Akad. 33, 953 (1930).
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S(S+I) T.his is possible since the matrices L', S', J' and J, all commute with
one another. Then from reference 1 we find for S

J (J + 1) + S(S + 1) —L(L + 1)
SJ =

2J(J + 1)

(r + s + ( —. 1)(r + s + .( + 1)(r —r + s)(1.—s + r))'2'
4J'(2J —1)(2J + 1)

J J—1
SJ 1 ——SJ

The last equation follows from the Hermitean character of the components
of S.

The results for L may be obtained from the above by interchanging L and
S. This gives

z J(J + 1) + L(L + 1) —S(S + 1)
LJ ——

2J(J + 1)
(S +L + 1 —J)(S +L + 1 +J)(J —S+ L) (J —L +S)

LJ (5)
4J'(2J —1)(2J + 1)

J J—1
LJ-1 = LJ

The minus sign before the component nondiagonal in J occurs in extracting a
square root. The minus sign must be used in order that (L,+S,)rqi+, ~~~

——0
as is required by the fact that J' commutes with all components of J. Of
course all components of L and S are diagonal in L, and 5 as all components
of both L and S commute with J' and 5'.

DEPENDENcE QF IS2 1s2 si AND ss QN THE QUANTUM NUMBER J
In the following formulas we users for l1 and 12 and s for s1 and s2 when-

ever the formulas apply for both subscripts. We find the dependence of I on

J from the equation
L SJ'' AIg

[S cS2)2 /*lr sz rrrs+s = 0.

The calculation is exactly the same as the calculation of the coordinate
matrix in reference 1. Hence we have the result

(6)

rs J(J + 1) + L(L + 1) S(S + 1)
~LEJ iLs

2J(J + 1)

(I+S+I+2)(I+S—1)(1+1+1.—S)(1+1 I+S))2'—
4(J + 1)'(2J + 1)(2J + 3)

Z —L+S+2 J—L+S+~ L+S—i —J (L+S—J
4(J + 1)'(2J + 1)(2J + 3)

(I+I—S)(1 I+I+ ()(I I-I+1+1)(I+S——I))"'
4J'(J + 1)'

(I+I —S —()(I+I —S)(I+S+(+r)(I+I+I))'"
4J'(2J —1)(2J + 1)



SI'ECTRA OJi TS'0 ELECTRON SYSTEMS 1631

The remaining terms may be obtained by interchanging the upper and 1ovrer

1ncl. lees.
For the dependence of s on J we use the equation

r

L8 J' MJ
Lz SLs, sz]LB'I"rrr+I

With J' =J—1 and J"=7+1 we have

LSJ—1
ISJ

IS J LSJ-1 LS'J
&LS'J+1 &LS"J LL 8'J+1~

With J'= J, 7'-'= 7+1 and vrith J'= J, J"=7—1 vie obtain the following
two equations in exactly the same manner as Eqs. (15') and (16') are ob-
tained in reference 1.

LSJ IS'J+1 LS J LS'J' LS J
(J + 1)LLBI —(J + 2)LLB I+1}sr, B I+1 —Lr, B I+Isr, B I = 0

I8J L8'J—1 L8 J L8'J L8 J
JLIBI (J 1)LLB'I 1}SLB'Z 1+—LLB'.—I 1$LB'I 0 '~—

With 5'=Sin Eq. (7) we obtain

LSJ LS I8J
SLSJ+1 = SLSLLSJ+1

[z+8 r) (L+z+r+ 2)(1+—1+Iz) (1+f+5—.L—

))
"'

4(J + 1)'(2J —1)(2J + 1)

«om Eq. (8) with 5'=5 we have

L8J L8J' I8J' L8J' I8J+1
sLBILLBryr = srsr+11(J + 1)LLBI —(J + 2)Lrsr+1}

r,sr r,BJ(J+ 1) + 5(5 + 1) —L(L + 1)
~LSJ SLS 2J(J+ 1)

F1.0111 Eq. (7) witll 5' =5—1 we llave

ISJ—1 L8 J' I8 J'—1 L8—1J'
LL8J $L8—1J+1. SL8—1J' LL8—1J+1

or

(10a)

(10b)

(
{L+ 5 + 1 —J)(J —S + L)

4J'(2J —1)(2J + 1)

(L+5 J 1)(J 5+L+ 2) "' IB I—

4(J + 1)'(2J + 1)(2J + 3)

r s I r 8 (L+5 J 1)(L+5 J)(J 5+—L+—2) (J5+—L'+1)— ' —
4(J + 1)'(2J + 1)(2J + 3)

From Eq. (8) with 5'=S—1 we have

(101)

LS J LS-1J' L8 J' I8J' LS-1J+1
sLB 1r LLB-1r+1 —s18—lr+I 1 (J + 1)LIBz (J + 2)LLs iI+1}—

I8 I I8 (L+5—J)(J 5+L+1)(JjS—L) (L+—5+J+1)
~LS-1J = —

&LS —1 4J'(J + 1)'
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Finally from Eq. (9) with S'=S—1 we obtain

rs J Ls (L+S+J)(J L+S——1)(J+S L)(L—+S+J+ 1)
SLS—1Z—1 SLS—1 . (10e)

4J'(2J —1)(2J + 1)

The remaining components may be obtained by interchanging the upper and
lower indices. Formulas (10a) to (10e) can, except for sign, be obtained from
Eqs. (6) by interchanging L and S.

DETERMINATION OF /Lg ETC.

If we suppose that L', S', L, and S, are diagonal, then I, 11 and 12 will be
related to each other in the same manner as J, I and S in the above calcula-
tion. S, 81, and s2 will also be related in this manner. Then we can obtain the
components of 11 and 12 and of s1 and 82 in this representation by a substitu-
tion of the appropriate quantum numbers in Eqs. (4) and (5). Now suppose
we make a unitary transformation to a representation in which J', L', 5' and
J, are diagonal. Such a transformation leaves L', S2 and J, invariant and so
can only have components between states of the same L, S and 2VI& values.
Between two sets of L, 5 and SIC values, the matrix components of 7 and s
will have a constant factor lLq and sLq. This factor which is determined by
the substitution of the appropriate quantum numbers in Eqs. (4) and (5),
will not depend on J and will remain after the transformation. The other fac-
tor will depend on J and is just the factor we have determined above. Hence
we have

L8
i1LS

LS
GALS

L S
~lL—1S

L8
$1LS

LS
~2LS

LS
~1LS-1

L(L + 1) + 1)(1) + 1) —l, (l, + 1)

2L(L + 1)

L(L + 1) + l2(lm + 1) —1) (1) + 1)

2L(L + 1) (11)

( +i,—)L+i)(i,+i, +X+1)(l.—i,+i,j(L—I, +i,))'"
4L'(2L 1)(2L + 1)—

S(S + 1) + s)(s, + 1) —s2(s~ + 1)

2S(S+ 1)

S(S + 1) + s2(s~ + 1) —s, (s, + 1)

2S(S + 1)

(,+,—5+ i )(,+,+S+ 1)(S— +,) (S—,+,)

)
"'

4S'(2S —1)(2S + 1)

Remembering that in our case s1 =s2= ~, the formulas for s1 and s2 reduce to

LS LS
~1LS ~2L8

r.s zs (2 + S)(2

(2S —1)(2S + 1)
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LSJMJ LSJ
((z + t(w)I'S'JMJTI/(L'S'J

LS JMJ LSJ
(zL'S' JMJ/lL'S' J

LSJ MJ LSJ
((z+ tl)I) I 'S' I+IMI T I/(L'S' J+1

L S JMJ LSJ
(Sz + 2$2() L'S'JMJT1/SL'S' J

{(J+ MJ)(J y MJ + 1)}'"
SJMJ LS J

Szl. 'S'JMJ/SL'S'J MJ
LS J' MJ LSJ

(Sz + ZS2()L s J+1MJTl/SI, S J+1

+ {(J+ MJ + 1)(J y MJ'+ 2)I'"
LSJ MJ LS J

(zL S J+'IM'J/1L'S'J+1
LSJ MJ LS J

( z —Zl)()L'S'J—IMJ71//L'S'J —1

LSJ MJ L SJ
(zL'S'J 1MJ/(L'S'-J I—

LSJMJLSJ(
SSL'8'J+IMJ/SL S'J+I'1 (J + 1)' —MJ }

' '
I SJ MJ LSJ

(Sz + Z$2()IS'J ,L2IIJTl/SL'S'—I 1—
+ I (J + MJ)(J + M —1)}

"'
LS J MJ LSJ

SSL'S'J 1MJ/SL'S—'I 1(J M— J )

(LS-3+I+2)(L+3—1}(1+1+1—S)(1+1+3.—L))' '

4(J + 1)'(2J + 1)(2J + 3)

LSI I.s J(J + 1) —S(S + 1) + L(L + 1)
(LSI/(Ls

2J(J + 1)

(L +S+J+ 1)(I- +S+ 1 —J)(J +L —S)(J+S —L)
(LSJ I/ILS-.

4J'(2J —1)(2J + 1)

(L+S—I—()(I+3—1)(1 L+S+2)(1 L+S+1)—)"'—
4(J + 1)'(2J + 1)(2J + 3)

(L +S —I)(I —I +3 + 1)(I +I—S) (I + S +I+ 1.)

)
' "

(L ISJ/1L IS =— —
4J'(J + 1)'

I sJ L s (L+S+J)(J+L —S —1) (J+L —S)(L+S+J+ 1)
/L —1SJ—1/l 1SL

4J'(2J —1)(2J + 1)

(L+S+I+2)(1+L—S+1)(1+L—3+2)(I+3+I+3))z'
(L+ISJil/IL+Is

4(J + 1)'(2J + 1)(2J' + 3)

I, sJ I, s (L+S—J+1)(J—L+S)(J+L—S+1)(L+S+J+2)
/L+ISJ//L+ls 1/2

4J'(J + 1)'
(I +3—I+ 2 ) (L +S —I+2) (I —I +S)(I —L +3—2 )

)
"'

tL+ISJ 1/(L+ls-
4J'(2J —1)(2J + 1)

(I +S—I) (L +S+I+2) (I+ 1 +L —I)(I+ ( —L +S)

)
' z

4(J + 1)'(2J + 1)(2J + 3)
I.sJ I,s J(J + 1) —L(L + 1) + S(S+ 1)

SLSJ/SLS
2J'(J + 1)



1634 M. H. JOHNSON, JR

(L + 3 —I+ I) (I + S +1+ I)(1 +I—S) (1.—L + S)

)
' ~ '

4J'(2J —1)(2J + 1)

(I +S 1—I )—(L+S—I)(I SI.I 3—.2) (I—3+I+ I)

)
'i'

4(J + 1)'(2J + 1)(2J + 3)

J Ls I+S—J J—S+L+1 J+S—L L+S+J+1
SLS 1J SLS 1 =

4J'(J + 1)'

(I+I +I)(I —I + 3 —I ) (I +3 —I)(I +I+I+ I)

)
' "

4J'(2J —1)(2J + 1)

(I+S+I+2)(1 LI-S+1)(—1+3 I+2)(I+3+—I+3))"
4(J + 1)'(2J + 1)(2J + 3)

rs z rs (L+5—I+1)(J—5+L)(J+5—I+1)(I+S+J+2)
SLS+1J' SLS+1 4J'(J + 1)'

r s z r s (I +S—J+1)(L+5 J+2) (J S—+L) (J—S+L 1)— —
SIS42r I/SLS+1' —

4J'(2J —1)(2J + 1)

r s L(L+ 1) + l1(l)+ 1) —ly(ly+ 1) Ls L(L+ 1)+ i,(ly+1) —l,(l,+ 1)

2L(L+ 1) 2L(L+ 1)

(I,+4 I + I) (4+4 +I+ I ) (—I—II- 4) (L —, I, + I,)

)
' "

4L'(2L —1)(2L + 1)

(I;II, —L) (4+4+L+ 2) (I + I —I,+ I,) (I + I —I+I)), ,

4(L + 1)'(2L + 1)(2L + 3)

LS LS
~1LS ~2LSrsr, .s I (2 5)(2 + 5)

(2S —1)(25+ 1)

r.s r,s (1 —5)(3 + 5)
~1LS+1 ~2LS+1

(2S + 1)(2S + 3)

THE MATRIX OF THE SPIN-ORBIT INTERACTION

We wish to obtain the matrix of (rr(12 sr)+a, ,(ly. sy). From Fqs. (2) we
know that this expression commutes with J' and J,. It will therefore be di-
agonal with respect to the quantum numbers J and MJ. By matrix multi-
plication we have

LS JMJ . L SJ MJ L'S J"MJ+1
(2 s)L's'rMS gy(ly fly) L'sr''Mr+1(sy + Lsy) L s'r Mr

Jrl
LSJ MJ I'S J"MJ—1 I SJ MJ L'S J"MJ

+ y(ly + zly)L sr''. Sir—1(sy 'zsy)L's'r Mr + 12L'sr"M s L's'r Mr"
L SJ L'S J+1 LSJ L'SJ= (J+ 1)(2J + 3)lL sr+ISL sr + J(J + 1)lL srsL Sr.
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L 8J L'8 J'—1+ J(2J —1)11.Sr isr. s z

Substitution from our previous formulas into the above equation yields the
following result for the matrix components of the spin-orbit interaction.

L 8 JMJ
(1' s) I-1S—lrMI

= ——', (1I 18)(sr. 18 1) I (5 +5 J)(L+—5 J 1)(—L+—5+J)(L+5+J+1)}' '
L 8J'MJ(1 ' 8)I

-ISTHMI

=
2 (1~-») (sr=is) I {L+5—J)(J—L+5+1)(J+L—5){L+5+J+1)}"'

L 8 J'MJ
(1 ' 8) I 18+IIMI-

= 2 (lir,—18)(sr, isyi) I—(J' —L+5+2) (J L+5—+1)(J—5+L)(J 5+L —1)}1/s—

I8 JMJ
(1 s)r.s irMz-

is (l1,8) (—srs 1) I (L+5 J)(J+L —5+1)(L+—5+J+1)(J L+5) }'/'—

L8JMJ
(& 8)rszMI,

=l{1-)(-) IJ(J+1) L{L+1)-5{5+1)-}
L8 JM

(~'8) I8+1IMI

k{l-)("8+—i) I (L+5 J+1)(J+L—5)(L+5+—J+2){J—L+5+ 1) }I/1

L 8 JMJ
(I ' S) I,+1S 1IMI-

= ' {lr+is)(sr+is —i) I (J L+5){J L+5—1)(J+I—5+1)—(J+L—S+2) }
'/1'—

(& 8) I+isrMI

= i (i/~is) (sr+i»s) I {L+5 J+1)(J L+5)—(J+L 5—+1){L+5'+J—+2) }"/'

I 8 JMJ
(1' 8) L+ 18+irMI

= —-,'(11+18)(sr+18~1)I (L+5—J+1)(I+5—J+2)(L+5+J+2)(L+5+J+3)}"
These formulas apply for both electrons. In conjunction with the expressions
given above for /Ls and sl~ they completely determine the matrix of the
spin-orbit interaction.

THE CoNF&GURxnoN p2

In this-case E~=l2=1 and a~=a2=a. The multiplets'are 'D, 'P and 'S. The
energy matrix calculated from the above formulas is given below. It is suffi-
cient to give separate matrices for each J value as there are no components
between states of different J value.

lD

'D2 0
8P (1)1/98

3P2

(1)1/2/I

8/2
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J=1
3p

—a/2

'So

(2) 1/2a

Bpo

3pJ=0
'So —(2) '/2a 0

From Slater's paper we find for the electrostatic energies in terms of his
radial integrals

1D ~

'P:
1S~

Fo + 1/25F2

F' —5/25F'

F' + 10/25F'.

We now measure energies from the 'P~ level. Then adding the electrostatic
energies to the diagonal terms and setting the determinant of the energy
matrix equal to zero, we obtain the following secular equations.

J = 2 W' —W(3/2a + 6/25F') + 6/25F'a = 0

J = 1 H/ = 0

J = 0 W' —W(15/25F') —9/4a' —15/50F'a = 0.
These equations determine the energy levels in intermediate coupling in
terms of the coupling parameters a, and Ii'. They have been previously ob-
tained and discussed by Goudsmit. '

THE CQNFIGURATIQN P P
In this case also l~ ——l2 but now c~ 4a2. The multiplets are singlet and trip-

let D, P and S. From our formulas, the energy matrix is

J=3 'D3

'D

J=2 'D2

3p

'D3

2(ai+ a2)

'D

—4(«+ a~)

—
g (3/2)"'(a, —ag)

~ (3)""(ai —a2) l(2)'"(a + a)
~ (2)'/'(a, + a,)

q(as + a2)

1/7 'p'
——', (3/2) "'(a& —az) 4 (3) '/2(a& —a&)

'D

aplJ—1
1p

'Sg

3D1 pI
—f (a&+a2) ~ (5/3) '/2(a& —a2)

l(5/3)"'( — ) —l( +a )
—

~ (10/3) '/'(a +a2) —
~ (2) '/'(ay —a2)

0 (3) '"(ai—a~)

lp 'Sg

—-', (10/3)"'(a/+as) 0

g(2)1/2(a g2) ( )1/2(al a2)

0 -'(-') «'(a,+a,)

k(3)'"(ai+ am) 0

~ Reference 4. To agree with Goudsmit's results we must set a/2 =A and 3/25 F =X in the
above equations.

* In the secular equations the parameters never appear in the denominators of fractions.
An expression such as 6/25 F must always be taken to mean (6/25) F'.
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3P
J=O

lS

3PO 'Sp

For the electrostatic energies referred to the 'D multiplet we find by Slater's
method'

'D:
lD ~

3P:
1Pi

'S:
1S ~

2G' + 2/25G' = n

—6/25F' + 2G' —4/25G' = P

—6/25F' + 6/25G' = y

9/25F' —9/25G' = —3/2y

9/25F' + 2Go + 11/25G' = 8

Measuring the energy levels from the 'D3 we obtain the following secular
equations

J=3 8'=0
J = 2 —W' + W'{n + p —3/2(ai + a2) I

—W {np —4(ai + au)(4& + 5p)

+ 9/4aia2I —3/4(ai + a2)aP + —,'a~a~(a. + 2P) = 0

J = 1 W' —W'{P ——,'7 —3(as + aa) I + W'{ —2v(P + 3v)

+ 4 (al + a2) (—9P + 5v) + 9/4(ai'+ a2 + 3ala2) I
—W{—3/2Py' + —'(ag + a2)(7P + 24') + 3/32(ag + u2)'(12P —7y)
—3/32(a& —am)y —27/8aga2(ag + a2) I + 15/8(ag + a2)PY' —5/8(2az

+ 291+ 5aga2)y' =0
7 = 0 W2 —W{P+ 8 —3/2(ai+ a2)I +Pb ——', (a~+ a)(P+28)+2a~a2 ——0.

THE CONFIGURATION d2

In this case ll =l2= 2 and al =a2=a. The multiplets are 'G, p, 'D, 'I' and
'$. From our formulas the magnetic energy matrix is

'G4J=4
'p4

lQ 3P

0 u

3p

J = 3 'Fs I
—-,'a

3p 1D 3P

(21/10) "'a
—81
2

3P —2a —2(3/5) "'a
J = 2 'D, —2(3/5)'"a 0

'F2 0 (21/10)'"a
' E. U. Condon and G. H. Shortley, Phys. Rev. 37, 1025 (1931).
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spoJ = 0
'So

3Pl

——81
2

EQ

(6) 1/2a

'So

—(6) '"a.

By Slater's method' we find for the electrostatic energies referred to the 'll

multiple t
'G' 12/49F' + 10/441F' = n

0

1D ~ 5/49F' + 45/441F' = P

15/49F' —75/441F4 = y

22/49F' + 135/441F4 = 5.

Measuring energies from the 'F& level, we find the following secular equations.

J=4
J=3
J=2

J=1
J=0

W' —W(n + 5/2a) + 2an = 0

—H/=0
—W'+ W'(P + y) —WIPE —-,'a(P + 2y) —25/4a'I —3/2aPy
—3/20a'(10P + 21') = 0
—8'+y= 0

W' —W(y + 8) + y8 + -', a(y —5) —25/4a' = 0.

THE CONFIGURATION d d

In this case hi=i~=2 but a1Nc~. The multiplets are singlet and triplet
5, I', D, Ii and G. From our formulas the magnetic energy matrix is

'G5

J= 5 G5 Ia1+a3

'G4

J = 4 'G4

3P4

'G3

3PJ=3
1P

3P3

3DJ=2
'D3

3P

'G4

—-'( + )
—5{5)'"(a1—a2)

-'( )«'( 1 — 2)

'G3

—5/4(a, + a,)
—(3/7) «(g1 —a3)

—3/2 (1/7) 1/'(g1 + a2)

0
3P

—(a1+ a.)
(2/5) «'( —a )

(3/5)1/2(al + a2)

0

'G4 3P

(5)1/2 (al a2} (5)1/2 (a1 a2}

0 k(a1+ a3)

l(a1+ a2) 4(a1 + a2)

3P3 1P3

-'(3/7) '/'(a1 —a2) —3/2(1/7) '/'(a1+ a3)
—-'(a1 + a3) — (3)' '(a1 —a3)

—~(3)1/'(a1 —a3) 0

2(1/7) 1/3(a1 —a3) (3/7) «3(a1+a3)
3D «D3

(2/5)1/ {a,—a&) —(3/5) «(a, + a&)

——,'(a1 + a2) —4(6)'/'(a1 —az)

—4(6)1/'(« —a2) 0

-(7/5)1/'(a1 —a2) & (21/10)1/ (a1 + g3)

3D3

0

2{1/7) '/'(a1 —a3)

(3/7)1/ (a1 + a2)

g {g1+a3}
3P

0

4(7/5) '/ (g1 —a2)

~3(21/10) '/'(a1+a2)

4(a1+ a2)
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BD

BPJ= 1
'Pl
'Sl

3PJ=0
1S

—4(al+ a2)

'.(7)»'(u —a2)
—4(14)'"(al + a2)

0
3P

—2(al+ a2)

&{7) / (gl —g2)

—'(al + a2)
—4{2)'"(al —a2)

gl —a2

1S

(6)1/2(al + a2)

0

1P1

{14}'/'(al + a2)

~I (2)1/2(gl g2)

0

2(2}1/'(al + a2)

'Sl

0

al —a2

—.'(2) / (al + a,)
0

Now we could proceed as before, that is add the electrostatic energies to
the diagonal terms of the above matrix and then expand the determinant of
the matrix in order to obtain the secular equations. But in this case the ex-
panded fourth order equations are so complicated that it seems preferable to
leave them in the form of fourth order determinants, as the determinants are
probably easier than the expanded form to handle numerically. For this rea-
son we do not give the expanded form for the secular equations.

THE CoNFIGURATIoN d P
ln this case we have l~ = 2 and l2= 1.The multiplets are singlet and triplet

I', D and Ii. From our formulas the magnetic energy matrix is

BP4

J = 4 oF4
~

—,'(2a, + ao)

J= 3

3P 1PB BDB

'pB —1/6(2al + a2) —(-') '/'(2al —a2) —,'(2) '/'(al —a2)

1PB —(-)1/2(2gl —g2) 0 (1/6)»'(ul + a2)

3(2) (al a2) (1/6) (al + a2) 1/6(5al + a2)

J=2
BP2

'D2

'D2

3P2

3P2

—g(2al + a2)

-'(7/5)1/'(gl —g2)

3 {21/ 10) '/'(al +a2)

0

'D2

(7/5) 1/2(al a2)
—1/12(5al + a2)

2 (1/6) 1/2(5ul a2)
—'(3/5)»'(ul —g2)

1D

——,'(21/10) '/'(a +a )
—

2 (1/6) '/ (5al —a2)

0

4 (2/5) 1/2(u] + g2)

3P2

0

4(3/5)1/'(al —a2)

l(2/5)'"(a + )
—,'(3al —a2)

BD

J= 1 'Pl
lpl

——,'(su, + a,)
(3)1/2(al a2)

—4(6}»'(al + a2)

BP1

1(3)1/2(gl —a2)
—-'(3al —a2)

——,'(2) '/'(3al + a2}

'Pl
—-'(6)'/'(a + a )
—4(2) '/'(3al + a2)

0

'po

J = 0 opo I
—a(3ai —ao)

For the same reason as the previous case we do not give the expanded form of
the secular equations.

MANY ELECTRON CONFIGURATIONS

Our formulas for four vectors may be applied to give the secular equations
relating the levels arising from a common parent term. We take ll and s~ for
the orbital and spin momentum of the ion and 12 and s2 for the orbital and
spin momentum of the added electron. Then the formulas for the matrix of
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the spin-orbit interaction apply directly when we remember that sl is no
longer restricted to the value 1/2. We must use Eqs. (11) for s~lq.

We consider 6.rst the addition of an s electron to a 'P multiplet, a case al-
ready treated by Goudsmit. ' The multiplets are 4P and 'P. Remembering
that i~ =i =I, s& =l, lm ——0 and s& ——1/2 we have from Eqs. (11)

LS
~1LS =

LS
~2LS

zs S(S+ 1) + 5/4 2/3 for 'P

2S(S+ 1) 4/3 for 'P

(25/4 —S')(S' —l) '"
S1LS—1

4S'(4S' —1)

Our formulas for the matrix of the spin-orbit interaction give

P5/2

J = 5/2

J = 3/2

E3/2 P8/2

P& I2 3 al 3 (5) al

2P 1(5)1/2a

Pl /2 P1/2

J 1 'Pv, —5/3ag ——',(2) "~'a,

—3(2)'"a~

Let ~ be the electrostatic energy of the 'P multiplet referred to the 4P. Then
measuring energies from the 'P&/2 level we obtain the following secular equa-
tions

J = 5/2 —W = 0

J = 3/2

J —2

W' —(n —2a,) W —5/3na, = 0

W' —(a —5ag) W —8/3na, + 6aa' ——0.

As another example we consider the addition of a p electron to a 'P mul-

tiplet. The multiplets are 'S, 'P and 'D. From Eqs. (11), remembering that
1~=1, s&=0, l, =1, s& ——1/2=S, we have

LS
~1LS

IS
S2LS 1

IS
~2LS

9 I /

4I2—i
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Then we find for the matrix of the spin-orbit interaction

DS/2

J = 5/2 'Dg)g
~

—',a2

D3/2

'D3/2j = 3/2
'2'g(2 —,'(5) '"a2

4 (5) '"a2

4821

J —2

+1/2 ~1/2

—ka2 2(2/5)""a2
'5 ~in

—', (2/5) "'as

Let a be the electrostatic energy of the 'I' multiplet referred to the 2D and

p be the electrostatic energy of the '5 referred to the 'D. Measuring energies
from the 'D&/2 level we obtain the following secular equations.

J = 5/2

J = 3/2 W' —(n —2a2)W+ 5/Sa, (a, —2n) = 0

W —(n + P —3/2a2)W + nP —~~ay(n + 2P) + 2/5a = 0

THE ADJUSTMENT OF THE PARAMETERS

In the secular equations that we have given the coefficients are functions
of the radial integrals I'~, G~ and a1 and a2. Until these integrals can be calcu-
lated they must be treated as parameters which may be adjusted to fit the
experimental data. In simple cases this may be accomplished easily by using
the sums of energies for each J value. These sums are always linear in the
parameters so that if we set the various sums equal to their experimental
values, we obtain a linear set of equations for the parameters. In more corn-
plicated cases we will not obtain enough equations to determine the parame-
ters in this way and more laborious calculations will have to be made. How-
ever these calculations will be useful for other quantities besides the energy
levels may be found in terms of the same parameters. Thus in the following
paper the g values for intermediate coupling are calculated in terms of these
parameters and in a later paper the writer will treat the question of intensi-
ties in intermediate coupling.

In conclusion the writer wishes to thank Professor Pauli for suggesting
the method of treating this problem.


