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ABSTRACT

If it is possible to describe the state of an atom by the addition of several vectors,
and if one assumes the wave function for any state of a configuration to be a linear
combination of product functions for that configuration, then one can determine the
coefficients in the linear combination by a simple method. Examples are given. The
usual interval formula is not applicable for 2p', where nonsplitting is the case.

INTRODUCTION

N A previous paper, the writer has investigated, for two equivalent 2p
-- electrons, the stages between (Is), or Russell-Saunders, coupling and (jj)
coupling. As a zeroth approximation, the wave functions for the intermediate
case were assumed to be linear combinations of product functions associated
with 2p'. The secular equation could be solved rather readily when the func-
tions used to determined its matrix elements were those linear combinations
associated with the various terms (such as 'P~) of Russell-Saunders coupling.
Such linear combinations were found by solving an appropriate secular equa-
tion. The purpose of the present paper is to call attention to an apparently
little-known method which enables one to write down these linear combina-
tions directly.

l. If there exist two independent states p „~ and f ss, which may be
represented by vectors A and 8 with projections rn& and m& respectively,
then the total system may be written as f „"f„ss.If the two vectors com-
bine to form a resultant vector C with projection mz, then this state will have
the form f cc= &„~„sSc„~s"sP „~P ss, where m~+nss=wc. The coeffi-
cients 5& ~„„~ are known, ' at least if we restrict the quantum numbers to
integral and half-integral values. If f„~~ refer to electrons 1 and 2, and f ss
to electron 3, the resulting function will not be antisymmetric with respect to
interchange of any two electrons, in general, and determinant wave functions
must be constructed.

For convenience, the coefficients for 8 = —,'and 8 = 1 are listed.
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' J. H. Bartlett, Jr. , Phys. Rev. 34, 1252 (1929).See also Phys. Rev. 3S, 229 (1930).' E.Wigner, Gruppentheorie (Vieweg, 1931)S.206.
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A1
TABLE II. Sc~~n1~

A+1

C mB= —1

-(A+mc)(A+mc+ 1) '"
A —1

2A (2A+1)

A
-(A —mc)(A+mc+ 1)

—»2

2A (A+1)
-(A —mc) (A —mc+ 1)

—»'

(2A+1) (2A+2)

mg=0
— (A+m, )(A —m, ) -1~~

A(2A+1)
mc

[a (a+.1)]«2

(A+mc+ 1)(A —mc+ 1)

(2A+1) (A+1)

mg= 1

(A m«+1)—(A mg)

)
«—'

2A (2A+1)
-(A —me+1)(A+mc) '"

2A(A+1)
-(A+me+1) (A+mc)

—»2

(2A+1)(2A+2)

Table II has been given in a different form by Wigner. ' The form above
seems to be handier and more symmetrical.

2. A simple example is that of two equivalent p electrons. Let the wave
function f„„&'&1( s'" be denoted by (ns&, m&). We shall determine the space
function by combining the l-vectors, and the spin function by combining the
s-vectors. The product of these two functions will then be represented by a
vector I- and a vector S, together with their projections nial, and nz8. It will

be a linear combination of individual product functions and need not have
the required antisymmetry property. If, however, we replace each individual

product function by the corresponding determinant, the linear combination
of these determinants will be our required function. In the case of two elec-

trons, S&= —,
' and S2=-,', resulting in wave functions symmetric or antisym-

metric in the spins. The space factor turns out likewise, and so we do not need

to introduce determinant functions. This is only a special case, however.
The space factors for 2p', m~ =0 follow

~:(l)"'I (1 —1) —(o 0) + (- 1 1) }

D (-') "I(1 —»+2(0, 0)+(-1,»}
&:(l)'"I(1,—1) —(—1, 1)}.

Since these are either symmetric or antisymmetric in the two electrons,
it is only necessary to multiply by the appropriate spin factor to obtain a
wave function which is antisymmetric.

For m1 = 1, P'P)'12I (1, 0) —(0, 1) }
D: (-:)"I (1 0) + (o, 1) }

For m~ ———1, P: (—',) '1'
}(0 —1) —(—1, 0) }

D: (2)'" I (o, —1) + (- 1 o) }

The spin functions are:

=o (-) I-()p() —-()~()}
~ E. Wigner, Gruppentheorie, p. 208.
4 These functions agree with those in the previous paper, reference 1.
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(m, = 1:n(1)n(2)

& = 1.m = o: (2)"'[~(1)P(2) + ~(2)P(1) j
t
', .P(,)P(2)

n(1) denotes that function of electron 1 corresponding to m, =-', , and P(1)
corresponds to rn, = —2.

If now, we wish the functions for 'P, j=0, 1, and 2, then the coefficients

S',.',„,are what are required. For m = 0 (and for the other values of m also)
the form of the wave function is the same as for m~ =0 above, ' i.e. :

'
o (-')"'I(, — ) —(, )+ (—,) j.

The parentheses refer here to m ~ and I, however, instead of to I f, and m ~, .

3. A more complicated example is furnished by the configuration 2p'
which has for terms 'P, 'D, and 4S. When there are three electrons described

by vectors l&, l2, l3 and s&, s2, s3 then we may suppose the resultant of l& and 12

to be ) and that of si and s2 to be s. The total wave function characteristic of a
state (f, s, m ~, m, ) may be written as

Q(—)'~Pg„P ' = Qs((ft„m)m(, )s,(ss„m,m„) Q( —)'"P

[si(t&f&, m~,m~, )s,(s,s2, m-„m„)P(tqsq, m4m„/1)

lf (l2s2, m m, t„/2) ]p(l3s3, i,mm/3)

where P is a permutation of (123) and i, its order. Thus we may proceed
from determinant wave functions for two electrons, if it proves to be con-
venient. If we try to build up the 'D5/2, m~ =2 from 2p' 'D2 and 2P then the
functions for 'D are:

(-:)[ I-(»~ (»I —I- (1)~(2) j

For 2p,

n'(3)
n" (3)

(where the superscripts now denote the magnetic quantum number).
The only possible function for 'D, &„m, = 2 is then (1/6)' ' ~n'(1)P'(2)n'(3) ~.

One does not need to resort to the vector addition method to deduce this re-
sult.

For j= 3/2, m = 3/2 there are three possible states, namely 'D, 'P, and 45.
The 'D may be considered as arising from 2p 'P and 2p, or else from 2p' 'D
and 2p. The same wave function is obtained in either case, which seems at
first surprising because the 'D and 'P terms have not the same energy. But
if we consider that the added electron is equivalent to the other two, the rea-
son is apparent. If a nonequivalent p electron should be added, then we
should obtain two 'D terms with different energies,
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For 2p' some of the wave functions follow:

mi ——0, m, = —', : (1/6) [ I
EE'(1)n '(2)a'(3)

I + 2
I
P'(1)a '(2)a'(3)

I

+ IE- (1)- (2)-(»
I ]

~j':mi = 1 m, = 2'. (1/12) i [ I
P'(1)n '(2)(x'(3)

I +
I
P'(1)n'(2)a'(3)

I ]
mi = 0 m. = —::(I/»)"'[

I
&'(I) -'(2) '(3)

I
+

I
i3-'(I) '(2) '(3)

I ]
4$:

m,
= 0 m, = 3/2:(1, '6)"'I ~'(1)~'(2)a '(3)

I

m. = k: (1/18) '"I I
EE '(I)~'(2) ~'(3)

I
+

I
E3'(I)~ '(2) ~'(3)

+I~(1)-(2)--(»I ]

~D3(q, m = 3/2:(1/6)'i'[(4/5)'i~
I
n'(1)P'(2)P'(3)

I

—(I/10)'i a'(1)P'(2)n '(3)
I

+ (1/10)'" P'(1)n'(2)u'(3)
I ]

'&~/i m = 3/2:(I/»)'"[ ~'(1)P'(2)~-'(3)
I +

I
~'(1)P'(2)~'(3)

I ]

4. Suppose now, to verify the correctness of the linear combinations, that
we calculate the energy levels of 2p, j=3/2, for (jj) coupling. This necessi-
tates finding the matrix elements of (l s),+(l s)~+(E s)3. Given two deter-
minantal wave functions In, (1) n, (2) n3(3) and Ini'(1) n2'(2) n, '(3), then
the matrix elements will not vanish only when not more than one of the n's
is diferent from an n'. If nI =n&', n2=n2' and n3@n3', the matrix element is
(n, l s In, '). lf na ——n, ', the matrix element is (n, Il s In, ')+( ~nl. s n, ')
+(n, Il sIn, ').

The matrix elements of (l.s) are

(m„mi
I

l . s
I
m„m, ) = xm, m,

(,miI E sI E3, mi+ 1) = p/2)[l(l+ 1) —mi(mi+ 1)]'&'

(P, m&
I

I s
I
a, mi —1) = (X/2) [E(l + 1) —mi(mi —1)]'".

The secular equation is then:

(5/4) "' 0

(5/4) "'
0

1 =0.

The roots are s = 0 and + 3/2, agreeing with what one would expect fi om ele-
mentary considerations. When the electrostatic interaction is not negligible,
then one must solve the cubic equation by applying the well-known formulae.

It is seen that the diagonal terms in the matrix of (l.s) are zero, which means
that the 'P and 'D of 2p' do not split up, as is the case'with 2s2p'. This is
not what one should expect from the formula DE=const. [j(j+1)—l(l+1)
—s(s+1) ], showing that the range of applicability of this formula is limited.
One can verify the fact that no splitting occurs by a consideration of 'D5/2

and 'Pi~&. The displacement must be the same for (ls) coupling as for (jj)
' W. Heisenberg u. P. Jordan, Zeits. f. Physik 37, 268 (j.926).
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coupling, where it is zero, a result that one can obtain without using wave
functions.

DrscUssrOx

The vectorial method of finding correct linear combinations seems to be
quite general, but does not, of course, apply when the resulting state cannot
be represented as a vector which is the sum of several component vectors.
For instance, the transition from (fs) to (jj) coupling involves a disturbance
of symmetry so that one cannot find the wave functions for the intermediate
cases by the above method. But it becomes much easier to find these func-
tions if one knows the proper functions for (ls) coupling. The problem re-
duces to that of solving a secular equation for a given j and I, the degree of
this equation being the only practical limitation, instead of the number of
electrons.

Note added SePt. 8, 1931:The correct linear combinations can also be
found by a method due to N. M. Gray and N. A. Wills (Phys. Rev. 38, 248,
1931).The present writer believes, however, that the-vectorial method, due
to Wigner, is the simpler.


