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ABSTRACT

With the nodeless wave functions of Guillemin and Zener, the method of Heitler
and London is applied to determine how two normal lithium atoms, and also two nor-
mal beryllium atoms, influence each other {as a function of the distance). For the di-

atomic lithium molecule in the ground state, the equilibrium distance is calculated
to be 2.4A, and the heat of dissociation to be 1.09 volts. The experimental values are
2.67A (Harvey and Jenkins) and 1.14 volts (Loomis and Nusbaum), respectively. Two
normal beryllium atoms repel each other.
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N ACCURATE determination of the heat of dissociation and of the
equilibrium separation of the nuclei in a diatomic molecule demands, if

one uses the method of Heitler and London, ' that the eigenfunctions of the
individual atoms be known to a high degree of precision. Guillemin and
Zener, ' and later Zener' have succeeded in finding eigenfunctions for the
atoms in the second row of the periodic table (starting with lithium), which
are simple in form and give a quite accurate value for the ionization potential.
This indicates that the valence electron is represented quite well, and that
one should expect these eigenfunctions to be suitable for use in calculating
the molecular constants.

In the present paper, we have made use of such functions. The first part
is devoted to a revision of a calculation made by Delbriick, 4 who used atomic
functions which gave a value of 3.9 volts for the ionization potential of
lithium, as against the experimental value of 5.37 volts. In the second part,
we investigate the interaction of two beryllium atoms, each in the normal
state at infinite separation.

I. MOLECULAR CONSTANTS OF LI2

Since Delbruck4 has shown that the E-shells make only a very small
contribution, we shall neglect them entirely. Accordingly, the lithium prob-
lem reduces to one which is analogous to that treated by Heitler and London, '
the only difference being in the form of the atomic wave functions. We shall
calculate (a) strictly along the lines of Heitler and London, using "nonpoiar"
wave functions, i.e. , those which allow only one electron on each atom at
infinite separation, and (b) according to the modification made by Slater, '
which admits wave functions with two electrons on one atom and none on
the other (corresponding to Li and Li+, respectively).

' W. Heitler u. F. London, Zeits. f. Physik 44, 455 (1927).
' V. Guillemin u. C. Zener, Zeits. f. Physik 61, 199 (1930).
' C. Zener, Phys. Rev. 36, 51 (1930).
' M. Delbriick, Ann. d. Physik 5, 36 (1930).
' J. C. Slater, Phys. Rev. 35, 509 (1930).

1615



1616 J. H. I3ARTL,ETT, JR. AND W. H. FURRV

Unless otherwise stated, the notation used throughout this paper will be
the same as that used by one of the writers previously. ' For s electrons, a (1)
will denote the wave function describing electron 1 on nucleus a.

We shall use the nodeless functions, namely

a(1) = ca&e "'" etc.

(a) Calculation with nonpolar wave functions only

The zeroth approximation functions are:

The energies are:

J+ E
lg ($N) ~ g 1+S

J —E
3g (gX) ~ g

1 —5

where

K= B'a 1 b 1 a2b2dv&dv2

$"' = )f a(1)b(1)dvg

2 2 2

r a2 bg

These energies are relative to the energy at infinite separation.
Writing

j = —u 1 ' b 2 'dv
r

k= —aibia2b2dv
r

2I =
~

—[a(1)]'dvg
bg

2I' =
)

—a(1)b(1)dna'
bg

' J.H. Bartlett, Jf., Phys. Rev. 37, 507 (1931).
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we have
2J = ——2I + g
R

2
E = —5 —25'~2I' + k .

R

For the normalization, 2 re'/«' = 1/48. From the previous paper, '

(4/9) (p& + pp) + pp/9.

Making the transformation

a = (R/2) (X + p), b = (2&./2) (X —p),

and using Neu mann 's expansion,

2
k = —C g1a2b1b2e ("j ) (~1+~1+'2+~2)dsydV2

r

X1
ZD. p2 . Q. I'.(~&)&.(~p) e'(2&.'/2) "(&&'—&M&') '(l&p' —~ ') '

R .=- o

e ("1+"& dX1d&2' 1dP2-

The possible values of 7 are 0, 2, and 4.

X2
( n/2) P(e/288) JI Qp (X,'—2X&'/3+p)(Xp' —2X,'/3+ 'p) e &' +" ' "dh& dip

(&s/2)'(&&/144) f so(44) —(p) [sp(24) +»(42) ] + (p) [so(04) +»(40) ]
(2/15) [sp(02) + sp(20) ] + (4/9)sp(22) + (1/25)sp(00) I

where'

00 Xq

s, (nz, n) = Q, (X&)e ~~&'
&q "di&q e "~&'l&p "dl'p

1 I

Now let

a = ~R.

00 00

&&,(m, n) =
~ dX& dl&pQ, I, X&"Xp"e &"~+"~'"
1 1 ~1 ~2

fn particular,

ep(ep, pp) = (3/2) [sp(ss, '&p + 2) + sp(pp, m + 2) ]
(-,') [s,(m, '&p) + sp(e, m) ] .

Then

(&p/2) (&&/90) f (1/9)«p(22) —(2/21)«p(20) + (1/49)ep(00) ] .
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For 0. =5, one Ands k('& =0.1876f( and k(2) =0.0012&, so that the latter
contribution is almost negligible.

We shall omit the further details of the calculation, which is quite easy,
and give the results.

Txm, H I. Integrals end energies.

I/~
I'/ff.
j/a
k/a
'z/~
'z, '~

0.7916
.4468
.4324
.3367
.2856
.0858
.316

0.6642
.4022
.3835
.3177
.2379—.0251
.203

0.5316
.3564
.3289
.2969
.1888—.0614
.133

0.4061
.3138
, 2738
.2746
.1432

—.0641
.0854

0.2968
.2772
.2221
.2527
.1022—.0548
.0555

0, 2081
.2463
. 1761
.2316
.0714—.0400
.0332

0.1405
.2206
. 1.368
.2121
, 0477—.0267
.0194

0.0914
.1995
, 1045
.1948
.0302—.0173
.0116

Kith a value' of I(: = 1.26, the equilibrium distance is found to be 2.4A and the
heat of dissociation is 1.09 volts. This is to be compared with the experimental
values of 2.67A and 1.14 volts, respectively. 7 8 Delbriick obtained values of
4.6A and 1.4 volts, which indicates that the atomic wave functions did not
describe the behavior of the valence electron over a sufFicient range. This is
traceable to the fact that he used a wave function with a large radial node,
while we have used a nodeless function.

(b) Calculation with polar wave functions included

When we allow the possibility of two electrons being on one atom, then
we have four possible resulting states. The wave functions are

a-(l) + f-(l) as(l) + 4(l)
a-(2) + f-(2) e(2) + 4(2)
a-(l) + f-(&) as(&) —4(&)

a-(2) + f"(2) as(2) —f't(2)

a-(l) —f -(~) as(~) + fs(~)

a-(2) —&-(2) au(2) + 4(2)
a.(l) —f-(&) as(~) —fs(&)

a.(2) —b.(2) ap(2) —bp(2)

where n and P specify the two possible spin orientations.
The function P~ will give an approximation to the normal state, but the

state represented by lf 2 can exert a perturbing effect, so that the correct zeroth

approximation to the wave function of the normal state is a certain linear

combination of P~ and $2.
The secular equation is

IIu

II12 +22
= 0

7 A. Harvey and F.A. Jenkins, Phys. Rev. 35, 789 I;1930).
8 F.W. Loomis and R. E.Nusbaum, Phys. Rev. 37, 1712 (1931).
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JfP,*II',de Jf rgg*IIP2dv

P~ 'dv

+12
1/2

2' - $2 d'v

there being no off-diagonal term containing 8 as a factor, because the wave
function a+9 is orthogonal to c—b.

Let us now abbreviate as follows:

'b= a 1 02 2 rdv

+ + c(1)d(2)

j"= ai 'a2b2 2 rdv

2 2 2 2 2
H'c(1)d(2) = +

R ri2 ai ag bg

2I. =
Jf II'[a(1)]'[a(2)]'dv = ——2I + i

E.

a t a 2 e'a i & 2 d& = —S&~2 —S&~2J —J' y q"
E

2J + 2J + 4E+ SJ"
+11 2+0 +

(2 + 2gl/2)2

2J + 2J + 4E —SJ"
H22 = 2EO+—

(2 —25'")'
z

H12 =
2(1 —S)

j.t is to be noticed. that in addition to the "coulomb" and "exchange" in-
tegrals we have a new integral typified by J".This keeps appearing in the
subsequent calculations, and is in general of the same order of magnitude as
the other integrals.

a1 'a2 22 rdv=lim j a1 b2 2 re
E.—+0 3
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= («/288) {24I' —241' /2 —18I' /2 —6I',/2' —I',/2 }
= .36331(..

If I(: = 1.26, i = 6.2 volts.

This value of i is larger than the ionization potential of lithium, which would
indicate a negative electron affinity. No accurate calculations of the electron
affinity of lithium have been made.

Calculatioss ofj "
We may calculate j"in two different ways, and thus obtain a check. The

first way is direct, and the second requires the Neumann expansion. Here we

give only the first method.

2 raib1 a2 'dv

= (8s&cs/«4) J{abe "&'+"&'{ys(«a)/«a+ I'4(«a)} (2~/R)adabdb

Setting y = za, ,

p 8+0 o. —yl a+y
J b dbe "st = (2/e)' I's — —I'

]R—a] 2
'

2

a —y a+yj"= (I 28ss'c /n«s)
~

y'dye &ts{ps(y)/y + I' s(y)} I's —I' s
Jo 2, 2

= (128 scss/n«)sf ydy{y, (y) + yI'4(y)}e t' {as —asy+ asy'}
dp

P JI ydye- {y, (y) + yr, (y) }e.t' {bo+bsy+ bsy'}

ydye
—s{ys(y) + yr, (y) }e {atsPsasy P asy'}

0

where
as ——2+ n+ n'/4 as ——1+ n/2 as ——bs ——g

bs ——2 —n + n'/4 bs ——1 —n/2.

The calculation gives:

j"—I' = —(«/72n) {2e t (134.01 —56.531n + 13.3125n')

—32e ~"[(n/2) (As —2As + As) + (n/2)'(As —4A4 + 3As)

+ (n/2) s (A 4/2 —3A s + 9A s/2) + (n/2) 4(3A s + 3A s)

+ (n/2) '(3A s + 6A &) + (n/2) ' 6A s]~

+ 32e~" [(n/2)'(As —2As + A,) + (n/2&'(5As —8As + 3As)

+ (n/2)s(12. 5As —15As+ 4.5A, ) + (n/2)4(18As —15As+ 3As)

+ (n/2)'(15A, —6A,) + (n/2)'6As]s~}
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where the subscript o; after the bracket indicates that the A 's inside have n as
an argument.

TABLE II.

j /K
L/KJ"/K
J/K
E!K
(IJ» —2E,)/.
(II22 —2Ep) /K
III2/K
'Z/K

0,3155
.1364
.0787
~ 1098
.0439
.0908
.7888
~ 0639
.0850

0.2834
.0589—.0204
.0133—.0550—.0181
.6392
.0679—.0250

0.2482
.0505—.0489—.0159—.0782—.0531
~ 5028
.0708—.0620

0.2124 0.1762
.0690 .0946—.0490 —.0413—.0197 —.0160—.0704 —.0550—.0536 —.0412
.3972 .3229
.0747 .0786—.0657 —.0574

0.1426
.1207—.0318—.0110—.0373—.0217
.2745
.0832—.0435

0.1132
.1443—.0230—.0069—.0236—.0004
.2331
.0880—.0298

10

0.0876
.1643—.0167—.0042—.0147

+.0188
.2029
.0928—.0194

The 'Z state referred to in Table II is the nonpolar one. It is seen that the
two methods (a) and (b) of calculating the molecular constants lead to prac-
tically the same results. In what follows, we shall calculate by method (a).

II. INTERAcTIQN QF Two NoRMAL BERYLLIUM ATQMs

There is but one possible state for the molecule when the two atoms are
each in a 'S state, and that is the 'Z state. We assume the wave function to be

Q( —)'nPa (1)ap(2)b (3)bp(4)

where P refers to a permutation of 1, 2, 3, 4 and 0„ is the order of P. The
energy is

Jf Q*Hrf dv

Jt
P*Pdv

where

Then

P(—) &'P'a~*(1)ap*(2)b„*(3)bp*(4) H Q( —)'&"P"a~(1)ap(2)b~(3)bp(4) dv

E=
Q(—)'&'P'a, "(1)ap*(2)b '(3)bp*(4) ~ Q( —)'&"P"a (1)ap(2)b (3)bp(4) dv
P' P"

Summing over P", and setting P=P'P" ':

Q(—)'~Pa *(1)ap*(2)b *(3)bp*(4) H [a (1)ap(2)b (3)bp(4)]dv
jV—

Jf Q(—) ~Pa *(1)ap*(2)b *(3)bp*(4) [a.(1)ap(2)b (3)bp(4)]dv
P
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Splitting o8 the unperturbed energy,

Q(—)'~Pa *(1)ap*(2)b *(3)bp*(4) H'[a (1)ap(2)b (3)bp(4) ]dv

where

J Q(—)'~Pa *(1)ap*(2)b *(3)bp*(4) [a (1)ap(2)b, (3)bp(4)]dv
P

JI' = 8 4 4 4 4 2 2 2 2——+ —+ —+ —+-
bi b2 . a3 a4 rg3 ri4 r23 r24

IF(13) + EF(14) + H'(23) + IX'(24)

2 2 2 2
EP(ij) = +

R b; a; r;,;

The condition of spin orthogonality gives nonvanishing contributions
from P=1, (13), (24), (13)(24) only. The contributions to numerator and
denominator of the expression for E—Ep are:

Then

P

(13) = (24)
(13)(24)

Numerator
4J

—E—2$'i2J" —SI
4$E

Denominator

—S
$2

4(J + SK) —2 (E + SJ) —4S'"J"
Pp

(1 —S)'

0.840 0.584 0.392 0.251 0.162 0;099

9 10

0.058 0.028

The 'Z state is seen to be a repulsive one.

DISCUSSION

The calculations for lithium show that good results may be obtained with

simple wave functions. The success here justifies, we believe, the use of sim-

ilar functions in the more complicated problems.
One would expect that two normal beryllium atoms would behave toward

each other as do two normal helium atoms. This expectation is given support

by our calculations, which show that the resulting molecular state is repul-
sive.

However, it is not at all obvious that two beryllium atoms, one of which

is in the normal state, and the other of which is in the first excited state,
should repel each other. The character of the states resulting from this con-

figuration will be determined in the concluding installment of this paper,
which is to follow shortly.


