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ABSTRACT

The present paper shows the exact relations between dynamical quantities of classi-
cal theory and their wave mechani:al analogues. A new quantity /occam momentums is
defined and discussed and the Bohr quantum condition is revived in a form com-
patible with modern theory.

THE one-dimensional Schrodinger equation for a particle moving in
~ a force-free field is

where p and p' are quantities proportional to the momentum and energy of
the particle respectively. ' This equation possesses the particular solutions

P+ —g+e+&8&

p
—=de—'&

representing the streaming of particles in the positive and negative directions
of x. The constants A+ and 2 are arbitrary and are used to normalize the
intensity of the stream of particles to any desired quantity. The correspond-
ing wave equation for a general scalar potential field V(x) is

(3)

Ke may assume particular solutions of this equation of the form'

A+ (x)c+ifPdx (4)

and adopt the terminology /ocul amplitude for A ~(x) and local nzomentnm for
P(x). Both A +(x) and P(x) may be taken as real quantities (since any complex
number may be written in the form ae" with o and 8 real). Substitution of

(4) into (3) leads, upon separately equating real and imaginary terms to zero,
to the following differential equations for Ad-'(x) and P(x).

Ad-" —Ad-P'+ rP. —V(x)]Ad: = 0

2A+'P+ P'A+ = 0.
(Sa)

(5b)
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' Throughout this note units are chosen in such a manner that all equations may be

written in their simplest form. It is extremely easy to rewrite all results in the usual system
of units.

~ This substitution is well known in mathematics but its use in wave mechanics has been

extremely limited.
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The second of these gives an immediate relation between A~ and I'; namely

Eq. (Sa) may then be written in terms of P(x) alone

p2 + p' pl/2 p—1/2

dx2

or if we define the quantity local kinetic energy by the relation T*=P'we have

d2
g+ + P' Z'+I/4 T+—i. /4 —g

dx2

This equation is exact and is the wave mechanical analogue of the classical
conservation of energy law.

Now we have as particular solutions of the wave equation corresponding
to pure travelling waves in the case of free motion'

P+ g+jD—1./2~sf Pde

p
—= a—p-'/'e —'/~"~

For the corresponding probability densities we have

(9)

The most general real solution of (3) representing the wave solution for a
discrete state of the system may be written

f = uP—'" cos Pdx + phase factor
g0

(10)

If the range of x is, for example, from —ao to ao we may show that in order
that P satisfy the usual boundary conditions we must have

where n is a positive integer. Since li„ is the n-th characteristic solution of a
Sturm-Liouville differential equation it must possess n-1 roots in the 6nite
region of x. This is just the number of roots possessed by cos fPdx. It is easy
to show that P(x) does not vanish for finite x by a simple study of Eq. (7).

2. The comparison of the preceding equations with classical equations is
extremely interesting. Eq. (7a) is to be compared with the classical equation

in which T is the ordinary kinetic energy. The probability densities (9) be-
come identical with the classical expressions when the loca/ momentum is re-

' With A and I' depending on x either of the Eqs. (8) is capable of describing combinations
Of prOgreSSIVe and Standing WaVeS. AS an eXample Write ae'& +be '&x in the fOrm A(X)e'J ~",
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placed by the ordinary momentum. fPdx is the wave mechanical action in-
tegral and Eq. (11) is the analogue of the most fruitful equation of modern
physics —the Bohr-Sommerfeld quantum condition

pdx = eh.

The local momentum P becomes in the limit (in the sense of the correspond-
ence principle) equal to the classical momentum.

3. As an example the local momentum for the two lowest states of the har-
monic oscillator is plotted (Fig. 1) as a function of x along with curves of the
classical momentum p(x). The scale of x has been so chosen that the p(x)
curves which are usually pictured as ellipses are here shown as circles. For all

Fig. 1. Comparison of local and classical momentum for the first two
states of the harmonic oscillator.

states the area corresponding to the shaded area for the lowest state is ir/2.
This alone will show that P(x) and p(x) must approach one another for high
quantum states.

4. The present note is not intended to be complete and further investiga-
tions are in progress 1st on the fundamental nature of I' and 2nd the applica-
tion of the results of this paper to various quantum theory problems. In con-
clusion the writer wishes to express his appreciation to Professor G. E. Uhl-
enbeck who aroused his interest in the problem of the relation between quan-
tum and classical physics and to Professors J. C. Slater, P. M. Morse and N.
H. Frank, of the Massachusetts Institute of Technology, and to M. H. John-
son, Jr. , of Harvard University, for their comments and criticism of the manu-

script of this note.

Author's Note Added in Proof: Attention should be called to two articles
which are related to this note namely H. A. Wilson, Phys. Rev. 35, p. 948
and W. E. Milne, Phys. Rev. 35, p. 863. Neither of these writers, it is ap-
parent, realized the rich physical content of their equations.


