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ABSTRACT

The method introduced by Ornstein is applied to calculate the Brownian-motion
mean-square deviation for strings and for elastic rods, the surrounding medium being
a gas. For the string, a varying tension and elastic binding at the ends are supposed,
and a formula is obtained for the mean-square deviation of any point at time t, hav-

ing started with a given deviation of that point; the result contains infinite series.
This result is specialized to the string with fixed endsand constant tension. For the mid-

point, and for a limited time interval, the series are summed; for t—+ ~, the result is

given for all points, agreeing with that given by Ornstein for the mid-point. Elastic rods
are treated similarly, and similar results are obtained. The effect of gravity, when

the rod is vertical, is introduced by a simple and consequent preturbation method,
and a formula is obtained for the mean-square deviation of the lower end; this agrees
closely with Houdijk's experimental results. The time dependence given by the com-

plete formula cannot yet be tested, for Houdijk gives only long-time mean values in

his publication.

INTRoDUcTIoN

1. Most of the theoretical work on Brownian motion has been concerned
with only one degree of freedom, and it is the purpose of this paper to apply
the method first introduced by Ornstein' to cases in which there are more (in
fact, an infinite number) of degrees of freedom. The systems to be treated
are: I. the stretched string, and II. the elastic rod. The first has been treated
by Ornstein' and the second by Houdijk, ' but in each case results were ob-
tained only for t~~ (that is, only "equipartition" values were found); our
extensions will consist principally in giving the dependence of the mean-
square deviation on the initial deviation and on the time, but we also treat
a more general string before specializing to a particular case, and give a better
treatment of the effect of gravity in the case of the rod.

In general our treatment will follow the lines of that used by Uhlenbeck
and Ornstein in their second (exact) calculation for the mean-square devia-
tion of a harmonically-bound particle in Brownian motion, where they use
the method of Ornstein. In this method one starts from the equation of mo-
tion and certain assumptions about the inAuence of the surrounding medium
on the particle, and calculates directly the mean values sought, making use
of certain properties of a canonical ensemble (a large number of similar, but

' L. S. Ornstein, K. Akad. Amsterdam Proc. 21, 96 (1919), (in English).
' L. S. Ornstein, Zeits. f. Physik 41, 848 (1927).

A. Houdijk, Archives Neerlandaises des Sciences Exactes et Naturelles, Series III A,
11) 212 (1928).

4 G. E. Uhlenbeck and L. S. Ornstein, Phys, Rev. 36) 823 (1930),
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independent, particles) in evaluating constants which appear in the calcula-
tion. It will be of interest to record their result here, for it is of the same type
as those which we shall obtain; with a slight change of notation, it is:

kT kT P
s = —+ sp 8 ~ cos Q)yt + sin ~~t

IGD SSM 2'�]

where s is the displacement from equilibrium position, t the time, m the mass,
and co the (undamped) natural frequency in 2s sec. , P =f/m, where f is the
damping force per unit, velocity, and coP = co' —P'(4. This result, like all those
obtained by this method, is not subject to the restriction (which must be im-
posed on results obtained by certain other methods) that t must be large
compared to P ', hence the term "exact."

Now it is well known that the vibrating string may be treated by means
of its normal vibrations, and that each normal vibration obeys the equation
of the harmonic oscillator; also, we shall show the same to be true of the rod.
Thus we may, so to say, consider in each case the system to be an assembly of
damped harmonic oscillators, each having for its frequency that of the cor-
responding normal vibration. The deviation of any point will then be deter-
mined by the displacements of all the component "oscillators, " and similarly
for the squared displacement, velocity, etc. Thus one can foresee that the
treatment will not be essentially different from that for the harmonic oscilla-
tor itself, the additional elements necessary being: (1) the deduction from our
assumptions (about the inHuence of the surrounding medium on the system)
of results which will take the places of analogous assumptions for the individ-
ual "oscillators, " (2) the treatment of the sums which result, and (3) a cer-
tain averaging process which is more complicated than that necessary for a
single oscillator, and which will arise when we wish to make the known initial
conditions apply to only one point of the string or rod.

I. THE BRowNIAN MQTIQN QF A HQMQGENEoUs STRING

2. We consider the Brownian motion of a homogeneous string (i.e. , one
with constant linear density p) of length L, surrounded by a gas. The string
is bound elastically at its ends and is under a tension r(x) which may vary
with the distance x along it. The equation of motion of the string is:

8's Bs 8 Bs
p +f = —r +—Ji(x,t)—

Bt2 Bt Bx Bx

where f is the friction coeKcient and F(x,t) is the Huctuating force. This may
be written:

c)~s gs Qs 8's
+ p—= p'—+ p + A(x, t)

Bt~ 8t Bx Bx2
(2)
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where P =f/p, P =r/p, 2 = F/p. The conditions to be satisfied at the ends are:

Bs
hos(0, S) — — = 0

8$

where ho and hl, are the ratios of elastic constant of binding to tension at the
two ends.

The assumptions which we make for this case are the natural generaliza-
tions of Ornstein's assumptions for the simpler cases, namely that the inhu-
ence of the surrounding gas may be split up into two parts; (1) a systematic
frictional force, f(8s/B—s) per unit length, where f is a constant depending on
the nature of the gas and its pressure, and (2) a fluctuating force, F(x,S) per
unit length, about which we make further assumptions in terms of 2 (x,l):

(4)

A(xi, Si)A(xo, so) = y(xi —xo, Si —So)

where p(x, s) is even in both x and s and has a sharp maximum at (0,0). The
mean is taken over a subensemble, each member of which started at 5=0
with a given shape and distribution of velocity along it.

lf we consider the homogeneous equation obtained by omitting the last
term from (2), the usual treatment by separation of variables gives rise to
two differential equations, of which the "space" one is a slightly-specialized
case of the Sturm-Liouville equation. This equation, together with the bound-
ary conditions, defines in the usual way the orthogonal eigenfunctions X„,
which we shall assume normalized, and which satisfy the following differen-
tial equation and boundary condltloIis:

pX„"+ p'X„' + X„X„=0

hoX (0) —X,'(0) = 0
—hzX„(L) —X '(I) = 0

where X is the corresponding eigenvalue.
We now return to Eq. (2), and expand s(x,S) and A (x,S) each in a series of

elgenfunctlons with coef6cients %'hlch depend on the time:

Substituting these expansions into (2), equating to zero each term of the
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sum which results if we transfer all terms to the left-hand member, and using
(6), we obtain as the equation for 5„(t):

S„"+ PS„' + 'n„S„= A„(i) .

We can write down at once the general solution of this, which is:

PS„(0) + 2S„'(0)
sin cu„t + 5„(0) cos co,t e v'"

207ts

t

+ —
~

A„(v)e v&' "'"sin cu„(t —v)dv
~n ~0

where
(12)

and we restrict ourselves to the case in which all the eigenvibrations are period-
ic by assuming

X„& ~P'.

5„(0) and 5„'(0) are clearly the n-th coefficients of the expansions of the ini-
tial displacement and velocity, respectively.

3. As a preliminary step, which will furnish us with results to be needed
later, we shall calculate the mean-square deviation of any point for simple
initial conditions, supposing that at t =0 the string is at rest in its equilibrium
position. This means that 5„(0)=S„'(0)= 0, and denoting by S" the mean-

square deviation for these initial conditions, we obtain

where

Qs' = g I„'X„'(x)
~n 2

t

I„= A„(v)e v&' "&"—sin —
&v„(&! —v)dv

because the double sum which results directly from (8) is reduced to a single
sum by the fact (proved in Note 1, on the basis of assumption (5)) that I„I
=0 if m@n; this has the meaning that the different eigenvibrations are un-

correlated, in so far as they arise solely from the Huctuating force.
For I„' we get an integral similar to those occurring in the paper of Uh-

lenbeck and Ornstein;4 using the results of Note 1, we find

where

thus

I 2(&!) = —(1 —e v') — I',P + e v'(&0„sin 2(o„t —',P cos 2'„t) I (1S)
2P 4) „

+oo +&&0

P„(v)dv, a„=
J P„(v) cos cu„vdv,

P„(v —&v) = A„(v)A„(zv);

n„y„PI 2(Qo) = ——
2P 8)„

(16)
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To determine the constants O.„and y„, we make use of the same devices
as were used by Uhlenbeck and Ornstein for the harmonic oscillator; that is,
we equate the mean potential energy of each eigenvibration (the mean being
taken over a canonical ensemble) to tt T/2, and the correlation between devia-
tion and velocity to zero. In this way we obtain the result:

(17)

The calculations are given in Note 2.
One might fear that the assigning of the potential (and kinetic) energy

kT/2 to each eigenvibration would give rise to convergence difficulties, since
it makes the total energy of the system infinite, but this is not the case. We
inquire only about the mean-square deviation, and the series which result
are all amply convergent. However, there is a further point which may seem
strange, namely that we found o. and y„ to be equal and independent of n.
Their equality (which follows from only our initial assumptions and the lack
of correlation between deviation and velocity, the use of the equipartition
energy not being involved) would indicate that the correlation function,
@(x,t), is infinitely sharp in both x and t, and this one cannot believe. However
this difhculty becomes serious only at high frequencies, and seems to indicate
that our assumptions must not be used where one is concerned with times
that are too small, say of the order of magnitude of the time between succes-
sive molecular impacts on any small length considered. However, this limita-
tion is much less stringent than that which had, to be imposed on certain
earlier work, where the results were not valid for times of the order of magni-
tude of P ' or less, and on account of the convergence properties of our
solutions, it brings in no difficulties here. The independence of n is to be un-
derstood in a similar way.

By substitution of (19), (17) becomes:

cv„'kT kT 4X„+ P'
jT 2— e

—P~
" + u~ sin 2un~ ~P cos 2a)n~ 18

p) „2p)„2P
and we obtain from (15):——0
s'(x, t)

ttT " X„'(x) 1—
p g X„

p 4X„ + p'

240tt . 2p

+ cv„sin 2'„t+ 2P cos 2~„t . 19

Taking the limit of this expression for t—&~, we obtain for a canonical en-
semble:

where:

kT
s' = F(x)—

p
(20)

(21)

' Quite analogous questions must be raised in the case of the harmonic oscillator.
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4. We are now ready to calculate a quantity which is more easily meas-
ured than that given by (21),namely the mean-square deviation of a given
point of the string, after having started at t =0 with a given initial deflection
of that point. Let this given value be C, so that:

s(x, 0) =C

for the particular value of x under consideration; this value will be taken to be
the same throughout this discussion, so that in this section x is a constant.
this means that:

tX„(.)S„(0) = C
1

(22)

and it is the value of this linear combination of the S„(0)which is to be given;
otherwise we are to average over a canonical ensemble. That is to say, we
consider a canonical ensemble of strings and, fixing on some particular num-
bers for x and C, pick out of it at t=0 a subensemble, all members of which
have the deflections of the x-points equal to C. We then follow these strings
in their motions, and it is the squared deflections of their x-points, averaged
over this subensemble, which we wish to calculate.

To this end one may first calculate s'""', which is the mean-square devia-
tion of a subensemble, each member of which has initially the same given
shape and velocity distribution along it. This means that for each member,
S„(0) and S„'(0) are the same; the difference in behavior of the different
members arises only out of the fact that the Huctuating force, F(x, t) varies
from member to member. Next one calculates s2'o, which is the mean-square
deviation of a subensemble, each member of which has initially the same
shape, and hence the same set of S„(0),no attention being paid to velocities.
This is to be obtained by averaging z~'o"o over the S„(0), using the facts
that S„'(0)=0 (which follows from the lack of correlation between displace-
ment and velocity in a canonical-ensemble) and that S„"(0)has the value
corresponding to equipartition of kinetic energy. The final result sought is
to be obtained by averaging s~'0 over the S„(0)with the restriction (22).

We find:

(23)

where

(24)

Now

s exp —V kT dSq 0 dS2 0

s2

jl exp (—V/kT)dSi(0)dSg(0)
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where V is the potential energy given in Note 2, and the C written under the
integral-signs (an infinite number of them are implied) means that the in-
tegrations are to be performed with the condition (22). Using (23) and inter-
changing summations and integrations we obtain a result which contains the
quotient of two integrals. This quotient is evaluated in Note 3, and using
this, we obtain as the final result:

=—c kT kT i BG Ps' = F(x) + C2 — F(x) e /'2 + 6
p p F(x) (7t 2F(x)

where
X ~ Sill COnt

G(x/)= g-
n=i ~~a

(26)

This is in complete correspondence with Eq. (1) for the harmonic oscillator,
in which (sin (d(/) /a» plays the same part as G(x, t) /F(x), and 1/(()2 corresponds
to F(x). It is interesting to observe (as can be shown to follow at once from
the form of(25)) that this mean-squaredeviation never crosses the equiparti-
tion value, and further, that the curves corresponding to a given value of P,
but to different values of C, differ only in scale, when referred to the equipar-
tition line. These statements are true also for the harmonic oscillator.

S. As an example we consider the string with fixed ends and constant
tension. For this case, we find:

2I. " sin' Nxx/L L x x'
F(x) =

(22x2 z/2 (22 L I 2

where
1/2

a = — = wave velocity.
m

This gives us

(27)

The other result to be specialized is (25). In this there appears, in addi-
tion to F(x), the function G(x, t) and its time derivative. The corresponding
series contain both x and t as variables, and in this general form we have not
been able to sum them. However, if we restrict our attention to the mid-
point of the string, we can further simplify matters, for we shall show in Note
4 that for the interval 0 &)l &L//a, we may write:

2L sin (e'(/~2r'/L' — /(34) '/'t
G(L/2, ~) =

(22x2 „222(r/2(22x2/L2 p2/ )41/2

L 2at
l 2 (ill/2) — 2,(()2/2) j2a L

dG(L/2, t) L 2at
c h(ill/2) — 1,(()c/2) jdt 4a2 L

' F« the mid-point this gives the value kTL/4r, which has been given by Ornstein,
reference 2.
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where
I„(s) = i "J„(is)

and J„(x)is the Bessel function of order n. Using these expressions and reduc-
ing, (25) becomes:

0 g i & I/a.

In Fig. 1 we have plotted some. curves showing how gF depends on the
time. For these we have taken a =I.= 1, P = 1,2,3,4, and C' = 0 and = 3k T/4r.
For 0 ~ 3 g 1 (28) was used; for later times it was necessary to use the series
themselves, although it was found possible to replace P by zero in these

Near-square deflection vs. time

For midpoint of string—
j3 =L ——Jl ='h —

J3 "5.—P =4.

billion value

Fig. 1.

series without introducing too great an error. The apparent cusps in the
curves at t= 1 are curious; they are not in fact quite cusps if P is different
from zero, but the diAerence is not apparent to the eye with the scale used.

6. We shall 6rst treat, in the same manner as for the string, the problem
of the Brownian motion of an elastic rod which has one end clamped»d the
other free, and later consider the effect of gravity. We take these end con-
ditions because they are the ones most easily realized in experiments; the
problem could as readily be carried through for any other combination of
the usual conditions.

The equation of motion of an elastic rod under no forces is given by Ray-
leigh' as:

~ Lord Rayleigh, Theory of Sound (London. Macmillan, 1894},vol. 1, p. 258.
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8'5 r'E 84s r' 84s
+ —=0

Bt' 4d Bx4 4 Bx'Bt'

where E=Young's modulus, r =radius of cross-section (assumed circular
and constant), d =volume-density; other symbols are as for the string. The
third term of the first member arises out of the kinetic energy of rotation of
the cross-sectional laminae; it is neglected by Rayleigh in his further treat-
ment, and we shall do likewise. Adding the damping and accidental-force
terms, we obtain:

8's Bs r'E 84s—+P—+ = A(x, t).
Bt' Bt 4d 8 x4

Taking the origin at the clamped end, and the end conditions (also given

by Rayleigh) are:

s = 0)
Bs = 0 for x = 0
ag

ASS =0 for @=I,
8$

(30)

We make the same assumptions about A (x, t) as for the string.
If we consider the homogeneous equation obtained by replacing the

second member of (29) by zero and separate the variables as usual, the
resulting "space" equation is:

d'X 4'Ad
-X

dx4 r'8

where ) is the separation parameter. The situation is the same as that ob-
taining for the Sturm-Liouville equation for, as Rayleigh shows, this equa-
tion, together with the boundary conditions arising out of (30), gives rise
to a complete set of orthogonal eigenfunctions:

I„=b„ aI, (c osm„x/L —cosh m„x/L) + (sin m„x/L —sinh m„x/I) j (31)

where m„ is the nth positive root of the equation:

cos ns cosh m + i = 0

costi„. + coshm„

sin m„—sinh ns„

r'Em„'

(32)

(33)

(34)

and the coefficients b„are chosen for normalization. Rayleigh discusses the
roots of (32) and calculates the first few, giving formulas from which the
rest can be found. In addition he shows that:
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(36)

Ke shall have occasion to use these results.
Returning to Eq. (29), we proceed just as for the string and expand

s(x, t) and A(x, 1) each in a series of eigenfunctions with coeScients which
depend on the time; in the same way as before, we obtain Eq. (10) for S„(t),
so that Eqs. (8)—(12) of article 2 apply as well as to this case as to the
string.

V. The calculation of the mean-square deviation of any point, supposing
that at t =0 the rod is at rest in its equilibrium position, follows here exactly
as for the string; we may take all the equations of that article to apply to
the present case. To obtain Eq. (17), however, we must use for the potential
energy:

7f''f48 ~ dsV=
8 o E.'

where R is the radius of curvature of the rod at the point. In view of the
approximate straightness we may replace this by:

'z
I' (8' )'

Using this, together with the differential equation and boundary conditions
for the eigenfunctions, we again arrive at (8) of Note 2. The corresponding
expression for the potential energy of the mth eigenvibration becomes, on

using (36):
mr'E

es„45„'.
814

(37)

The further calculations are identical, and we again arrive at (17) where

now p = r'sd Hence . results (18), (19) and (20) are valid for this case also;
substituting for X„by (34) in (20) we obtain for the canonical-ensemble mean-

square deviation of any point g:

and for the free end, using (36) and (35) we obtain the result already given

by Houdl]k
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The calculations of article 4 for the string, in which we found an expression
(given by Eq. (25)) for the mean-square deviation of a given point x, after
having started at t =o with a given initial deviation C of that point, apply
just as well to the rod. The general result becomes especially simple for the
free end because the series converge quite strongly on account of the rapid
increase of m„. Taking only the first terms, and using 1Z for m&4 instead of
IZ.4 (since this makes the value at t = e strictly correct), we obtain:

e 4L3k T 4L'kT P 2

s'(L, t) =— + C' — e e' cos a&~t + sin or~t
3mr4E 3mr4E 2M'

where:

(40)

12 —~1 4 p2
3r2E

1P2
dL'

8. Houdijk' has observed the Brownian motion of the lower ends of
thin filaments which were clamped vertically at their upper ends and were
otherwise free, the surrounding medium being air. It is necessary in this
case to take into account the effect of gravity, and we shall now modify
the foregoing treatment in this regard. We shall assume that a rod under
gravity executes the same eigenvibrations as without it and that their ampli-
tudes will bear approximately the same ratios to each other, the eEect of
gravity being to increase the potential energy associated with each. We shall
restrict our attention to the free (lower) end, and we may with good ap-
proximation assume that the form of the rod is given by the first eigen-
function.

To obtain the contribution, AV&, of gravitation to the potential energy,
we treat the rod as a string under the tension pg(L —x), where we again use
p for the linear density; thus we have:

pg
L 8$

EVE ——— (L —x) —dx;
2 0 Bx

this is completely equivalent to multiplying the total mass by the distance
through which its center of gravity is raised in bending it to a given shape.
In accordance with the approximation mentioned above, we write:

s = S,(t)X,(x)

Substituting in (41), using the expression (31) for X,(x), and using the fact
that to our present approximation, s'(L, t) =4/L S& (t) we obtain:

0.98pg
AVg —— s'(L, t)

8

To the same approximation,

mr4E
Vg —— mg4s'(L, t)

32L3
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so that
~r'Eeil4+ 3 96PgL'

Vi + AVi —— — —s'(L, 1)
32L'

kT

2

Subsituting err'd for P and 1Z for ml4, we obtain:

4L'
s'(L) = kT—

37rr4E + 0.98vrr2dgL3

This formula is practically identical with the one given by Houdijk, the
only diA'erence being that he has the number 1 where we have 0.98, and this
difference is much too small to be significant in the comparison with experi-
mental results. We have given the above derivation because we believe it
to be more consequent then Houdijk's. His observations agree very well
with the values predicted by this formula. The closeness of agreement is
indicated by the fact that he uses it to determine Avogadro's number, N,
(substituting R/X for k) from his observations, finding as the average of ten
determinations the value 6.36X10", which differs from the accepted value
of 6.06&10"by only 5 percent.

Concerning the dependence of the mean-square deviation on the initial
conditions and the time, to adapt formula (40) to this case we need only
replace the equipartition value given there by the second member of (42).
This formula cannot yet be tested, for Houdijk gives only limiting values
in his publication.

NOTEs

Note 1. We are to investigate the quantity I„I,„;it is clear that if we write it as a double
integral, it will contain under the integral signs the quantity A„(v)A (m), and by using (10)
we obtain for this.

I L

A„(v)Am(m) = A(x, v)A(y, m)X (x)X„,(y)dxdy.
0 0

Now let x —y=u and y=z; using (5),
L

A„(v)A„,(nr) = dz @(u, v —w)X„(u + z)X,(z)dn.
0 00

But p(N, v —m) differs from zero only for I very little different from zero, hence we replace
X,(n+z) by X„(z) in the integrand, and by using the orthogonality property we obtain.

where

So that

A (v)A (v) = 8„, y„(v —x)

P„(v —~) = @(I, v —~)dn

I Im = 0 for s& ~ ns.

This procedure is of course not rigorous unless @(I, v —m) is infinitely "sharp" in e, which we
have not assumed.

For the string with fixed ends and constant tension, however, the eigenfunctions are
sines, and in this case we may improve the argument. We have.

2 + sarN sm z 87rQ 87rs . ssvrz
A~(v)Am{m) = — dz &(u, v —m) sin —cos —+ cos—sin —sin —du.

L 0 „L L L I L
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When integrated, the first term of this gives zero because in the integration over u the inte-

grand is an odd function, and the second term gives zero in the integration over s if elm be-

cause of the orthogonality of the sines. If n =m, however, we obtain'.

87ru
A (v)A {zv) = ~t'(u, v —w) cos —du P„(v —z).

L

It is clear from this that for this case, P should be expected to depend on n, in that it will be
diminished for very high values of n if p is not infinitely sharp in its dependence on u, and there-
fore we have allowed for this also in the general case.

Note 2. We are to determine the constants o.„and p . The potential energy of the system,
which includes the potential energy of the binding at the ends is:

8$
P(~') d~ + hoP(0)s (0 ~) + h~P(~)s (~& ~)

p i9$

When we substitute (8) into this, interchange summations and integration, and integrate by
parts (using (7) and the orthogonality property), we find:

or

V=-',p+XS„'
u 1

V = —S'p»i

2

(A)

where V„ is the potential energy of the n-th eigenvibration. In a similar manner, although much
more simply, we find for the kinetic energy:

IC = -'p+S"
&n = 2-pSn".

For t—+ ~, the subensemble which started at t=0 from rest and equilibrium position will

become a canonical ensemble; thus. '

pX„p p'A„k T
»m V~ = —S.'(~) = I.'(~) = —.

Substituting (16) into this, we obtain the relation. '

8(u„'Pk T
4o. ) —y P' =—

p

If we similarly equate the kinetic energy of the n-th eigenvibration to kT/2 we obtain, not
another relation, but the same one again, as might have been expected from the results for the
harmonic oscillator. To confirm this statement, one must calculate S„'2(~) in the same way
that we have calculated S„'(~).

To get another relation we make use of the fact that in a canonical ensemble of strings
there will be no correlation between the displacement and the velocity for any point. Thus,
writing u =ds/dt:

su = Q Q —I„I„,X X„
n=l m=1 ~n~m

where J is an integral similar to I . Now it is clear that I J will contain under the integral
signs the quantity A„(v)A,„(), and we have shown that this vanishes unless m=n. Therefore,
the double sum reduces to a single sum. Our requirement that Lim& „sm'=0 gives the result
a.„=y~ and putting this into (B),

2PkT
0'u=&n =

Note 3. The ratio of integrals to be calculated is.
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f S (0)S (0}exp —p gX;SP(0)/2f 2'IdS~(0)dSq(0) ~ ~ ~

C 1

cd

exp —p PX;S (0)/2AT dS, (0)dS,(0} .
1

where the integration are to be carried out with the condition:

PX„S„(0)= C.

I.et us first take the integrals to be only N-tuple, and the summations correspondingly to go
only from 1 to N, afterward taking the limit for N~ ~. Now introduce the new variables:

y„ = s.(o)

The Jacobian of the transformation of course does not matter, being the same in the numerator
and denominator; this gives us.

and the condition now becomes:

where

%tyn = CN
n=l

8 = X

We now rewrite each integral so that the integrations over y and y are the last ones; these
integrations are carried from —~ to + ~, and the condition is satisfied by keeping constant

N

CII
Ojyj = Cnm = ~& ~nyn &mym

j~l

in the integration over the remaining N —2 variables, where the double accent signifies that j
does not take on the values I and m.

The integration over this hyperplane, whose distance from the origin is C D 'I', where

D =P "o;, is carried out by rotating our coordinate system so that one of the axes coincides

with the normal; the condition is now satisfied by keeping this variable constant and integrat-

ing over the others from —00 to + ~. This transformation involves no calculation because the
variables appear in the integrand in an invariant form, and we obtain:

+ed +cd

2kT
y y exp( —y —y.' —C .2jD )dydy

p{A.„) ) ' j'
exp (—y ' —y~' —C„~'/D~~)dy~dy~

We now take the limit for N~~ by appropriately changing the definitions of C and D~ .
The remaining integrations are carried out in a straight-forward manner by transforming the
expression in the exponent onto its principle axes, etc. We obtain. '

In the above discussion we have assumed n /m; a similar calculation for I» shows that
the general result may be written:
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XX kT kT
C2 ——Z(~)

z~(&)~„~,„p px.

Let

Note 4. We have to consider'.

BG(L/2, t) 2I. 1
cos (zzzazzrz/I 2 Pz/4)z/zt

Bt a'm' ~0dq n'

1
Ii(t) = g —cos (tz„' —zzz')zt't.dd n2

where
navr

k = —m -'-Pst 2

thus,
BG 2I.

II(t)
pit a2~2

2L
G(I./2, t) = B(t)dt+ A.

We now make use of a method due to Versluys. ' He shows by making a Taylor expansion
that:

z~'P d cos k~t m't' d' cos k~t
cos (k ' —z'}'I't = cos k„t —— + + ~ ~ ~

1! d( ') k~' 2! d(t') ' k,„'

1+— - dtdt +— (dt)4+ ~ ~ ~ cos k„t

where:

= V cosk„t

C =—
2a

and the operation V through which cos k t is transformed into cos (k ' —7/f/')'/'t is independent
of k; it may be written as follows:

Thus we have:

1 nz at 1 nvrat
H(t) = P —V cos = V P —,cos

ssOdcl L,dg n' L

as it can be proved (according to Versluys) that here the operations V and Z can be inter-
changed. Now:

1 n7rat 7r'I

P—cos —= —(-,'—at/I, ) for 0 & t & L/a
n' L 4

and

We find:

a.'II(t) = — —,'V 1 ——y t
4 L,

(z-'t')&
V 1 = P —= cosh zzt = cosh szttt

(2P) l

(set) '&

V t = t g = tI, (at) = tI, (-', ftt)
I =o 2'"(P!)'

8 W. A. Versluys, Proc, Acad. Amst. 31, 670 (1928).
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Therefore

BG L ', 2at
cosh —',Pt ——-I0(-,'-Pt)

Bt 4a'

L . 2at
G = —sinh -', Pt ——I (-',Pt)

2a'P L

here we have used the fact that

and evaluated A so as to make G(L/2, 0) =0, which gives A =0.
For other intervals than the one used above, the series

1P—cos (neat/L)
S2

represents a "saw tooth" function having discontinuities in its first derivative at the points
nL/a, n =1, 3, 5 and the attempt to extend the calculation past the point t =L/a was not
successful.


