PHYSICAL REVIEW

THE ROTATIONAL ANALYSIS OF THE FIRST NEGATIVE GROUP OF OXYGEN (O_2^+) BANDS

By DANIEL S. STEVENS

RYERSON PHYSICAL LABORATORY, UNIVERSITY OF CHICAGO

(Received August 24, 1931)

Abstract

The ultraviolet O_2^+ bands have been produced by a hollow cathode discharge, or with greater intensity from a mixture of helium with a small amount of oxygen in a large discharge tube. Photographs were taken in the second order of a 21 foot Rowland grating (dispersion = 1.32A/mm). The following bands were used for a rotational analysis: 1-8; 0-8; 1-9; 0-9. As was expected, since NO and O_2^+ have the same number of electrons, these bands correspond to a ${}^{2}\Pi \rightarrow {}^{2}\Pi$ transition like the double headed β bands of NO. The lower ${}^{2}\Pi$ is case *a* as in NO. Unlike the case of NO, however, the upper ²II is case b. The lower ²II is regular, with a doublet separation A'' (corresponding to zero rotation) of 195 cm⁻¹. In the upper ²II the value of the spin-orbital coupling coefficient A' is +8.2. Each band consists of eight branches (four P and four R), the O branches apparently being too weak to appear on the plates. This is in agreement with theory. A-type doubling is negligible in the upper 2II but is present in the lower ²II state. Alternate levels in each successive A-type doublet are missing. This is as prediced by the quantum theory of homopolar molecules, since it is known that the nuclear spin of the oxygen atom is zero. The probable electronic configuration of the upper ²II state is given as $\cdots 2p\pi^3 3d\pi^2$, and that of the lower 2Π state as $\cdots 2p\pi^4 3d\pi$. The constants of the molecule in the two electronic states are given by: B' = 1.048 - 0.014 v'; $B'' = 1.610 - 0.009 \ v''; \ r_e' = 1.41 \times 10^{-8} \ \text{cm}; \ r_e'' = 1.14 \times 10^{-8} \ \text{cm}; \ A' = +8.2 \ \text{cm}^{-1};$ $A'' = +195 \text{ cm}^{-1}$.

INTRODUCTION

A SYSTEM of double headed bands lying in the region $\lambda\lambda4400-2000$ can be obtained¹ by passing a discharge through pure oxygen. These bands are called the first negative group of oxygen and are attributed to O_2^+ . From the type of transition and the molecular constants determined by the present rotational analysis there can be no doubt that O_2^+ is actually the emitter.

The vibrational analysis of these bands has been recently investigated by Ellsworth and Hopfield.² It seems probable that the v'' numbering as given by these investigators should be increased by two units. This was pointed out by Mulliken³ from the intensity distribution in the band system. Stueckelberg⁴ has shown that such a revised v'' numbering is the most probable from the Franck-Condon principle of transition probabilities. Ellsworth and Hopfield also found evidence on their plates of band progressions to lower final vibrational states than the level they called v'' = 0. For these reasons the bands which were used in the present rotational analysis have been called 1–8;

¹ J. Stark, Ann. d. Physik 43, 319 (1914); R. C. Johnson, Proc. Roy. Soc. A105, 683 (1924).

² V. Ellsworth and J. Hopfield, Phys. Rev. 29, 79 (1927).

³ R. S. Mulliken, Phys. Rev. 32, 213 (1928).

⁴ E. C. G. Stueckelberg, Phys. Rev. 34, 66 (1929).

0-8; 1-9; 0-9; although they were designated by Ellsworth and Hopfield as 1-6; 0-6; 1-7; 0-7.

Since NO and O_2^+ have the same number of electrons it would be expected that their band systems would be similar. The beta bands of NO and the first

Fig. 1. First few rotational terms for the initial state v'=0 and final state v''=9 of the first negative group of oxygen (O_2^+) bands. The possible transitions are grouped into branches. The Q branches (shown dashed) were not found in the bands. The other branches were all definitely located and established the case $b^2\Pi$ —case $a^2\Pi$ nature of transition. All the rotational levels are drawn to the same scale except that the Λ -type doubling is magnified 50X. Even then, it shows only in the lower ${}^{2}\Pi_{\frac{1}{2}}$ state. The levels shown dashed do not exist physically (cf. section on Λ -type doubling). The a and b classification on the levels shown in full is in all cases for the level actually present.

negative group of O_2^+ bands lie in the same spectral region and are similar in appearance, (both are double headed and degrade toward the red). The NO beta bands have been analyzed⁵ and found to be ${}^2\Pi \rightarrow {}^2\Pi$, both states being

⁵ F. A. Jenkins, H. A. Barton and R. S. Mulliken, Phys. Rev. 30, 150–174 (1927); 30, 175– 188 (1927). case *a*. For each of the two heads there is a strong *R* and a strong *P* branch, also a very weak *Q* branch. It was expected that the first negative group of O_2^+ bands would have a similar structure. But four strong branches were found in each head of each band. This situation can be accounted for⁶ if the transition is from a case *b* state to a case *a* state rather than between two case *a* states.

In transitions between two case *a* states, there are the selection rules $\Delta \Sigma = 0$ and $\Delta J = 0, \pm 1$. In case *b*, Σ is no longer a quantum number,⁷ and the selection rule $\Delta \Sigma = 0$ no longer holds in case *b* \rightarrow case *a* transitions but the selection rule $\Delta J = 0, \pm 1$ still holds. The various branches⁸ which can appear in a ²II case *b* \rightarrow ²II case *a* transition are shown by Fig. 1.

The Q branches, which are shown with broken lines in the figure, were too weak to be found in the bands. The other branches, however, have all been definitely located and establish the case $b \rightarrow$ case a type of transition. The "main" R and P branches (R_1 and P_1 ; R_2 and P_2) are of about equal intensity and have their maximum at about $J = 20\frac{1}{2}$. The "satellite" branches (${}^{S}R_{21}$ and ${}^{Q}P_{21}$; ${}^{Q}R_{12}$ and ${}^{O}P_{12}$) are somewhat weaker than the main branches.

EXPERIMENTAL PROCEDURE

The bands were produced in a hollow cathode discharge. The tube was similar to that described by Frerichs.⁹ It was, however, found advantageous to construct the cathode with a block of tin instead of the aluminum used by Frerichs. Cooling coils were embedded in the tin so that a large current (1.5 amp.) could be passed through the cathode for many hours (50–100). Some bands due to the cathode material appeared on the high frequency side of the 1–8 and 0–8 O_2^+ bands, but those foreign bands did not interfere with the analysis. The bands were photographed in the second order of a 21 foot Row-land grating giving a dispersion of 1.32 A/mm.

Recently Drs. S. M. Naudé and W. Weizel, while photographing the visible O_2^+ bands in this laboratory, have found a more intense source of O_2^+ spectra by using helium with a small amount of oxygen in a discharge tube similar to that described by Naudé and Christy.¹⁰ They have kindly furnished me with a plate taken in the same region as mine. By means of this plate it was possible to show that there were no errors due to the presence of the tin bands. Only a few faint lines of the tin bands had appeared inside the heads of the 1–8 and 0–8 bands of O_2^+ .

DATA AND RESULTS

Due to the presence of many branches the appearance of the bands was rather complex and many of the lines were blends. This was especially true

⁶ Cf. R. S. Mulliken, Reviews of Modern Physics 3, 128-146 (1931).

⁷ For a discussion of cases a and b cf. R. S. Mulliken, Reviews of Modern Physics 2, 105-108 (1930).

⁸ For the nomenclature of the branches, cf. R. S. Mulliken, Reviews of Modern Physics 3, 119 (1931).

⁹ R. Frerichs, Zeits. f. Physik 35, 683 (1926).

¹⁰ S. M. Naudé, and A. Christy, Phys. Rev. 37, 492 (1931).

TABLE I. Wave number and intensity data for the $0-8$; $1-8$; $0-9$; $1-9$ bands of the first negative group of oxygen (0_2^{-1})	r)
bands. The first six numbers represent the wave number of a given line, the next figure in bold-face type gives the number of time	es
the line was used in the scheme of analysis and the last figure is an estimate of the relative intensity of the line. The letter d mcar	rs
that the line appeared diffuse and A means atomic line.	

		1-8 Band, First	head	
$J'' + \frac{1}{2}$	SR_{21}	${}^{Q}P_{21}$	R_1	P_1
1	28620.644		28613.7 3 3d	
2	21.344		13.0 3 3 <i>d</i>	28605.9 2 1
3	21.244	28607.311	11.3 1 1	00.411
4	20.744	02.436	09.1 2 2	28594.1 1 1
5	19.222	28597.236	05.821	87.212
6	16.712d	89,9310	01.136	78.412d
ž	13.5 3 3d	82.625	28596.3 3 6	69.2 1 1
8	09.222	73.824	89.1 3 10	58.5 1 2
ğ	03.736	64.624	82.6 2 5	47.513
10	28597.036	53.925	73.624	34.313
11	89 9310	42.827	64.524	21.614
12	81 012	29.826	53.525	06.414
13	72 111	16 728	42.727	28491 215d
14	61 314	01 928	29.826	74 215
15	50 114	28486 7254	16.828	57 215
16	37 515	69 827	02 128	38 316
17	24 513	52 6210	28487 125d	10 324
10	24.313	32.0210	70 227	28308 326
10	22404 214	14 744	53 6210	20390.320
19	20494.014	29202 514	34 428	54 115
20	61 014	20090.014	15 444	31 215
21	41 012	40 212	28304 426	06 015
22	41.913	49.212	73 612	28280 015
23	23.4224	20.112	50 512	52 0261
24	02.0404	28276 124	27 712	27 015
25	20301.1 2 40	40 011	02 512	27.013
20	25 711	22 211	22.512	68 027J
21	10 612	22.011	40 012	27 715
28		64 211	49.912	06 015
29	20205.311	22 711		28073 1143
30	57.023	33.711		20073.1140
31	30.511			40.8250
32	01.412			03.413
33	28173.712			27970.715
34				33.115 27906 E14
35	1	1 0 D 1 C	1 1 1	27890.514
		1-8 Band, Secon	la nead	
$J'' + \frac{1}{2}$	R_2	P_{2}	$Q_{R_{12}}$	<i>OP</i> ₁₂
2	28429.421		28420.6 2 2	28413.222
3	29.521	28415.344	19.324	08.424
4	28,211	10.921	17.511	02.348d
5	26.511	04.911	13.222	28394 436
6	24 122d	28398 326	08.424	85 5264
7	20 622	90.311	02.348d	75 824
	15 244	81 124	28306 111	64 7263

$J'' + \frac{1}{2}$	R_2	P_{2}	<i>QR</i> ₁₂	<i>OP</i> ₁₂
2	28429 421		28420 622	28413 222
3	29 521	28415.344	19.324	08 424
4	28 211	10.921	17.511	02.348d
Ť	26 511	04.911	13.222	28394 436
6	24.122d	28398.326	08.424	85.526d
7	20.622	90.311	02.348d	75.824
8	15.344	81.124	28396.111	64.726d
ğ	09.721	69.7 2 6	88.4 1 3d	53.124
10	02.348d	59.313	79.414	39.912
11	28394.4 3 6	47.012	69.6 2 6	26.122
12	85.5 2 6d	34.112	58.125	10.622
13	75.824	20.012	46.412	28294.812
14	64.726d	04.512	33.112	77.424
15	52.7 2 4	28288.613	19.112	59.213
16	38.912	71.214	03.813	39.913
17	25.212	53.1 2 6	28287.713	19.614
18	09.613	33.515	70.212	28198.1 2 5
19	28293.513	13.415	52.112	76.012d
20	76.124	28191.012	32.412	52.5 1 4
21	57.613	69.5 3 7d	12.312	28.214
22	37.914	45.715	28190.712	02.314d
23	17.814	21.715	68.1 3 7d	28076.015
24	28195.914	28095.516	44.613	48.3 2 8d
25	73.724	69.025d	20.312	19.814
26	49.915	41.125d	28094.212	27989.815
27	25.615	12.926	07.712	59.714
28	28099.215	21982.221	39.712	27.214
29	74.2280	52.320	13.020	
30	45.915		21982.121	
31	18.012		52.320	
32	27987.011		19.812	
33	5/.111 24 111			
34	24.111 27802 1123			
	21092.1124		1	

$J'' + \frac{1}{2}$	SR_{21}	QP21	R_1	P_1
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 10 \\ 10 \\ 10 \\ 11 \\ 12 \\ 10 \\ 10 \\ 10$	$\begin{array}{c} 27747.311\\ 48.725\\ 49.825\\ 49.925\\ 48.825\\ 46.214d\\ 43.616d\\ 39.224\\ 34.525\\ 28.124\\ 21.723d\\ 13.026d\\ 04.726\\ 27694.624\\ 84.224\\ 72.014\\ 59.814\\ 45.814\\ 31.717\\ 15.514\\ 27599.314\\ 81.515d\\ 63.514\\ 43.511\\ 23.525\\ 01.418\\ 27479.324\\ 55.813\\ 32.012\\ 05.724d\\ 27380.212\\ 52.011\\ 25.014\\ 27294.711\\ 65.011\\ 33.311\\ 02.011\\ \end{array}$	$\begin{array}{c} 27735.411\\ 31.028d\\ 25.923\\ 19.225d\\ 12.211\\ 03.511\\ 27694.624\\ 84.224\\ 73.413\\ 61.013d\\ 48.313\\ 34.014\\ 19.114\\ 03.015\\ 27586.713\\ 68.213\\ 50.024\\ 29.713\\ 09.636\\ 27487.111\\ 65.124\\ 41.422\\ 16.911\\ 27390.711\\ 64.912\\ 37.524\\ 09.122\\ 27278.711\\ 49.022\\ 18.022\\ 27186.635\\ 52.422\\ 18.713\\ \end{array}$	$\begin{array}{c} 27740.121\\ 40.121\\ 39.224\\ 37.411\\ 34.225\\ 30.828d\\ 25.823\\ 19.125d\\ 13.026d\\ 04.726\\ 27696.013\\ 85.413\\ 74.914\\ 62.714\\ 50.217\\ 35.917\\ 21.7210\\ 05.928\\ 27589.426\\ 71.025\\ 52.937\\ 32.8510d\\ 12.814\\ 27490.713\\ 68.715\\ 44.712\\ 20.714\\ 27394.813\\ 68.825\\ 40.911\\ 13.411\\ 27283.424\\ 53.413\\ 21.712\\ 27190.212\\ 56.511\\ 23.111\\ \end{array}$	$\begin{array}{c} 27732.712\\ 28.124\\ 22.423d\\ 14.815\\ 07.315\\ 27698.212\\ 87.412\\ 76.914\\ 64.612\\ 51.812\\ 37.312\\ 22.5210\\ 0.6.228\\ 27589.426\\ 71.025\\ 52.637\\ 32.1510d\\ 11.715\\ 27489.635\\ 67.114\\ 42.813\\ 18.613\\ 27392.513\\ 66.515\\ 38.112\\ 10.524\\ 27280.113\\ 50.422\\ 18.122\\ 27186.635\\ 52.422\\ \end{array}$
7// 1 1	, n	0-8 Band, Second	head	0.7
$J'' + \frac{1}{2}$	R ₂	P ₂	^Q R ₁₂	0P ₁₂
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	$\begin{array}{c} 27557,921\\ 58,211\\ 57,421\\ 55,811\\ 53,037\\ 49,734\\ 45,122\\ 40,323d\\ 33,1410d\\ 26,135\\ 17,413\\ 08,312\\ 27497,612\\ 86,712\\ 73,712\\ 60,413\\ 45,713\\ 30,415d\\ 13,614\\ 27396,412\\ 77,713\\ 58,413\\ 37,524\\ 16,313\\ 27293,414\\ 70,311\\ 45,214\\ 20,015\\ 27193,012\\ 65,912\\ 36,813\\ 07,714\\ \end{array}$	$\begin{array}{c} 27543.711\\ 38.923d\\ 33.1410d\\ 26.135\\ 18.623\\ 09.836\\ 00.325\\ 27489.635\\ 78.117\\ 65.124\\ 51.711\\ 37.027\\ 21.525\\ 04.514\\ 27387.213\\ 68.313\\ 48.813\\ 27.913\\ 06.413\\ 27283.424\\ 60.123\\ 35.113\\ 10.014\\ 27182.714\\ 55.514\\ 26.314\\ 27097.214\\ \end{array}$	$\begin{array}{c} 27549, 434\\ 47, 911\\ 45, 522\\ 42, 321\\ 37, 711\\ 32, 8410d\\ 26, 135\\ 18, 623\\ 09, 436\\ 00, 325\\ 27489, 635\\ 78, 724\\ 65, 712\\ 52, 512\\ 37, 527\\ 22, 125\\ 05, 724d\\ 27388, 216\\ 69, 325\\ 50, 112\\ 29, 311\\ 08, 012\\ 27285, 012\\ 61, 823\\ 36, 614d\\ 11, 512\\ 27184, 211\\ 57, 412\\ 27, 912\\ 27099, 013\\ \end{array}$	$\begin{array}{c} 27542.311\\ 36.911\\ 30.313\\ 23.225\\ 14.513\\ 05.113\\ 27494.213\\ 82.714\\ 69.914\\ 56.414\\ 41.422\\ 25.915d\\ 09.116d\\ 27391.613\\ 72.714\\ 53.213\\ 32.315\\ 10.524\\ 27287.816\\ 64.116\\ 39.114\\ 13.714\\ 27186.635\\ 59.313\\ 30.214\\ 01.214\\ \end{array}$

TABLE I. (Cont.) 0-8 Band, First head

1	1	1 - 9 Danu, Filst ii	eau	
$J'' + \frac{1}{2}$	SR21	<i>QP</i> ₂₁	R_1	P_{i}
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\34\\35\end{array} $	$\begin{array}{c} 26972.326\\ 74.224\\ 75.911\\ 74.811\\ 73.924\\ 72.126\\ 69.612d\\ 64.728\\ 60.426\\ 53.826\\ 47.315\\ 38.9310\\ 30.3310\\ 20.114\\ 09.615\\ 26897.715\\ 85.314\\ 71.015\\ 56.815\\ 40.315\\ 24.815\\ 06.513\\ 26788.513d\\ 68.024\\ 48.413\\ 26.114\\ 04.314d\\ 26680.318\\ 56.726d\\ 30.113\\ 04.327d\\ 26576.3310\\ 49.215d\\ 19.227\\ 26489.415\\ \end{array}$	$\begin{array}{c} 26961.611\\ 57.316\\ 52.128\\ 45.928d\\ 38.9310\\ 30.3310\\ 21.214\\ 10.714\\ 00.014\\ 26887.514\\ 74.914\\ 60.516\\ 46.114\\ 29.514\\ 12.913\\ 26795.014\\ 76.736\\ 56.314\\ 36.312\\ 14.113d\\ 26692.112\\ 67.512\\ 43.812\\ 17.514\\ 26591.812\\ 63.525\\ 35.536d\\ 05.711\\ \end{array}$	$\begin{array}{c} 26965.721\\ 65.721\\ 64.628\\ 63.114\\ 60.426\\ 56.012\\ 51.928\\ 45.928d\\ 38.9310\\ 30.3310\\ 22.014\\ 11.713\\ 01.313\\ 26888.914\\ 76.515\\ 62.216\\ 48.015\\ 31.615\\ 15.415\\ 26796.915\\ 78.938\\ 49.4410\\ 30.038\\ 16.6410\\ 26694.926\\ 70.524\\ 46.415\\ 20.2310\\ 26594.225\\ 66.824\\ 38.323\\ 08.125\\ 26478.425\\ \end{array}$	$\begin{array}{c} 26959,111\\ 53,926\\ 49,211\\ 41,712\\ 33,713\\ 25,31.4\\ 14,813\\ 04,013\\ 26891,413\\ 78,713\\ 64,413\\ 49,613\\ 33,311\\ 16,715\\ 26798,416\\ 79,738\\ 59,4410\\ 38,938\\ 16,6410\\ 26694,926\\ 70,524\\ 46,415\\ 20,3310\\ 26594,225\\ 66,224\\ 38,323\\ 08,125\\ 78,425\\ \end{array}$
		1-9 Band, Second	head	
$J'' + \frac{1}{2}$	R_2	P 2	Q _{R12}	0P ₁₂
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\end{array}$	$\begin{array}{c} 26785 & 035\\ 85 & .335\\ 84 & .435\\ 82 & .612\\ 79 & .938\\ 76 & .836\\ 71 & .639\\ 66 & .723d\\ 60 & .4410\\ 53 & .0310\\ 44 & .212\\ 34 & .838\\ 24 & .314\\ 13 & .014\\ 00 & .113\\ 26687 & .015\\ 72 & .015\\ 56 & .726\\ 39 & .917\\ 22 & .617\\ 04 & .127d\\ 26584 & .417\\ 63 & .515\\ 42 & .216\\ 19 & .227\\ 26495 & .917\\ 71 & .117\\ \end{array}$	$\begin{array}{c} 26771.639\\ 66.523d\\ 60.7110\\ 53.7310\\ 46.411\\ 37.126\\ 27.826\\ 17.0410\\ 05.727\\ 26692.928\\ 79.628\\ 64.62A\\ 49.126\\ 32.424d\\ 15.028\\ 26596.025\\ 76.6310\\ 55.613\\ 34.236\\ 11.218\\ 26488.115\\ 63.113\\ \end{array}$	$\begin{array}{c} 26776.736\\75.711\\72.839\\69.424\\65.125\\59.6410\\52.7310\\45.613d\\37.126\\27.626\\17.3410\\05.827\\26693.128\\79.628\\64.72A\\49.626\\32.624d\\15.128\\26596.725\\77.1310\\56.912\\35.236\end{array}$	$\begin{array}{c} 26769.711\\ 65.025\\ 58.211\\ 50.813d\\ 42.513\\ 33.01A\\ 22.214\\ 10.715\\ 26697.814\\ 84.316\\ 69.614\\ 54.114\\ 37.517\\ 20.1310\\ 01.115\\ 26581.515\\ 60.616\\ 39.218\\ 16.217\\ 26492.617\\ 68.015\\ \end{array}$

TABLE I. (Cont.) 1-9 Band, First head

		0-9 Band, Second	head	· · · ·					
$J'' + \frac{1}{2}$	R_2	P_2	<i>QR</i> ₁₂	0P ₁₂					
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ \end{array}$	$\begin{array}{c} 25913.538\\ 14.238\\ 13.738\\ 12.327\\ 09.525d\\ 06.712\\ 02.412\\ 25897.3210\\ 91.314\\ 84.614\\ 76.63A\\ 67.637\\ 57.537\\ 46.925\\ 34.716\\ 22.116\\ 08.018\\ 25793.517\\ 77.517\\ 61.117\\ 43.218\\ 24.918\\ 04.818\\ 25684.618\\ 62.718\\ 40.718d\\ 16.718\\ 25592.718\\ 66.818\\ 40.918\\ \end{array}$	$\begin{array}{c} 25899.611\\ 95.122\\ 89.224\\ 82.824\\ 75.83A\\ 67.037\\ 57.537\\ 46.925\\ 36.125\\ 23.815\\ 11.015\\ 25796.616\\ 81.816\\ 65.328d\\ 48.716d\\ 30.518d\\ 11.818\\ 25691.718\\ 71.6d\\ 30.518d\\ 11.818\\ 25691.718\\ 71.017\\ 48.917\\ 26.6110\\ 02.519\\ 25578.117\\ 52.118\\ \end{array}$	$\begin{array}{c} 25905.012\\ 03.912\\ 01.712\\ 25898.523\\ 94.122\\ 89.224\\ 82.824\\ 75.83A\\ 67.637\\ 58.614\\ 48.528d\\ 37.714\\ 25.628\\ 12.928\\ 25798.616\\ 84.037\\ 67.814\\ 51.32A\\ 33.548d\\ 14.727\\ 25694.627\\ 74.312\\ 52.311\\ 30.228\\ 06.213\\ 25582.013\\ 56.02A\\ \end{array}$	$\begin{array}{c} 25898.523\\ 93.325\\ 86.612\\ 79.313\\ 71.113\\ 61.515d\\ 51.517\\ 40.016\\ 27.616\\ 14.516\\ 00.316\\ 25785.115\\ 68.716\\ 51.72A\\ 33.548d\\ 14.727\\ 25694.627\\ 73.712\\ 51.425\\ 28.716\\ 04.716\\ 25580.116\\ 53.62A \end{array}$					
	<u></u>	0–9 Band, First h	lead	· · · · · · · · · · · · · · · · · · ·					
$J'' + \frac{1}{2}$	SR21	${}^{Q}P_{21}$	R_1	P_1					
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\34\\35\\36\end{array} $	$\begin{array}{c} 26102, 426\\ 04, 326\\ 05, 228\\ 05, 528\\ 04, 526\\ 02, 326\\ 26099, 814\\ 95, 548\\ 91, 237\\ 85, 226\\ 79, 127\\ 71, 126\\ 63, 228d\\ 53, 227d\\ 43, 626\\ 31, 914\\ 20, 413\\ 06, 928\\ 25993, 515\\ 78, 128d\\ 62, 926\\ 45, 613\\ 28, 613\\ 09, 525d\\ 25890, 612\\ 69, 612\\ 48, 828d\\ 25, 628\\ 03, 512\\ 25778, 612\\ 54, 211\\ 27, 413\\ 01, 111\\ 25672, 512\\ 44, 415\\ 13, 711\\ \end{array}$	$\begin{array}{c} 26091.137\\ 86.624\\ 81.9210d\\ 75.113\\ 68.115d\\ 59.918\\ 51.517d\\ 41.115\\ 30.716\\ 18.716\\ 06.728\\ 25992.615\\ 78.528d\\ 62.926\\ 47.015\\ 29.315\\ 11.827\\ 25892.213\\ 73.013\\ 51.526\\ 30.228d\\ 07.026\\ 25784.237\\ 59.128d\\ 34.348d\\ 07.011\\ 25680.411\\ 51.425\\ 23.111\\ 25592.2210\\ 62.011\\ \end{array}$	$\begin{array}{c} 26095.048\\ 95.548\\ 95.148\\ 93.411d\\ 90.837\\ 86.624\\ 81.9210d\\ 76.014\\ 69.515\\ 61.416\\ 53.427d\\ 43.326\\ 33.424\\ 21.525\\ 09.716\\ 25996.016\\ 82.317\\ 66.718\\ 51.218\\ 33.918\\ 16.518\\ 25897.3310\\ 78.115\\ 56.937\\ 35.725\\ 12.929\\ 25790.316\\ 65.328\\ 40.813\\ 13.613\\ 25687.316\\ 58.517\\ 30.228\\ 25599.513\\ 69.614\\ 36.913\\ \end{array}$	$\begin{array}{c} 26088.411d\\ 84.226\\ 78.427\\ 71.126\\ 63.228d\\ 54.312\\ 44.411\\ 33.424\\ 21.525\\ 09.112\\ 25995.012\\ 80.715\\ 64.716\\ 48.715\\ 30.717\\ 13.028\\ 25893.325\\ 73.713\\ 52.213\\ 30.628d\\ 07.226\\ 25784.037\\ 58.728d\\ 33.548d\\ 06.314\\ 25679.514\\ 50.313\\ 21.913\\ 25590.814\\ 60.314\\ \end{array}$					

TABLE I. (Cont.) 0-9 Band Second h

near the heads, where the assignment of lines was difficult. In the second head of each band the branches were better separated. The structure of the bands was determined by locating first the branches in the second head and from them calculating the positions of the rotational levels of the upper electronic state. Knowing these levels and one or two branches in the first head, the remaining branches in the first head could be calculated. The wave numbers of the lines which form the various branches are given in Table I.

Determination of the $\Delta_2 F$'s

By reference to Fig. 1, it will be seen that various internal combinations can be obtained in each band. For the first heads of the bands, the relations for the lower ${}^{2}\Pi$ are:

$${}^{S}R_{21}(J-1) - {}^{Q}P_{21}(J+1) = R_1(J-1) - P_1(J+1)$$

= $F_1''(J+1) - F_1''(J-1) \equiv \Delta_2 F_1''(J)$ (1)

and for the second heads:

$${}^{Q}R_{12}(J-1) - {}^{O}P_{12}(J+1) = R_2(J-1) - P_2(J+1)$$

= $F_2''(J+1) - F_2''(J-1) \equiv \Delta_2 F_2''(J)$. (2)

Similar relations that give the $\Delta_2 F$'s of the upper electronic state are:

$$SR_{21}(J) - QP_{21}(J) = R_2(J) - P_2(J) = \Delta_2 F_2'(J)$$
(3)

$$R_1(J) - P_1(J) = {}^{Q}R_{12}(J) - {}^{O}P_{12}(J) = \Delta_2 F_1'(J).$$
(4)

All of these $\Delta_2 F$'s are listed in Tables II and III. The vibrational quantum numbers of the four bands used in the analysis were such that the rotational levels associated with two adjacent vibrational levels (v' = 0, 1; v'' = 8, 9) of both the upper and lower electronic states were obtained. Furthermore every $\Delta_2 F$ in both the upper and lower states is determined independently four times by the differences of four pairs of lines. In the following tables data are given only for the vibrational states v' = 0 and v'' = 9. Similar data for the vibrational states v' = 1 and v'' = 8 may readily be obtained from the wave numbers of Table I.

After a series of lines had been located in a band it was not possible to tell immediately what branch it corresponded to. The combination relations just given were used to determine the proper designations of the series. The combinations between the series were first obtained. Then by reference to Fig. 1 it will be seen that for a given J value any member of the ${}^{S}R_{21}$ branch would have a larger wave number than the corresponding member of the R_1 branch. Exactly the same relation held between the ${}^{Q}P_{21}$ branch and the P_1 branch.

Values of the Constants B, D and A

The terms of the upper ${}^{2}\Pi$ state can be represented accurately by Hill and Van Vleck's equation (see Eq. (9) following). This state, however, is so close to Hund's case *b* that the terms, except for the lowest *K* values, can also be represented by the following equation:⁷

alue	sput	
the v	y stı	
ves	reall	
a gi	P_1	
dat	R1 –	
st of	tat]	
ud Se	so th	
есоп	82 3	
he s	ndin	
5	hec	
9	umr	
Ēġ	coli	
rom	the	
ed fi	шо	
tain	d fr	
s obi	vitte	
state	<i>uo</i> :	
nal .	been	
tion	201	
vibre	s hc	
60	alue	
r th	J v.	
5 9	r.	
C 2). 1 nila	
$\Delta_2 F_1$	v sir	
of	E_{1}^{d}	
lues	rom e ex	
e va	ed f s ar	
s th	tain ling	
give	i obi	
lata	state mn	
ofa	ral colu	
set	tion	
firsi	vibr.	
The	00-	
H	\sum_{1}^{tht}	
LE.	$f_{0}^{(i)}$	
T_{AB}	2.1	
	$\Gamma_1^{P_2}$	

DANIEL S. STEVENS

the values of Uy stands for			av.	$\begin{array}{c} 18.5\\ 248.5\\ 330.8\\ 336.8\\ 336.5\\ 336$
et of data gives at R₁−P₁ rea.		Band	$^{Q}R_{12} - ^{O}P_{12}$	$\begin{array}{c} 18.5\\ 24.9\\ 30.3\\ 30.3\\ 30.3\\ 30.3\\ 30.3\\ 30.3\\ 51.3\\ 54.9\\ 54.9\\ 55.7\\ 73.5\\ 53.5\\ 73.5\\ 1110.4\\ 1110.4\\ 1110.6\\ 411110.6\\ 1120.5\\ 1228.5\\ 73.5\\ 1228.5\\ 73.5\\ 1228.5\\$
ibrational state obtained from Eq. (1). The second set s have been omitted from the column headings so tha	$_{2}^{2}^{\prime\prime}(J)$	1 - 9	$R_2 - P_2$	$\begin{array}{c} 18.5\\ 24.6\\ 330.7\\ 330.7\\ 54.6\\ 54.6\\ 573.5\\ 573.5\\ 733.5\\$
	$\Delta_2 F$	Band	$^{Q}R_{12} - ^{O}P_{12}$	$\begin{array}{c} 18\\ 24.6\\ 330.6\\ 330.6\\ 330.6\\ 55.2\\ 73.5\\ 73.5\\ 73.5\\ 73.5\\ 73.5\\ 73.5\\ 110.3\\ 1110.3\\ 1110.3\\ 1110.3\\ 1120.6\\ 1120.6\\ 1110.3\\ 1120.6\\ 1110.3\\ 110.3\\ $
		0-0	$R_2 - P_2$	$\begin{array}{c} 18\\ 18\\ 255\\ 255\\ 255\\ 255\\ 255\\ 255\\ 255\\ 25$
brational s have been		X	$J + \frac{1}{2}$	°4222222222222222222222222222222222222
J) for the 9 vibratic The J values have 11.			av.	$\begin{array}{c} 111.6\\ 171.6\\ 171.6\\ 233.5\\ 233.5\\ 233.5\\ 233.5\\ 233.5\\ 233.5\\ 233.5\\ 233.5\\ 233.5\\ 233.5\\ 233.5\\ 233.5\\ 233.5\\ 233.5\\ 1114.7\\ 1220.5\\ 1126.6\\ 1114.7\\ 1220.5\\ 1126.6\\ 1126.6\\ 1126.5\\ 1126.6\\ 1126.5\\ $
es of $\Delta_2 F_1^{''}(J)$ m Eq. (2). T exactly similar		Band	$R_1 - P_1$	$\begin{array}{c} 11\\16.5\\17.5\\17.5\\17.5\\17.5\\17.5\\17.5\\17.5\\17$
gives the values obtained from teadings are exa	$F_{1}^{\prime\prime}(J)$	1 - 9	$SR_{21} - QP_{21}$	$\begin{smallmatrix} 10 \\ 16 \\ 16 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 2$
rst set of data brational state Other column	Δ_2	Band	$R_1 - P_1$	$\begin{array}{c} 10\\ 17.1\\ 17.1\\ 224.0\\ 330.2\\ 330.2\\ 330.2\\ 330.2\\ 330.2\\ 348.5\\ 548.5\\ 548.5\\ 1120.5\\ $
ILE II. The f_{i}) for the 9 v_{i}) $-P_{1}(J-I)$.		0-0	$S_{R_{21}} - {}^{Q}P_{21}$	$\begin{array}{c} 11\\ 171.7\\ 171.7\\ 171.7\\ 233.3\\ 330.4\\ 233.3\\ 330.4\\ 233.3\\ 330.4\\ 233.3\\ 172.5\\ 1120.5$
${{\Gamma_{1}}\atop{A_{2}F_{2}}}^{{\Gamma_{AB}}}_{L_{1}(J)}$			$J + \frac{1}{2}$	228328282828282828282828282828282828282

TABLE III. The first set of data gives the values of $\Delta_s P_1^i(K = J - \frac{1}{3})$ for the 0 vibrational state obtained from Eq. (4). The second set of data gives the values of $\Delta_s F_2^i(K = J + \frac{1}{3})$ for the 0 vibrational state obtained from Eq. (3). The J values have been omitted from the column headings so that $R_1 - P_1$ really stands for $R_1(J) - P_1(J)$. Other column headings are exactly similar.

4				1																																
			av.	14.4	18.7	27.8	26.9	31.1	35.4	39.6	44.0	48.4	52.4	5	60.7	65 1	1.00	12.21	22.01	. 10	0 20	0.00	0.06	94.3 20	98.3	102.3	106.4	110.0	114.0	118.6	122.9	177.1	131.2	135.2	1.901	142.3 146.3
		and	$R_2 - P_2$	14.6	18.0	23.1	26.7	30.9	35.4	39.8	44.4	48.5	52.8	29 92	6.00	1 29	60 4	73.4	1.24	21.10	0 10	0.00	1.06	94.3	58.5	102.3	106.5	110.0								
	$\zeta = J + \frac{1}{2})$	I 6-0	$^{SR_{21}-QP_{21}}$	14.1	18.9	22.6	27.2	31.7	35.6	39.7	44.1	48.4	52.4	202	60.6	65.1	1.00	73.4	77.6	1.10	0 20	6.00	89.9	94.1	48.4	102.5	106.4	2.011	114.5	118.6	123.1	127.2	131.1	135.2	1.961	
	$\Delta_2 F_2'(I)$	Band	$R_2 - P_2$	14.5	18.5	22.7	26.9	31.1	35.3	40.0	43.5	48.0	52.3	292	60.6	65.0	2.09	12.52	1.01	+. 10 1 A	0.10	0.00	0.06	94.3	98.3	102.4	106.3	110.7	114.8	118.9	122.8					
		0-8]	$SR_{21} - ^{Q}P_{21}$	14.4	18.9	22.9	27.0	31.4	35.4	39.1	43.9	48.3	52.0	2.6.4	20.4 60.6	1 29	1.00	73.1	1.01		01.10	0.00	89.1	94.4	98.4	102.1	106.6	110.7	114.4	118.3	122.9	127.0	131.2	134.0	158.4	142.3
			$J+\frac{1}{2}$	8	4	ŝ	9	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6	10		12	10	14	1	16	11	10	010	A C	0,5	17	22	57	24	25	20	1.7	28	29	30	31	275		2 5 4 5 2 5
			av.	7.0	10.9	15.1	19.4	23.3	27.7	31.8	36.0	39.9	44.1	10.21	1.05	2.92	51.0	0.10	0.09	12.40	4.01	0.11	6.18	85.9	0.06	94.2	98.4	102.3	106.5	110.4	114.8	118.7	122.8	126.9	151.0	
		Band	$^{Q}R_{12} - ^{O}P_{12}$	6.5	10.6	15.1	19.2	23.0	27.7	31.3	35.8	40.0	44.1	18.2	1.05	20.02	51.2	1.10	07.1 60.2	0. 61 C 61	1.01	0.11	1.28	80.0	89.9	94.2	98.7							-		
,	$K = J - \frac{1}{2})$	I 6-0	$R_1 - P_1$	7.1	10.9	15.0	19.7	23.4	27.6	31.6	36.1	39.9	44.3	48.3	52.7	8.92	61.0	0.10	60.3	12.5	+ · · · ·	0.10	81./	85.9	1.0%	94.1	98.2	102.2	100.0	110.8	115.0	118.9	122.8	127.0		
	$\Delta_2 F_1'(.$	Band	$^{Q}R_{12} - 0P_{12}$	7.1	0.11	15.2	19.1	23.2	27.7	31.9	35.9	39.5	43.9	48.7	22.52	56.6	0.00	8 79	0.99	12.4	+. C.		\$1.5 \$	80.0	7.06	94.3	98.4	102.5	100.4	110.3						
		0-8]	$R_1 - P_1$	7.4	11.1	15.0	19.7	23.5	27.7	31.7	36.1	40.1	44.2	48.1	52.4	5.95	8.09	0.00	1.09	12.0	0.11	1.1.	\$1.4 5	8.08	0.06	94.2	98.2	102.2	100.0	110.2	114.7	118.4	122.8	120.8	0.161	
			$J + \frac{1}{2}$	00	. ر <i>ب</i>	4	ŝ	9	4	8	6	10	11	12	1 5	44	+ 12 	10	17	10	10	10	22	17	77	23	24	\$2	07	27	28	29	30	ي 15	27	

ROTATIONAL ANALYSIS OF OXYGEN BANDS

1301

DANIEL S. STEVENS

$$T = T_0^e + G(v) + B_v [K(K+1) - \Lambda^2 + \overline{G^2}] + f(K, J - K) + \phi_i(K, J) + D_v K^2 (K+1)^2 + \cdots$$
(5)

The lower ²II state is co close to Hund's case a that the terms can be represented by the following equation:⁷

$$T = T_0^{e} + G(v) + A\Lambda\Sigma + B_v^* [J(J+1) - \Omega^2 + \overline{G^2} + S_{perp}^2] + \phi_i(\Sigma, J) + D_v J^2 (J+1)^2 + \cdots (6)$$

By use of Eq. (5), the $\Delta_2 F$'s of the upper ²II state should be given very closely by the relation:

$$\Delta_2 F'(K) = 2B_v (2K+1)$$
(7)

From Eq. (6), the $\Delta_2 F$'s of the lower ² Π state should be given by:

$$\Delta_2 F''(J) = 2B_v^*(2J+1). \tag{8}$$

The use of these simplified expressions for the $\Delta_2 F$'s can be justified except for the lowest values of K of the upper ²II state and for the highest values of the rotational quantum number in either electronic state. In both Eqs. (5) and (6), the ϕ function represents the Λ -type doubling. In the upper electronic state the Λ -type doubling is experimentally found to be negligible. There is Λ -type doubling in the lower electronic state, but the rate of change of the ϕ function with J is so small that it does not affect the $\Delta_2 F$'s. The same argument can be applied to the other neglected terms which are either constant or change very slowly with respect to J. The last statement holds for the term

	upper	2 <u>11</u>
$B(F_1) \\ B(F_2) \\ B(av)$		v' = 1 1.030 1.037 1.034
	lower	² ∏
$egin{array}{c} B^{st}(F_1)\ B^{st}(F_2)\ B(av) \end{array}$	v''=8 1.525 1.550 1.538	v'' = 9 1.520 1.538 1.529

TABLE IV. B values.

involving D for rotational quantum numbers less than 15. For values above this number, the $\Delta_2 F$'s are increasingly less than those given by Eqs. (7) and (8), since D is inherently negative. $[D = -4B_e^3/\omega_e^2]$. From this relation, for the upper electronic state $D' = 5.6 \times 10^{-6}$ and for the lower electronic state $D'' = 4.6 \times 10^{-6}$. D values calculated from the departure of the $\Delta_2 F$'s from a straight line agree with these fairly well. This would be expected for the upper electronic state which is case b but not necessarily for the lower case aelectronic state.

Considering Eqs. (7) and (8), it is seen that they predict a linear relation between the $\Delta_2 F$'s and the rotational quantum numbers; the slope of the line in each case being 4B. The plot of the actual $\Delta_2 F$'s in each case lay on a straight line for moderate values of the rotational quantum number, and the slope of the line was used to obtain the B values listed in Table IV. Since K has integral values and J half-integral values for these states, it would be expected that the intercept of the line on the axis of rotational quantum numbers would be close to a whole number for the upper ²II state and close to a half-number for the lower ²II state. This was found to be the case.

Since the upper ²II in case b, B_v should have practically the same value for the F_1 and F_2 sets of rotational levels. This was observed. For the lower ²II state, which is case a, the observed B_v 's are called B_v * since they are not true B_v values. The values of B_v * differ for the F_1 and F_2 sets of levels as follows:¹¹

$$B_v^* = B_v(1 \pm B_v/A\Lambda)$$

with $\pm B_v/A$ according as $\Sigma = \pm \frac{1}{2}$

From the above equation the difference between the B_v^* values for the F_2 and F_1 sets of levels of the lower ²II state should be ≈ 0.023 . This is close to the observed values. The true B_v is obtained by taking the average of $B_v^*(F_1)$ and $B_v^*(F_2)$.

 B_v is related to other molecular constants¹² by the equations:

$$B_v = B_e - \alpha(v + \frac{1}{2}) = B_0 - \alpha v,$$

$$B_e = h/8\pi^2 \mu c r_e^2 = 27.70 \times 10^{-40} / \mu r_e^2.$$

Values of some of these constants are given in Table VII.

The value of A'', the parameter governing the doublet separation of the lower ²II state, can be calculated from Eq. (6). This is done by taking the difference between a line in the first head and a line in the second head which come from the same upper level and end on lower levels of the same J value. An expression for this term difference involving A'' may be obtained from Eq. (6). The smallest J values, for which the data were considered most reliable, were chosen to calculate A''. The result was A'' = 195cm⁻¹.

The value of A' for the upper ² Π state can be determined by the use of Hill and Van Vleck's formula:¹³

$$T = T_0^e + G(v) + B_v \left\{ (J + \frac{1}{2})^2 - \Lambda^2 \pm \frac{1}{2} \left[4(J + \frac{1}{2})^2 - 4A\Lambda^2 / B_v + A^2\Lambda^2 / B_v^2 \right]^{1/2} + \overline{G^2} \right\} + \phi_i(J) + \cdots (9)$$

This equation is quadratic in A and gives two possible values, i.e., for the upper electronic state A' = +8.2 or -4.0. One can decide between these

¹¹ For a discussion of B^* cf. R. S. Mulliken, Reviews of Modern Physics 2, 113 (1930); 3, 110 (1931).

¹² Cf. R. S. Mulliken, Reviews of Modern Physics 2, 65-67 (1930).

⁸ E. L. Hill and J. H. Van Vleck, Phys. Rev. 32, 261–2 (1928).

two values in the following way. Either A' value will give the same term value for all rotational levels except the lowest $(J = \frac{1}{2})$. Also for every Jvalue except the lowest, there are two rotational levels, one of which can be classified as an F_1 level and the other level as belonging to the F_2 set. There is only one level for $J = \frac{1}{2}$.¹⁴ According as A' is positive or negative the position of this level should from the theory be such that it would be naturally classified with the F_1 set or with the F_2 set of levels.

By reference to Fig. 1 it will be seen that one more line near the origin would be added to the P_1 and ${}^{O}P_{12}$ branches than to the ${}^{O}P_{21}$ and P_2 branches if the level $J = \frac{1}{2}$ belongs to the F_1 set of levels. The converse will be true if this level belongs to the F_2 group of levels. In most of the bands it was not possible to decide definitely between the two possible positions of the level $J = \frac{1}{2}$. In four instances, however, it appeared that this level belonged to the F_1 set of levels rather than to the F_2 set, thus indicating that A' = +8.2. [The first line of each of the following branches appears to come from the level $J = \frac{1}{2}$: P_1 of the 0–9 and 1–9 bands, ${}^{O}P_{12}$ of the 1–9 band. On the other hand a line from this level appeared to be definitely absent in the case of P_2 branch of the 1–8 band.]

Calculation of the $\Delta_1 F$'s of the Upper ² Π State

Since there were no Q branches present, it was impossible to obtain the $\Delta_1 F$'s directly by combinations between the lines. In the upper electronic state for each value of K there is an F_2 level with $J = K - \frac{1}{2}$, slightly above an F_1 level with $J = K + \frac{1}{2}$. The relative position of the F_2 and F_1 levels is a function of A/B_v .¹⁵ The separation of these two levels for a given value of K will be called the spin-doubling distance (ϵ_K) since it is due to the two orientations of the spin vector with respect to K.

For moderate and large values of K the spin-doubling distance changes very slowly with K, so it can be obtained with sufficient accuracy from the lines in the following way. By reference to Fig. 1 it is seen that:

$$SR_{21}(J-1) - R_1(J-1) = {}^{Q}P_{21}(J+1) - P_1(J+1)$$

= $R_2(J-1) - {}^{Q}R_{12}(J-1)$
= $P_2(J+1) - {}^{Q}P_{12}(J+1)$
= $\Delta_1 F_1'(J+\frac{1}{2}) + \epsilon_{K=J+1/2}.$ (10)

[For definition of $\Delta_1 F$ cf. end of next section on p. 1309] From Eq. (10):

$$\Delta_1 F_1'(J + \frac{1}{2}) + \epsilon_{K=J+1/2} + \Delta_1 F_1'(J - \frac{1}{2}) + \epsilon_{K=J-1/2} = \Delta_2 F_1'(J) + 2\epsilon_{K=J}.$$
 (11)

In the right hand member of Eq. (11) the sum of the two ϵ terms corresponding to $K = J - \frac{1}{2}$ and $K = J + \frac{1}{2}$ is practically the same as twice the value which ϵ_K would have for a hypothetical intermediate level with K = J.

Values of ϵ are readily calculated from Eq. (11) since the $\Delta_2 F'_1(J)$ terms can be obtained directly from the line differences according to Eq. (4), or by

¹⁴ Cf. R. S. Mulliken, Reviews of Modern Physics 2, 109 (1930).

¹⁵ Cf. R. S. Mulliken, Reviews of Modern Physics 2, 114 (1930).

reference to Table III. Fig. 2 is a plot of ϵ against K. The solid line shows the values obtained by Hill and Van Vleck's formula and the circles are the values obtained from the lines by the method outlined. For the lowest K values many of the lines were not resolved. The lowest term differences, that were considered most reliable, were used to determine the constants in Hill and Van Vleck's equation, and then the position of the lowest rotational levels was calculated. The first members of the branches could then be located. The first values of ϵ in Fig. 2 are from these blended lines.

Fig. 2. A graph of ϵ_K (the spin-doubling distance) for the upper ²II state against K. The solid line is drawn from values obtained from Hill and Van Vleck's equation. The circles are values obtained from the lines according to Eq. (11).

The quantities given by Eq. (10) are listed in columns 2 through 10 of Table V. By subtracting the ϵ 's from these quantities the $\Delta_1 F$'s of the upper ²II state are obtained. These are listed in columns 11 and 12 of Table V.

Calculation of the $\Delta_1 F^*$'s of the Lower ²II State

The $\Delta_1 F^*$'s of this state were obtained in a similar manner. The $\Delta_1 F^*$'s of the vibrational state v'' = 9 as listed in Table VI will be taken as an example. In columns 2 and 6 is listed the difference:

$$R_{21}(J) - R_1(J+1)$$

S

and in columns 4 and 8

$${}^{Q}P_{21}(J) - P_{1}(J+1)$$

These columns are labelled uncorrected since they must be corrected by subtracting the proper ϵ_K (already obtained, cf. Fig. 2) from each difference to obtain the $\Delta_1 F_1^*$ of the lower state. This will be seen by reference to Fig. 1. It will be noted that the ϵ_K to be subtracted from any one member of columns 2 and 6 is for a K value two units greater than the ϵ_K to be subtracted from the corresponding member of columns 4 and 8. These two values of ϵ are practically the same for moderate and high values of K but not so for low values of K (cf. Fig. 2). The columns labelled uncorrected have the appear-

m omitted from -P1 stands for	I I I	$\Delta_1 F_1'(K \equiv J) = av - \epsilon K = J + \frac{1}{2}$	4 218866586885555886444433333325255918866744755 218866586885555586644433333325255918866744755 21886495555555586644433333325559188666744755 21886495555555558644443333335556475555 21886495555555555564444333333555555555555555
values have bee and (2) ^Q P ₂₁ -		$ \Delta_1 F_2^{(K)} (K \equiv J) $ $= av - \epsilon_{K=J-\frac{1}{2}} $	3.6 3.6 6.0 6.0 6.0 5.6
${}^{(11). The J}_{2R_{12}(J-1);}$		av.	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
0 vibrational state obtained from Eqs. (10) and (11). $T = 1 - R_1(J-1)$; $R_2 - QR_{12}$ stands for $R_3(J-1) - QR_{12}(J+1)$.		$P_{2} - oP_{12}$	98611111110222222222222222222222222222222
	Band	$R_2 - {}^Q R_{12}$	62222222222222222222222222222222222222
	0-0	$^{Q}P_{21} - P_{1}$	8005555555544445010025890070011811 8005255555554444501005589007001181 800527555555555555010055890070012880 80052735555555550100558007000558000000000000000
		$^{S}R_{21} - R_{1}$	728665566855555555644444444444 2788655566855555555564444444444 200000075555555644444444 200000075555555555555555555555555555555
K = J for th for $^{SR_{21}}(J - P_{12}(J - P_{12}(J$		$P_2 - 0P_{12}$	22204244444493333222222111111 22208844444933333222222111211 222028844444933333222222111211 222028244444444444444444444444444444444
) and $\Delta_1 F_2'(.)$ $1 - R_1$ stands ds for $P_2(J)$	Band	$R_2 - ^Q R_{12}$	6656668855555886444466833332525251069355668855555688644450555666555666555556886445555566688777006755
$ \Delta_1 F_1'(K = J) hat; (1) SR_2 n_2 - 0P_{12} stan $	0 - 8	$^{Q}P_{21} - P_{1}$	00002222222222222222222222222222222222
V. Values of ieadings, so 1 $-P_1(J+1)$; H		$^{S}R_{21} - R_{1}$	$\begin{smallmatrix} & & & & & & & & & & & & & & & & & & &$
TABLE the column $P_{21}(J+1) - QP_{21}(J+1) - P_{21}(J+1) - P_{21}(J+1$		$J + \frac{1}{2}$	40°4°0°2°2°2°2°2°2°2°2°2°2°2°2°2°2°2°2°2

1306

DANIEL S. STEVENS

	$\Delta_1 F_1^{\prime\prime\prime*}(J + \frac{1}{2})$ av. of corr.	$\begin{smallmatrix} 4 \\ 4 \\ 130.3 \\ 13$
	$+1) - \epsilon_{K=J-\frac{1}{2}}$ corr.	8888377729656555571 88888246622559 88888246622559 88888266255571 888888 888866210 88888 888866210 88888 88866210 88888 88866210 88888 8886620 88888 8886620 88888 8886620 88888 8886620 88888 8886620 88888 8886620 88888 8886620 88888 8886620 88888 8886620 8888 8886620 8888 8886620 8888 8886620 8888 8886620 8886620 8888 88866600 88866600 8888 8886600 888600 888600 888600 888600 888600 888600 888600 888600 8866000 8866000 8866000 8866000 8866000 886600000000
	$\begin{array}{c} 1-9 \text{ Band} \\ 2P_{21}(J) - P_1(J) \\ \text{uncorr.} \end{array}$	1122 1222 1222 1222 1222 1222 1222 122
	$+1) - \epsilon_{K=J+1^{\frac{1}{2}}}$ corr.	70.067.78888877727266665558787970000000000000000000000000000000
	$R_{21}(J) - R_1(J - uncorr.$	99288888777729595955555444444757797297729595555544444445575555555555
•	-1) $-\epsilon K_{=} I_{-\frac{1}{2}}$ corr.	00000000000000000000000000000000000000
	$p_{21}^{\text{and}}(J) - P_1(J + uncorr.$	$\begin{array}{c} 11\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\$
	$\begin{array}{c} 0 - 9 \ B_{s} \\ + 1 \end{array} + 1 - \epsilon K_{=} r_{+} 1_{\frac{1}{2}} \mathcal{C}_{s} \\ \text{corr.} \end{array}$	$\begin{smallmatrix} & 4 \\ & 7 \\ & $
	$R_{21}(J) - R_1(J - $	6.9 6.9 6.9 6.9 6.9 6.9 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
	J+ ¹ /2	

TABLE VI. The values of $\Delta_1 F_1^{\prime\prime\prime*}(J+\frac{1}{2})$ for the 9 vibrational state.

ROTATIONAL ANALYSIS OF OXYGEN BANDS

TABLE VI (Continued). The values of $\Delta_1 F_2^{1/*}(J+\frac{1}{2})$ for the 9 vibrational state	$ \begin{array}{c c} \begin{array}{c} \begin{array}{c} 0-9 \text{ Band} \\ 0_{R_{12}}(J+1)-\epsilon_{K=J+1^{\frac{1}{2}}} & P_{2}(J)-P_{12}(J+1)-\epsilon_{K=I-1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} R_{2}(J)-Q_{R_{12}}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} & P_{2}(J)-Q_{P_{12}}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 1-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-\epsilon_{K=J-1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} A_{1}F_{2}^{\prime\prime\prime\ast}(J+\frac{1}{2}) \\ \end{array} \\ \begin{array}{c} e_{K=J+1^{\frac{3}{2}}} & P_{2}(J)-e_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-R_{12}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} R_{2}(J)-R_{12}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-\epsilon_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-e_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{12}(J+1)-e_{K=J+1^{\frac{3}{2}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{2}(J+1)-e_{K=J+1^{\frac{3}{2}}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0-9 \text{ Band} \\ P_{2}(J)-P_{2}(J+1)-P_$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
TABLE V	$\begin{array}{c} 0-9 \text{ Band} \\ 2^2(J) - ^Q R_{12}(J+1) - \epsilon_{\mathbf{K} \rightarrow J+1\frac{1}{2}} \\ \text{uncorr.} \\ \end{array}$	$\begin{array}{c} 9.6\\ 12.5\\ 15.2\\ 15.2\\ 15.2\\ 15.2\\ 15.2\\ 13.7\\ 20.3\\ 226.6\\ 23.9\\ 23.2\\$
	$J + \frac{1}{2}$ R_2	2222222098476755576876876876876 22222209811025576876876876 22252209810000000000000000000000000000000000

1308

DANIEL S. STEVENS

ance of giving combination agreements except near the origin and this caused considerable confusion before the branches had been classified.

It should be noted that the quantities above called $\Delta_1 F$ or $\Delta_1 F^*$ are not "true" $\Delta_1 F$'s, because of the existence of Λ -type doubling. As explained in the following section on Λ -type doubling, each rotational level has an *a* and *b* component. A "true" $\Delta_1 F(J+\frac{1}{2})$ would be the distance from the *a* or *b* component of the *J* level to the *a* or *b* component respectively of the *J*+1 levels. In the case of O_2^+ , however, alternate levels in the successive Λ -type doublets are missing. Because of this the quantity which has physical existence is the distance from the *a* level of *J* to the *b* level of *J*+1 (cf. Fig. 3), or from the *b* level of *J* to the *a* level of *J*+1. This quantity, for the lower

Fig. 3. The relation of the $\Delta_1 F^{*'s}$ to the $\Delta_1 F$'s.

²II state, will be denoted as $\Delta_1 F''^*$. In the upper ²II state this distinction will not be made since the Λ -type doubling in this state cannot be detected experimentally. This means that a $\Delta_1 F_1'^*$ is identical within experimental error with a "true" $\Delta_1 F'$.

Λ -type Doubling

For an electronic state with $\Lambda > 0$, the rotational levels are double, one level of the doublet being classified as an *a* level and the other as a *b* level.¹⁶ However O_2^+ is a homonuclear molecule and the angular momentum (*I*) of the oxygen atom is zero,¹⁷ as is known from the atmospheric oxygen bands. This means that alternate levels in the successive Λ -type doublets should be missing (cf. Fig. 3).

Alternate levels were actually observed to be missing. This is shown by the fact that the number of lines in any one series was the same as though there were no Λ -type doubling. But the lines were staggered since each rotational level was in effect slightly displaced, i.e., every other line was of slightly greater or smaller wave number than if there had been no Λ -type doubling. The staggering was made evident by plotting successive differences

¹⁶ For a discussion of the nomenclature of these levels cf. R. S. Mulliken, Reviews of Modern Physics **3**, 93 (1931).

¹⁷ For a discussion of homonuclear molecules cf. R. S. Mulliken, Reviews of Modern Physics **3**, 146 (1931).

of the lines of a branch against an arbitrary number. A straight line could be drawn between the points such that alternate points lay on opposite sides of this line. If there had been no Λ -type doubling the points would all have been on this line.

The Λ -type doubling should also appear in a plot of the $\Delta_1 F^{*}$'s. This causes the $\Delta_1 F^{*}$'s to stagger similarly to the series discussed above. The amount of this staggering is equal to the width of the Λ -type doublet, i.e., the distance which there would be between an a and b level of the same J value if both levels physically existed in the case of O_2^+ .

When the $\Delta_1 F^*$'s were plotted it was found that there was Λ -type doubling in the lower ${}^2\Pi$ state, but not an appreciable amount in the upper ${}^2\Pi$

Fig. 4. Comparison of experimentally observed Λ -type doublet widths with the theoretical curves of Eqs. (12) and (13). The value of p was obtained from the slope of the initial portion of the curve through the points of the lower ${}^{2}\Pi_{\frac{1}{2}}$ state.

state. The Λ -type doublet widths are shown by Fig. 4. The following theoretical relations are expected:¹⁸

For a case $a {}^{2}\Pi_{\frac{1}{2}}$ state

$$\Delta \nu_{ba} = p(J + \frac{1}{2}). \tag{12}$$

For a case $a {}^{2}\Pi_{1\frac{1}{2}}$ state

$$\Delta \nu_{ba} = \left[p/Y^2 + 2q/Y \right] (J - \frac{1}{2})(J + \frac{1}{2})(J + 3/2).$$
(13)

These relations represent the data fairly well and give p = 0.036, q = 0.0027. There are reasons for believing that the upper electronic state of O_2^+

is ${}^{2}\Pi_{u}$ and the lower state ${}^{2}\Pi_{g}$. If this is true, then since for oxygen the complete ψ is Sy and for an atom with $I = 0 \psi_{nu}$ is s, only-rotational levels can

¹⁸ R. S. Mulliken and A. Christy, Phys. Rev. 38, 94 (1931).

exist in the upper ²II state and +rotational levels in the lower ²II state.¹⁷ If these conditions are correct, then the designations a and b as assigned here correspond respectively to the c and d classes of rotational levels.¹⁶

From an examination of the staggering of the $\Delta_1 F''^*$'s in the lower ${}^{2}\Pi_{\frac{1}{2}}$ state, it is found that those $\Delta_1 F''^*$ (N)'s, where $N = J + \frac{1}{2}$, for which N is an odd integer have slightly larger values than they would have if there were no Λ -type doubling. Also those $\Delta_1 F''^*(N)$'s, for which N is an even integer have slightly smaller values than they would have if there were no Λ -type doubling. This means that for the lower ${}^{2}\Pi_{\frac{1}{2}}$ state the *a* levels are above the *b* levels in each Λ -type doublet. For the lower ${}^{2}\Pi_{\frac{1}{2}}$ state the reverse is true, i.e., the *b* levels are above the *a* levels. This difference is in agreement with theory.¹⁸

CONCLUSION

A possible explanation why the upper ${}^{2}\Pi$ is case *b* can be found by considering the probable electron configuration¹⁹ of this state. The electronic configuration of normal O₂⁺ has been designated as $1s\sigma^{2} 2p\sigma^{2} 2s\sigma^{2} 3p\sigma^{2} 3d\sigma^{2} 2p\pi^{4} 3d\pi^{2}$. The removal of a $3d\pi$ electron probably gives the lower ${}^{2}\Pi$ state of O₂⁺ with the electronic configuration $\cdot \cdot \cdot 3d\sigma^{2} 2p\pi^{4} 3d\pi$. The removal of a $2p\pi$ electron would give the electronic configuration $\cdot \cdot \cdot 3d\sigma^{2} 2p\pi^{4} 3d\pi^{2}$. Such a configuration would give several electronic states one of which is a ${}^{2}\Pi$ state that would be expected to have a small coupling of the spin with the electric axis, corresponding to the upper ${}^{2}\Pi$ case *b* state.

upper ² II	lower ² II
$A' = +8.2 \text{ cm}^{-1}$ B' = 1.048 - 0.014v' (observed v' = 0, 1) $D' \text{ (cal.)} = 5.6 \times 10^{-6}$ $D' \text{ (obs.)} \approx 5 \times 10^{-6}$ $r_e' = 1.41 \times 10^{-8} \text{ cm}$	$A'' = +195 \text{ cm}^{-1}$ B'' = 1.610 - 0.009v'' (observed v'' = 8, 9) $D'' \text{ (cal.)} = 4.6 \times 10^{-6}$ $r_e'' = 1.14 \times 10^{-8} \text{ cm}$ p = 0.036 q = 0.0027

TABLE VII. Values of the molecular constants.

In conclusion I wish to thank Professor R. S. Mulliken for proposing the problem and for his many valuable suggestions; also Dr. A. Christy for his interest and advice during the investigation.

¹⁹ Cf. R. S. Mulliken, Phys. Rev. 37, 1711 A (1931).