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ABSTRACT

The problem of the motion of a particle in an inverse-cube central force field is
fully treated by quantum mechanics and the results compared with the classical
theory. Taking the effective radial potential energy as Sjr, although the solutions for
negative energy for 0&5~ —h'~32m'p satisfy the usual boundary conditions, they
can not be admitted because the Hamiltonian is not Hermitian in these solutions. This
corresponds to taking ($1-',)' in place of /(/+1) as the analogue of the square of the
classical angular momentum. If we do this, we get a complete analogy between the
classical and quantum mechanically allowed solutions, with no quantization. The
solutions involve Bessel functions of both real and imaginary orders with both real and
imaginary arguments.

CLASSICALLY, considerable interest has attached to the problem of
' the motion of a particle in a central-force held falling oR inversely as

the cube of the distance. This force law occupies a somewhat special posi-
tion mathematically, and is one of the three for which the forms of the various
possible orbits may be expressed in terms of circular functions. It was studied
in particular by Roger Cotes, and the orbits are sometimes known as Cotes'
spirals. ' Quantum mechanically, this problem is of particular interest be-

cause of the complete lack of quantization, the variety of Bessel functions
to which the solution leads, the peculiar role played by the angular momen-
tum value (3+2)', and the necessity for careful consideration of the con-
ditions which an allowed solution must satisfy.

Let a particle of mass p be acted on by a radial force of 2S'/r', so that
the potential energy is

S'
V = —l

r2

where 5 is negative for an attractive force, positive for a repulsive.
We have the Schrodinger equation

Sm 2p 5'
AP+ 8' ——/=0,

h' r'

which, on being separated in polar coordinates, yields, as in any central-
force problem

* This paper was presented at the New York meeting of the American Physical Society,
February 27, 1931.

' Roger Cotes, Harmonia Mensurarum, Cambridge, 1722, pp. 31—35, 98. For a modern
discussion of this problem see, for example, Lamb's Dynamics, p. 266 ff.
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where mh/2' speci6es the s component of angular momentum; l(i+1)h'/4m'
the square of the total angular momentum, and R(r) satisfies the equation

Sm2@R" + — 8'
h'

h' l(l + 1)
E. =0.

r' Sm'p

This is the equation for one-dimensional motion in the r-coordinate under
a potential energy V„=5/r', where the effective radial force constant

h2
5 = 5' + —l(l + 1)

2p, 4m 2

We then have the radial equation

R" y h [W —S/r ]R = O,

In this the change of variable

where h = Sir'p/h'. (2)

and the substitution
R = (kR')'"i

~

R ~iigZ (R) (4)

give for Z„(R) the standard form of Bessel's equation

R'Z„"(R) + RZ„'(R) + (R' —i ')Z„(R) = 0,

where the order v is related to Shy
r = (~ + hS)"'.

The boundary conditions which must be satis6ed' are that at the origin P
shall not become infinite so rapidly as 1/r, and that it shall remain at infinity.
This requires R(r) to be zero at the origin and allows it to become infinite at
a rate r at in6nity.

Ke see that since the energy S'occurs only in the argument of the Bessel
function we have no quantization, but only continuous spectra of energy
levels.

The quantum-mechanical probability that the particle be between r and
r+dr is proportional to

~
R(r)

~

'dr, which may be compared with the classical
radial probabilities obtained by writing

5' 1 3f' 5
tI» = —+ —pr'2 + = —+ —pr')

r2 2 2pr2 r' 2

where 5, =5'+3P/2!i, and the probabilities of the di!ferent values of r are
proportional to

1/2

r dr 2(r'W —5 )
2 See Dirac, Quantum Mechanics, pp. 143—4.
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$2. It is seen that the Bessel function of the radial factor (4) has an im-

aginary argument for W'(0, and an imaginary index for 5(—1/4k. In this
case classically the particle spirals in from a maximum radius (5,/ W)'" to the
origin, along the path

increasing its radial velocity to inanity at the origin, as may be readily seen
from an energy diagram. If we write p iii=( —kW)'"r, we get as the
normalized classical probability that p be between p and p+dp

p
dp.

( k5 )1/2 ( k5 p2)1/2

Quantum mechanically we have, if @ =its,

(10)

Very little work has been done on such a Bessel function, but we can deter-
mine its characteristics in a manner indicated by Bocher, ' using a form of
Bessel's equation given by Riemann-Hattendorf. ' If we write I, =log~@~,
Z„(ii) satisfies the equation

dg
+ (ii' —i')Z = 0

Ch'

and so Z;„(ip) satisfies

—(p' —n')Z = 0.

From 'this we see tllat fol p (s, d Z/dP llas always tile opposite sigil f1oili
Z, so that the solution oscillates from f, = —~(p=0) to p=n For p). N, the
second derivative has the same sign as p and by proper choice of the phase
near t= —~, we can And one solution which falls exponentially to zero as
p —+~. Since p =I is the classical limit of motion for 5, =5+1/4k, this is just
as expected. For p-+0, 1 + —~, the equ—ation becomes that for sin(nl —const. )
= sin (e log p —const. ). This gives an infinity of oscillations near the origin of
constant amplitude at the start; making the average probability start as

p, as does the classical probability. Further, the de Broglie wave-length of
sin (e log p) for small p is 2irp/n, or, in ordinary units, 27rr/n This is .seen to
correspond exactly with the classical k/pr =27rr/( —k5,)'i' for 5, =5+1/4k.
Although we cannot ascertain the quantum mechanical probabilities in more
detail than this, it is quite certain that the average of the normalized proba-
bility curve will follow the classical probability curve (9) closely almost to
the classical limit where the classical probability becomes infinite and the

3 Bocher, Annals of Math. 6, 13'7 I,'1891—2).
Riemann-Hattendorf, Partielle DiEerentialgleichung, Braunschweig, 1876, p. 266 A.



quantum mechanical curve starts falling exponentially to zero. This is
probably the first instance which has been pointed out of the occurrence of a
continuity of energy levels with a closed orbit and quadratically integrable
f function.

For positive energies in this case (5(—1/4k), classically the particle
spirals in from inFinity to the origin, with its radial velocity asymptotically
constant fol 1Rrgc dlstRnccs, but lncIcRslng to inFlnity Rt thc ollgln, Rlong
the path

slnh 8

Thc claslcR1 plobab111tlcs of bclng between 8 and 8+d & Rrc pI'oportlonR1 to

(13)

Quantum mechanically, our solution takes the form

R(r) = ii"'Z; (s)

with s real. This Bessel function Z;„(s) satisfies

dZ
— + (z' + e')Z = 0,

df2

from which we see that d'Z/dP and Z always have opposite signs, so that the
solution oscillates all the way from I, = —~ to + ~ . Near z =0 wc get exactly
the same behavior as for solution (10) above, but for ii))I, Eq. (15) becomes
the equation for s '" sin (i'd+const. }, whereas Eq. (12) became that for
p '"e &. This makes the radial factor (14) approach sin (a+const )for la.rge
E, giving a constant average probability and a proper de Broglie wave-length
exactly to correspond with the constant classical velocity. Here we should
expect that in the whole range from 0 to ac, the a~erage of R'(r) will follow
closely the classical probability curve (13) and that R(r) will have approxi-
mately the proper de Broglie wave length to correspond to the classical
velocity, just as we have seen these conditions to hold at both ends of the
range.

The case 5(—1/4k, W=O demands special consideration. Here classi-
cally we get the equiangular spiral

1 (—2pS)'"
exp —— 0

'f M

with a radial probability proportional to r(since r ~ 1/r). Quantum mechani-
cally Eq. (2) becomes r'R" —&SR=0, giving the solutions

E(r) = r"' sin (I log r + const. ),
whose square increases as r, agreeing with the classical probability, and
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whose de Broglie wave-length as calculated from the slope of the n log r curve
is 27rr/n, agreeing exactly with the classical k/pr for 5.=5+1/4k.

So for all W, with 5( —1/4k, we get solutions oscillating infinitely
rapidly near the origin to correspond to the classical infinite velocity, and
good probability and wave-length agreements with the classical theory
throughout if we compare 5 with 5,—1/4k. We further can obtain from these
solutions a good approximation to the amplitude and rate of oscillation of a
Bessel function of imaginary index throughout its range.

(3. When we consider the range of 5 between 0 and —1/4k for negative
W, we have the well-known Bessel function of real order v between 1/2 and
0, and imaginary argument. The particular solution X„(p) falling exponenti-
ally to zero at infinity starts at the origin as p

" (as log p for p =0), and so be-
cause of the factor p'~'

R(r) = p'"E„(p)

is zero at the origin and formally satisfies all the boundary conditions. How-
ever, these solutions remain everywhere positive, and so neither they nor the
eigendifferentials J~+ Rs (r)dW are orthogonal for diA'erent W. For this
reason their physical significance as stationary states is questionable, al-
though from considerations purely of the Schrodinger equation the probabil-
ity of the particle's being at each point is definitely specified for every g.
Because of this non-orthogonality the matrix of II in these solutions is
neither diagonal nor Hermitian.

The theory of the eigenvalues of Hermitian operators has been completely
investigated by von Neumann. ' Let II be a linear operator which can be ap-
plied to a number of functions

~ ~ * (18)

and their linear combinations in such a way that the Hermitian condition

is satisfied. In general, the field of operation of H can be extended to other
functions

P~', lft ~', 43' (20)

and their linear combinations, so that (19) holds for the total set (18), (20).
If the field of operation of II is extended in this way as far as possible, one ob-
tains a set of functions which is everywhere dense, and II has' a spectrum
whose eigenfunctions and eigendifferentials are included in (18), (20), and
which form a complete set of functions. These eigenfunctions or eigendiffer-
entials are therefore orthogonal in the usual way, so the usual statistical
interpretations may be made.

' See Watson, Theory of Bessel Functions, p. 78.
6 J. v. Neumann„Math. Ann. 102, 49 (1929).
7 von Neumann 6nds one exception.
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Now it is clear in our case that the 6eld of operation of H can be extended
at most to one of the functions (17), because (19) does not hold for fsso of
them or their eigendiRerentials. Hence the rest of our solutions must form a
complete set, and solutions (I/) must be linear combinations of our other
solutions, and therefore not stationary states of energy.

This means that we must be able to express the solutions

r""E (p) = r'IsE ([—kW ]""r)

for negative 8'i as combinations of the eigendifferentials

arising from the solutions r'"J„(&) which hold for positive W (see $4). This
expansion is known':

co

rt'sZ ([ kW-, ]t~sr) = r'isJ ([kW]'Isr)dW (21)
2(W —W&) W t

and so bears out the theory completely. '
This situation is related in an interesting fashion to the question of the

quantum mechanical analogue of resultant angular momentum. The value
5=0 corresponds, from Eq. (1), to the force. constant

I h'
5' = ——l(I + 1)

2p 4m'
(22)

' See%atson, Reference 5, p. 425.
The algebra of the general theory contains inherently the requirement that all operators

be Hermitian, and so the general theory eliminates these eigenvalues in the following way:
Making use of the commutator (1/r)p, —p, (1/r) =h/22rir', we may write the Hamiltonian in

the form

H=AA = + — ——= —p2+ —,

where 0. is real and 5=n'+a/k'~'-. This form for the Hamiltonian is possible only for 5&
—1/4k, since the expression a'-+a/k'~' has an absolute minimum at —1/4k for a real.
Now since HP($') = TV@(R'), we have

fj(W)H&(W) = WfjP =fjAA P =JA&A P)0
since the integral of a function times its complex conjugate is necessarily positive. Hence 8'
is necessarily positive whenever H can be written in this form, that is, for 5& =1/4k. Thus
we see that in terms of the general theory the usual boundary conditions on Schrodinger's P
are necessary but not sufficient, and must be supplemented by an orthogonality requirement.

Langer and Rosen, Phys. Rev. 37', 658 (1931),conclude that the fundamental requirement
for an allowed solution is the equality of the "Hamiltonian Integral" 2=J'[(k'j4 )T(sg, c7$/Og)

+VP]dr and the energy. This is equivalent to the introduction of the Hermitian requirement
and accomplishes the elimination of this band of energies since J here is divergent at the origin.

The solution of the central field problem for non-integral /, which led Jaffe (Zeits. f. Physik
66, 770 (1931))to conclude that p must be finite and continuous, may be eliminated on the
same grounds of non-orthogonality as our solutions above. Requiring P(=R(r)/r) to be 6nite
at the origin would eliminate almost all of our solutions.
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while the value 5= —1/4k corresponds to

h'
5' = ——(f + —',)'—.

2p, 4m'
(5 = —1/4k) (-'3)

Now classically, the force constant

(5, = 0)

divides those values of 5. for which all values of 8'are allowed from those for
which only positive values of W are allowed, and quantum mechanically,
this same role is played by (23), so in the sense of comparing the allowed
energy ranges with classical theory, (l+-', )'k'/47r' is to be taken as the

-s
-3

5 l8 16 ZQ

Fig. 1. Probability curves for v=12. Lower curve is the radial potential energy 5jr'=
144 Wjz'. Upper curves compare the quantum mechanical probability x RJ'12(z) with the class-
ical zjI,'z"-—144)'I'.

analogue of the square of the angular momentum. So we should compare
5+1/4k with the classical 5„ in which case our correspondence is complete
in every respect.

$4. For positive 5, and W, classically the particle moves from & = (k5)'I'
to ~, rapidly approaching a constant velocity, along the path

with radial probabihties given by Eq. (13), which has an average value one.
Quantum-mechanically for 5~ —1/4k, W&0, we get

R(r) = s'"z"'J (z) 0~r (24)



with the ordinary Bessel functions whose properties are well known. "This
solution remains very small almost until &=v, the classical limit for 5.
=5+ i./4k, after which it oscillates to inanity, approaching 2'~' sin (&+const. ),
with the proper de Broglie wave-length and average probability one. The
average of this probability curve follows th'e classical curve very closely as
expected. One point of interest is that the case 5, =0, giving a constant radial
velocity, would seem to correspond better to 5=0, which gives R(r) =
s-'1~x'~~ X,~,(z) =2'" sin &, than to 5= —1/4k, which involves J~(&); however,
fol thcsc small VRlucs of 5 onc CRnnot expect too good R compRrlson. Fig. 1
shows the good agreement between the probability curves for v = 12, and it is
just such an agreement, for large

~
5~, that we would expect with the solutions

involving the imaginary Bessel functions previously discussed.
As in the classical case, these results are only as yet of academic interest;

it would be pleasing if such pretty mathematical results were to find an
application to atomic physics. I wish to thank Professors Condon, Wigner,
and Robertson of Princeton University for helpful discussions concerning
this problem.

'0 For the limited range 0 & f &-„the solution mith the Bessel function of the second kind,
Y„(E),also formally satisfies the boundary conditions, since it starts as R . Ke might expect
this solution to be eliminated just as mas the quadratically-integrable solution for negative
energies mhich started in the same way in the same band of S. Orthogonality considerations
are rather di%cult, but the reasonable requirement that the Hamiltonian integral Jconverge in

any 6nite range —in particular in a range about a singularity or in6nity of the potential func-
tion —mould eliminate these solutions, since for the solution R'I' Y„(s),J does not converge at
the origin, mhereas for s'I'J„C', z) it does. See footnote (9).


