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ABSTRACT

Electronic energy levels in molecules are discussed, by the same methods pre-
viously used in discussing atomic levels. The problem in general is much more difficult
than for atoms, and less progress can be made toward quantitative solution. For the
lowest electronic level in cases where there are definite valence bonds, however, ap-
proximate solutions can be set up which should be fairly accurate, and which lead to a
definite verification of the ideas of the writer and of Pauling regarding directed valence
and the importance of concentrated bond functions. A number of special cases are dis-
cussed, involving both spin and orbital degeneracy.

HE writer has described in a previous paper! a method of discussing the
structure of atoms according to wave mechanics. The purpose of the
present paper is to extend similar methods to a consideration of electronic
levels in molecules, particularly the lowest levels, resulting in molecular bind-
ing, giving first a general discussion and then some applications to specific
cases. The molecular problem is in general much more difficult than the atomic
one, and the definite results which can be obtained are far fewer. Nevertheless
we can obtain some general properties of polyatomic molecules, in particular
the directional properties of the valence bonds, which have already been quali-
tatively discussed by the present writer, and independently by Pauling.? In
this connection we should mention recent papers by Heitler and Rumer and
Weyl,?also discussing the quantum theory of valence bonds. These discussions
are in one important respect more specialized than that of the present paper:
they assume that the energy involved in molecular binding is small compared
with thatinvolved in the atomic multiplet structure in the atoms which com-
pose the molecule, so that they can neglect all but the lowest atomic levels in
discussing the molecular formation. This assumption is hardly justified in ac-
tual cases;and, more important, the characteristic directional properties which
we have emphasized do not appear in this approximation at all, as Heitler
and Rumer find, and as we shall show in a later section. Thus we cannot re-
gard the treatment of Heitler and Rumer as being sufficiently general to be of
very great physical significance, although in some special cases it is no doubt
of value.
The first part of the discussion, in sections 1 to 4, deals with the general

1 J. C. Slater, Phys. Rev. 34, 1293 (1929).
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description of the method, and is essentially similar to the method of dealing
with atoms already described in the previous paper. In section 5 we take up a
variety of special cases, developing most of the characteristic features in
which the treatment of molecules differs from that of atoms by means of these
illustrations. Section 6 summarizes these features, and sketches a general
method for treating the lowest electronic levels of molecules in which the
valence binding is of a conventional sort.

This paper was written while the writer was spending the summer at the
University of California. He wishes to express his appreciation of valuable
discussion with various persons there, particularly Dr. Henry Eyring.

(1) Tae PERTURBATION THEORY

In the perturbation theory, it is assumed that we are given initially a set
of functions #,°, forming in some way approximations to the real solutions
of the problem. Then we try to set up linear combinations of these functions,
wu;=2(k)S;wuz?, which form much better approximations to the solutions. If
H is the Hamiltonian operator of the problem, W; the energy value associated
with this function u,, then Schrédinger’s equation Hu;= W,u; becomes
2(k) S Hud = W;Z(k)Siuui’. Multiplying by #,°* and integrating, we have

Z(k)(Hik — Wid1)Si-= 0,

where I ;= [u;**Hu;® dv, d i, = [u;"*u;° dv. These form a set of simultaneous
linear equations for the S’s, which in general have no nonvanishing solutions
unless the determinant of coefficients (H;z— Wid;i) vanishes. Setting this
equal to zero gives an algebraic equation for the energy levels ¥;, and from
the resulting values we can write and solve the equations for the S’s. If the
set of #;"’s formed a complete set of functions, and if the linear equations and
secular equation were rigorously solved, the resulting energy values and wave
functions would be exact. But actually we are always driven to use some form
of approximation.

First, the conventional perturbation theory commences by assuming that
each unperturbed function #,° is very nearly equal to the correct function u;.
Then H;; is very nearly a diagonal matrix, whose diagonal terms I ;; are very
nearly equal to the correct energy values W;, and .Sy is very nearly diagonal,
the diagonal elements being nearly unity. Thus we can make a power series
expansion in terms of these various small quantities, with confidence that the
series will converge. The familiar perturbations of first order, second order,
etc., come from the successive terms of this expansion. Although this method
is treated in most discussions as if it were the standard method of perturba-
tions, there are as a matter of fact very few cases where it can be applied.

Instead, we generally meet the problem of degeneracy. Suppose that, in
the absence of some perturbation, a number of stationary states have the
same energy. Then any linear combination of their wave functions forms a
correct wave function associated with that energy. In general, the particular
combinations which we happen to have depend on convenience in setting
them up. Now if the perturbation is applied, and the energy levels split up,
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we no longer have this freedom of making linear combinations. The wave
functions which are solutions of the unperturbed problem may be chosen as
the #’s, but then in general we shall not have one correct function #; nearly
equal to a corresponding unperturbed one #,°. Rather we shall have one cor-
rect one nearly equal to a certain linear combination of a set of unperturbed
ones connected with the same unperturbed energy level. Thus we shall no
longer have all nondiagonal matrix components of H nearly zero, and we can-
not directly use the power series method. But it may happen that we choose
our unperturbed functions in just such a way that these nondiagonal terms
are zero anyway, and that we can expand in series after all. The perturbation
method as applied to degenerate systems accomplishes just this. Its first step
is to set up a so-called “zero order approximation.” It does this by considering
separately the small square parts of the matrix H;;, associated with states
grouped together into a single degenerate set. By suitable linear transforma-
tions we can set up an intermediate set of functions #;’, such that just these
nondiagonal components of the energy vanish. For a single square, the equa-
tions for the transformation are just like those written above for the general
case, except that the indices run only over the finite set of degenerate states.
Thus, at least sometimes, the problem is simple enough so that we can solve
for the zero order functions #;’. Next we can apply the regular perturbation
theory, seeking a second transformation to the correct functions #;, and solv-
ing by the power series method.

In actual problems in atomic and molecular structure, the method of
formulating the perturbation problem which seems most suitable is based on
the conventional method for degenerate systems, rather than on the power
series method. The essence of the scheme is that we take a finite set of unper-
turbed functions, set up the finite secular equation and transformation coeffi-
cients, and so solve for a finite number of almost correct functions and en-
ergy level. Thus, having only finite things to work with, we have a real chance
of obtaining exact solutions. Yet instead of taking together merely those few
states associated with a really degenerate group of levels, we enlarge this group
when feasible, to include all the neighboring levels which influence each other
in an important way. At least in principle, we can imagine that we would
add to our accuracy by considering more and more levels in our secular equa-
tion, approaching in the limit the exact solution, as mentioned in a previous
paragraph. The conventional description of zero order, first order, and so on,
of perturbation, is not applicable in this case. By analogy with the method
used for degenerate systems, we have merely a zero order approximation. Yet
actually our accuracy in most cases will be better than that of the first or
second order approximations of the other methods, since as far as neighboring
levels are concerned, we have what might be called infinite order approxima-
tions.

Our method, then, is this. We take a finite set of functions %%, =1 - - - 1,
and set up an equal number of linear combinations of them, u;=Z(k=1 - - - %)
S;xu1?, where the S’s are determined by
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and where the energy levels W, are the roots of the nth degree secular equa-
tion formed by setting the determinant of coefficients equal to zero.

One interesting observation relating to the method is the following: we
may regard #; as being a function containing the # parameters S;x, k=1 - - - n.
If then we apply the variation method to our problem, stating that that func-
tion is the nearest to a solution of Schriédinger’s equation which makes the
mean energy [u;*Hu; dv stationary with respect to variation of the para-
meters, keeping [u;*u; dv always equal to unity, then a simple application of
the method of undetermined multipliers leads to equations for the S’s, which
are identical with the linear equations obtained above from the perturbation.
method. Thus our procedure can be equally well considered as a method of
perturbations or of variations.

Having stated our method of perturbations, we may now proceed to the
problem. There are three important parts to it, forming the subjects of the
three following sections: first, setting up the unperturbed functions; second,
setting up the matrix components of energy and unity with respect to these
functions: third, solving the secular equation and equations for the S’s.

(2) UNPERTURBED WAVE FUNCTIONS

The unperturbed wave functions #,° from which we start are all functions
of coordinates and spin, antisymmetric in the electrons. We build them up,
for molecules as for atoms, from combinations of one-electron wave functions.
In this we differ from the other writers, as Heitler and Rumer, who have
worked in this field, for they assume the atomic problem already solved, and
build up molecular functions out of atomic functions rather than electronic
ones. There seem, however, to be essential advantages in the present method,
which have been missed by the other writers.

Suppose there are N electrons in our system, whether it be an atom or a
molecule. Then to set up a single unperturbed function, we assign a single
set of quantum numbers, or one-electron wave functions, to the electrons.
For example, let us suppose that one has the wave function 4, another the
function B, etc., up to a final function E, say. Each of these is a function of
three coordinates of position, and one of spin, of a sort which we discuss later.
Let the coordinates (of position and spin) of the first electron be denoted by 1,
of the second by 2, etc. Then we could set up an approximate function as the
product

A(1)BQ) - - - E(N).

But this would not be antisymmetric in the electrons, and to set up such a
function, we add together all N! functions formed by making all possible
permutations of the functions 4 - - - E (which by the exclusion principle must
be all different), each with a coefficient + 1/N'/?, depending on whether the
permutation is even or odd. Thus if PA(1)B(2)-E(N) represents a function
in which such a permutation has been made, we have as our function

i 2 & PAMBQ) - EW)
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or, written as a determinant,
A1) A2) - - AW)
1 | BQ) BQ)---BW)

N2
E(1) E(2)--- E(N)

The factor 1/N!'/2 is inserted in order partly to take care of normalization.
If 4, B,- - - E are normalized (as we assume them to be), then if they are
also orthogonal, the whole function will be normalized. We do not assume 4,
B, etc. to be actually orthogonal, but in any case this choice of a factor simpli-
fies the formulas.

We have seen that to each set of one-electron functions 4, B, - - - E cor-
responds just one antisymmetric function for the whole system. In our per-
turbation problem, however, we consider a whole group of such antisym-
metric functions, and therefore a whole group of sets of one-electron functions.
The degeneracy involved arises from two sources: spin degeneracy, and or-
bital degeneracy. This is a direct consequence of the fact that the quantum
numbers of an individual electron are divided into those depending on the
orbit, and that depending on the spin, and the fact that the wave function
of the electron can be written as a product of a function of the coordinates,
and a function of spin.

In the first place, we consider spin degeneracy. Suppose we are given a
single set of orbital one-electron functions. Corresponding to this, we have a
rather large number of possible arrangements of the spins. For example, if the
orbital functions are all different, each spin can be either parallel or anti-
parallel to the axis, so that if we consider all possibilities there will be 2¥ dif-
ferent arrangements, and the same number of unperturbed wave functions.
After solving the perturbation problem, these yield a doublet level for one
electron (2!=2), a singlet and a triplet for two electrons (22=143), two
doublets and a quartet for three electrons (23 =2+42-44), two singlets, three
triplets, and a quintet for four electrons (2¢=1+1+3+4343-5), and so on.
Or if the orbital functions are not all different, some of these arrangements
are not allowed on account of the exclusion principle, each pair of equal func-
tions contributing only one possibility rather than four, so that two equiva-
lent electrons have only a singlet level, two equivalent ones and one other a
doublet, two equivalent ones and two others a singlet and triplet, and so on.

Next we consider orbital degeneracy. We must take, not merely one set
of one-electron orbital functions, but usually a number of such sets. Each
set will have all the possible spin arrangements, so that the number of unper-
turbed functions which we use can become considerable. We shall find, how-
ever, that we can often choose our orbital functions in advance so as to sim-
plify the problem by obtaining groups of terms which do not influence each
other. The actual way of choosing the orbital functions is a question about
which there might be considerable difference of opinion. In the first place, we
could choose functions which are solutions of a central field problem, as is
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done in the atomic case, and as Heitler and London? have done in discussing
molecules. Or second, we could use solutions of the problem of many centers,
as Lennard-Jones® has done in molecular problems, and as Bloch® has done
in the problems of metals. In the present paper we shall confine ourselves
to the first method, although we do not wish to indicate that the other method
is not sometimes valuable. Even if we use only solutions of a central field
problem, still it is not obvious which functions we should use. In an atom, it
is easy to answer this question: we use functions corresponding to a definite
azimuthal quantum number, and a definite component of angular momentum
along a fixed direction. The essential reason for doing this is that the total com-
ponent of angular momentum along a fixed direction is quantized, so that this
choice of functions produces a splitting up of the terms into different groups,
which do not combine, and which therefore can be treated separately, greatly
simplifying the calculation. With diatomic molecules, if the axis is chosen as
the axis of figure, we have the same simplifying feature. But with polyatomic
molecules, unless they happen to be linear, this is no longer the case. The
torques acting on the electrons are such that the component of orbital angu-
lar momentum in every direction changes with time, and no longer is quan-
tized. The conventional wave functions, determined by the quantum numbers
n, I, m;, no longer have any particular advantage. We shall as a matter of
fact find that in many cases different choices of wave functions will very de-
cidedly simplify the calculation. Examples of this will be pointed out later.
The essential idea of using such different wave functions is that in many cases
we can choose them so that the lowest state of the molecule can be determined
from one set of orbital functions alone, without considering any orbital de-
generacy. To do this, however, requires very careful choice of the functions.
We shall find in the end that they must be chosen essentially according to the
criterion which has been stated by the writer and by Pauling: they must be
such as to give as much -overlapping as possible with the other electrons to
which they are held by valence bonds, and as little as possible with electrons
to which they are not held. That is to say, they must be concentrated bond
functions. In many cases, too, it is necessary for these lowest states to proceed
as Pauling has, using functions in which not merely the component of angular
momentum along a fixed axis is not quantized but where even the total angu-
lar momentum is not determined. That is, we use functions which are not s,
or p, or d electrons, but are mixtures of all these. A criterion like that of
Pauling, for getting most concentrated bond functions, would be applied to
know which function to use in any particular case. We shall see later by ex-
amples just how the functions should be chosen in particular cases.

(3) MAaTrRIXx COMPONENTS

Suppose we have two antisymmetric wave functions, one (U) formed from
the one-electron wave functions 4 - - - E, the other (U’) from the one-electron

4 W. Heitler and F. London, Zeits. f. Physik 44, 455 (1927).
5 J. E. Lennard-Jones, Trans. Faraday Soc., 25, 684 (1929).
8 F. Bloch, Zeits. f. Physik 57, 545 (1929).
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functions 4’ - - - E’. Suppose also that we have some operator F, whose ma-
trix component we desire between these two functions. Later we may spe-
cialize by letting F be the energy, unity, or other quantities. Then by defini-
tion, using the formula for antisymmetric wave functions, our matrix com-
ponent is [U*FU' dv=(U/F/U") =

z%fz + PA*(1)B¥(2) - - EXW)F( X £ PA'(1) - - - E'(N))dy,

where we therefore have a double summation, over permutations in each
function. But now on account of the fact that the only operators F which
we meet are symmetric in the electrons, we see that each term of the first
summation yields the same result, and since there are just N!terms the result
can be written as a single sum,

f A*(1)B*(Q2) - - EX(W)B( Y + PA’(1) - - - E'(N))dv.
Each term of the summation is of the form

fA*(nB*(z) L EN)FA'(L) - - - BY(N)d,

and such an integral we shall symbolize as
(AB - - - E/F/A’ - - E).

We shall meet such integrals constantly, and shall write our various “ex-
change integrals” in this form. We can then symbolize our whole matrix com-
ponentas X+ (4B .- E/F/PA’'- - - E").

One simplification arises when we introduce the spin part of the wave
functions separately, and when F is independent of spin, or of magnetic ef-
fects. If then a is the part of the function 4 depending on coordinates, etc.,
we have (AB- - - E/F/A"- - -E")Y=(ab---e¢/F/a’- - -¢')if A and A" have
the same spin, and so on down to E and E’ having the same spin; but it equals
zero otherwise.

Incase AB- - - E, A’ - - E" are all orthogonal to each other, many sim-
plifications appear, which were met with in the atomic problem, but do not
generally appear in the molecular problem. Two forms of operator are of
particular interest, those of the form F=2.f;, a sum of terms each depending
on the coordinates of one electron, and those of the form G= 2 (pairs ij) gi;, a
sum of terms each depending on the coordinates of a pair of electrons. In this
case it is easily shown that the following results hold, where U and U’ repre-
sent two antisymmetric wave functions:

(U/F/U)=Z2(a) (4/f/4)
(U/F/U")Y=(A/f/A"), if U’ differs from U by just one index, 4% A4",
=0 otherwise.
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Also
(U/G/U)=Z (pairs AB) ((4B/g/AB)—(AB/g/BA))
(U/G/U")=Z2(B#=A) ((AB/g/A'B)—(AB/g/BA")),if U’ differs from U
by one index, A’ A
=(4B/g/B'A")—(4AB/g/B’A"), if U’ differs from U by two
indices, 4’#A, B'#B
=0 otherwise.

In these equations,

A/1/B) = f AWfB()don

(4B/g/CD) = f f A(1) B(2)guC(1)D(2) dvsdo.

[f in particular F and G do not involve the spins, we have just functions of
the coordinates coming into the expressions above: (4/f/B) is zero unless a
and b are connected with the same spin, in which case it equals (a/f/b), where
a and b are orbital functions, and (4B/g/CD) is zero unless A and C are
connected with the same spin, and also B and D, in which case it equals
(ab/g/cd). Although in molecular problems we generally have one-electron
functions which are not orthogonal to each other, still they do not depart far
from orthogonality, and for that reason terms which are entirely absent ac-
cording to the rules above are likely to be small for molecules. Thus for in-
stance, since energy operators are of the form F and G, the components of
energy are small between two functions which differ in respect to more than
two electrons.

It is worth while to consider the form which the matrix components of
energy will take in actual cases. The energy operator for a molecule with fixed

nuclei is
h? Z 02
2VE = 2t 2 ZuZy rep + 26/
ia Z af} 7

87r2m i Yia

o= —

In this, the summations over ¢ and j are over the electrons, those over o and 8
are over the nuclei. The Z’s represent the nuclear charges, in electronic units,
and the 7’s the distances of separation. We now allow this operator to act
on a function a(1) - - - e(n). In doing this, we note the equations which the
functions a, etc., satisfy. These are of the form

j— 2
—— V2 = (V, — Eya

8mim

where V, is a potential function for the one electron problem, E, an energy
level. Substituting, we have

Ha(l) - - - e(n) = (Z(Va — E,) — ZZaeg/ria
+ D ZZs/1as + ZeZ/n,)a(l) cee(n).
B i
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All terms but the last are either constants or functions of single electrons,
and so form the functions f; the last sum represents a sum over all pairs of
electrons, and so is the sum of g’s.

When now we multiply this by another wave function, and integrate, we
obtain terms of two sorts. First, there are the small terms which result en-
tirely from lack of orthogonality of the functions. Similar terms to these
would also be found in the matrix of unity, and in the final calculation most
of them will cancel out. For instance, in computing the mean value of a con-
stant term in the energy over any unperturbed function, we must get just
this constant itself. Yet this often comes about by having such terms in an
energy expression in a numerator of a fraction, and corresponding terms in
matrix elements of unity in a denominator, so that finally these terms just
balance out. These terms, then, though they must be considered in the actual
calculation, are not of particular theoretical interest, and need not be dis-
cussed further.

The terms of the second sort are similar to the Coulomb and exchange in-
tegrals which Heitler and London found in the problem of the diatomic mole-
cule, or to the similar integrals within the atoms which we meet in complex
atomic spectra. Thus for instance if we have the Coulomb integral (ad

- -e/H/ab- - - e), the result is essentially similar to a sum of Coulomb
interactions between all pairs of electrons in the molecules. With the simple
resonance integral, (ab - - - ¢/H/ba - - - ¢), where the two functions differ just
in the interchange of functions ¢ and b, connected with different atoms, the
leading terms form just the sort of exchange integral between a¢ and b that
Heitler and London would have found if the molecule contained no other elec-
trons. If the two functions differ by a cyclic permutation of three electrons, as
(abc- - - ¢/H/cab - - - €), we have an integral which would be zero if the func-
tions were orthogonal, and which will be much smaller than the simple ex-
change integrals in any case. It is hardly worth while in a general discussion
to go more into details about the various integrals. One thing should be noted,
however, for the guidance of any one making actual calculations: it is neces-
sary to analyze carefully the exact relations of the functions V, and the vari-
ous terms in 1/7in the energy. Some of the terms refer to interactions within
the various atoms, others to interactions between atoms, and a careful separa-
tion of them is essential. It is much safer to formulate the problem in a gen-
eral way, including all electrons of the problem, as we have sketched here, and
then eventually to show that some terms are independent of interatomic dis-
tance and lead to atomic energies, than just to start out as if the atoms con-
sisted only of valence electrons surrounding a nucleus of some effective nu-
clear charge, even though the latter method gives qualitatively the correct
interpretation of multiplet levels, valence, and so on.

(4) SOLUTION OF THE SECULAR EQUATION

In the last two sections, we have sketched the method to be used in set-
ting up unperturbed wave functions, and in calculating matrix components
of the energy and of unity with respect to them. We are now able to set up
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the secular equation for the energy, and the next problem is to try to solve it.
The equation is an algebraic one of high order, and without special devices
we cannot hope to attack it successfully. In the atomic problem, it was gen-
erally possible to find enough special properties of the equation to permit of
its complete solution, without any difficulty whatever. In the first place, each
unperturbed state was characterized by two quantities, the component of orbi-
tal and spin angular momentum along a fixed axis, which we called M}, and
Mg respectively, which remained constant when we applied the perturba-
tions. As a result of this, we could divide the states into groups, each with a
particular M, Mg, and each such group could be treated independently of
the others. [ had no matrix components from one group to another, so that
the secular equation broke up into a product of factors, each connected with
one group. This automatic factoring of the equation helped with the solution,
but a further principle also was of service. It could be proved by independent
methods that all the roots of the partial equation connected with a given M,
Mg, were also roots of the equations connected with any group with smaller
My or Ms. Thus we knew some, at least, of the roots of each partial equation,
provided we had already solved the equations connected with larger M1 and
Ms. As a matter of fact, proceeding in a systematic manner, it was found that
in every case discussed, all but one root of each partial equation could be
determined in this way. Now when all but one of the roots of an algebraic
equation are known, it is very easy to solve for the other one. We can merely
use the theorem that the sum of the roots equals the coefficient of the next to
the highest power of the unknown, provided the coefficient of the highest.
power in unity. Thus by subtracting the known sum of all but one root from
the known sum of all the roots, we get immediately the desired root. Since
our equation is written in the form of a determinant, it can be shown im-
mediately that the desired coefficient, equal to the sum of roots, is simply the
sum of all the diagonal elements H,; appearing in the determinant. Thus in
the atomic case we were actually able to dispense with the calculation of all
elements except these diagonal ones, and we encountered no equations except
linear ones, so that all energies were linear functions of the various integrals.

In the molecular problem, the method is not so easy. The orbital angular
momentum is no longer quantized, and the only special fact which we have
left is that the levels are separated into groups with different values of Mg,
resulting in a factoring of the equation into sub-equations, and the occurrence
of all the roots of one equation in the next lower equation. The net result of
this is that we can break up the terms into groups, each containing all the
terms of the same multiplicity. Thus if there is just one term of a given multi-
plicity, its energy will be given linearly in terms of the various integrals; if
there are two the energies will be given asroots of a quadratic, and so on. In
other words, for practical purposes we are limited, as far as exact solutions
are concerned, to cases where no more than two terms of the same multiplic-
ity occur. For example, suppose our problem is one in which all electrons
have different but definite orbital wave functions, and in which the only de-
generacy is that of spin. Then two electrons give a singlet and triplet, each
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of which we can get explicitly (as Heitler and London did in the case of I, an
example of this case). Three electrons give a quartet and two doublets, and
the quartet comes linearly in terms of the integrals, the two doublets as the
two roots of a quadratic. Four electrons give a quintet, which can be obtained,
three triplets, which could be found only as the roots of a cubic, and two sing-
lets, the roots of a quadratic. Fortunately the molecular levels of lowest multi-
plicity are stable, so that with four electrons we can still get the energy of the
lowest level explicitly. But with five or six electrons there are five doublets,
or five singlets, respectively, and the solution can no longer be found by
elementary methods. In diatomic molecules, special properties of symmetry
in the nuclei, and other such things can produce a possibility of still further
factoring, and can simplify the solution. But in general such methods are not
applicable in polyatomic molecules, and we shall therefore not make particu-
lar use of them.

Fortunately the cases which we can solve exactly include some important
ones, in which we can examine the relative sizes of various terms. When we
do this, it appears that certain approximate methods can be legitimately used,
when we are interested only in the lowest molecular level. These methods
amount to choosing a particular combination of unperturbed functions as the
most likely one, by a method suggested by the chemical method of drawing
valence bonds, and using as the energy simply the mean value of H averaged
over this combined wave function. We shall show that this gives results which
are quite satisfactory in the cases where we can check them up, and that it
leads in general to physical results concerning energy levels and valence bonds
which are of great interest. The special cases will be discussed in the next sec-
tion, and these general considerations will be described in the concluding
section.

(5) ILLUSTRATIONS IN TypIicAL CASES
(a) Two atoms, each with one s electron

As a first simple illustration, we take the interaction of two atoms each
containing a single s electron (H,, Nag, NaK, etc.).” Let @ be the wave function
(of coordinates only, not involving spin), of an electron on the first nucleus, b
the function of an electron on the second. Since the electrons are s electrons,
there is no orbital degeneracy to consider. As a result of spin degeneracy,
there are four unperturbed functions: In this table, 4+ means that the com-

Spin of a Spin of b Total spin
I + + 1
11 + - 0
111 - -+ 0
v - — -1

ponent of the electron’s spin along an arbitrary axis is +1%/2m, and — means
that it is —34/2m. A total spin of 1 means really 14/2x. Now a triplet has

7 This problem has been discussed in detail by N. Rosen, Phys. Rev. 38, 255 (1931).
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three degenerate levels, of total spin 1, 0, —1, and a singlet has one level, of
spin 0. Hence we have a triplet and a singlet. Further, if we work out matrix
components of energy and unity, we find that there are no components be-
tween states of different spin, so that I, IV stand all by themselves, and 11
and III are grouped together. Now we can work out our matrix components
according to the rules of section 3. We have

Oy = (ab/H/ab) — (ab/H/ba)
dr1 = (ab/1/ab) — (ab/1/ba) = 1 — (ab/1/ba),

if @ and b are normalized. Thus we have as one factor of the secular equation
merely

((ab/H/ab) — (ab/H/ba)) — W(1 — (ab/1/ba)) = 0,
or
— (ab/H/ab) — (ab/H/ba)
T 1= (ab/1ba)

This is evidently the energy of the triplet. Next we compute the other com-
ponents:

Hy a1 = (ab/H/ab) = Hun,m

Hygn = Huru = — (ab/H/ba)
dir,1 = dor,m = 1
dr = durir = — (ab/1/ba).
Then we have the following secular equation between states IT and III:
(ab/H/ab) — W — (ab/H/ba) + (ab/1/ba)W | 0
— (ab/H/ba) + (ab/1/ba)W (ab/H/ab) — W ’

or ((ab/H/ab) — W)2— (— (ab/H/ba)+ (ab/1/ba) W)? = 0. This equation can be
factored at once into
((ab/H/ ab) — (ab/H/ba) — (1 — (ab/1/ba))W) X
((ab/H/ab) + (ab/H/ba) — (1 + (ab/1/ba))W) = 0.
Setting the first factor equal to zero, we obtain just the triplet solution al-
ready found. In fact, if we did not know how to factor or otherwise solve our
quadratic, we could have divided it through by this linear factor, and the re-
sulting linear equation would have given us the singlet directly. This gives
as the singlet energy
(ab/H/ab) + (ab/H/ba)
B 1 + (ab/1/ba)
When we examine the meaning of the integrals, we see that (ab/H/ab) is

Heitler and London’s Hi, (ab/H/ba) is their H,, and (ab/1/ba) is their S
Thus these results agree exactly with the ones which they derive.
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It is worth while to solve also for the coefficients determining the correct
linear combinations of wave functions. We find of course that I and IV give
directly two of the three components of the triplet. Substituting the energy
values into the equations for IT and III, we find that except for a normalizing
factor, the third function connected with the triplet is II4III, and the singlet
function is IT—1III. It is to be noted that this result seems at first sight
strange, when compared with the well-known fact that the triplet functions are
antisymmetric in the coordinates of the two electrons, while the singlet func-
tions are symmetric. We might at first sight expect the signs to be reversed.
But if we actually put in the functions of coordinates and of spin, we
find that the singlet function II—III is really symmetric in the coordinates,
antisymmetric in spin, so that it is all right.

(b) Three electrons, with only spin degeneracy

The preceding case was really the general one of two electrons, with or-
bital wave functions ¢ and b, with only spin degeneracy. Next we consider
the case of three such electrons, with functions a, b, and ¢. We expect a
quartet and two doublets. There are eight unperturbed functions. State I and

Spin of a Spin of b Spin of ¢ Total spin
I + + + 3/2
1I + + - 1/2
IIT + - —+ 1/2
v - + =+ 1/2
\Y% - - + -1/2
VI - + - -1/2
VII + - - —-1/2
VIII - — - —-3/2

VIII by themselves give two of the four states of the quartet. II, III, IV give
a cubic, one of whose roots gives another state of the quartet, and the other
two roots give the two doublets. Similarly V, VI, VII yield the fourth state
of the quartet, and the other two states of the doublets. We have then

Hy 1 = (abc/H/abc) — (abe/H/bac) — (abc/H/acb) — (abc/H/cba)
+ (abc/H/bca) + (abc/H/ cab)
diyx = 1 — (abe/1/bac) — (abe/1/ach) — (abe/1/cba) + (abe/1/bca)
+ (abe/1/cab).
The energy of the quartet is then
W =
(abc/H/ abc)— (abc/H/ bac) — (abe/H/ ach) — (abc/H/ cba)+ (abe/H/ bca)+(abe/H/ cab)
1—(abc/1/bac) — (abe/1/ ack) — (abc/1/ cba)+ (abc/1/bca) + (abe/1/cab)

It is worth noting that if the functions @, b, ¢ are nearly orthogonal, the last
two terms of numerator and denominator will be small compared with the
others, since they correspond to interchange of three electrons. Thus to an
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approximation we may write the formula without these terms. Of if we wish
an even rougher approximation, we may leave out the terms in the denomina-
tor altogether, as we could if the functions were really orthogonal, obtaining
a formula for the quartet

W = (abc/H/abc) — (abc/H/bac) — (abc/H/acb) — (abc/H/cba),

or the first term, minus the terms obtained by making each possible inter-
change of two electrons.

To investigate the doublet terms, we must consider the secular equation
between 11, ITI, and IV. We have

Hrr 11 = (abe/H/abc) — (abc/H/bac)
Hrxir = (abe/H/abc) — (abc/H/ cba)
Hrv v = (abc/H/ abc) — (abe/H/ ach)
Hry o = (abe/H/cab) — (abe/H/ ach)
Hui v = (abe/H/cab) — (abc/H/bac)
Hr v = (abe/H/cab) — (abc/H/cba).

The matrices of unity are just the same, with 1 substituted for H. In the last
formula, we have used the fact that (abc/H/bca) = (abc/H/cab). This follows
from the following two steps: (abc/H/bca) = (cab/H/abc), since from defini-
tion we can make any permutation of the first set of indices, if only we make
an identical permutation of the second set at the same time; and (cab/H/abc)
= (abc/H/cab), since the matrices are Hermitian and real.

Instead of trying to solve the cubic equation between II, ITI, and IV,
we shall adopt a method which we shall find useful in many cases. We intro-
duce four linear combinations of the three functions, which we shall call 4,
B, C, and D, by the equations

A = 1/2V%(I1 — TIT)
B = 1/212(II1 — 1V)
C = 1/22(IV — II)
D = 3(II 4 III + IV).

These four functions cannot of course be linearly independent; as a matter of
fact, as one immediately sees, 4 +B-+ C=0. Thus one can use three inde-
pendent ones, as 4, B, and D, for setting up a new secular equation. When we
compute the matrices of H and of unity with respect to these functions, we
discover immediately that all matrices between D and any one of the other
three functions are zero. That means that our secular equation is already fac-
tored: one energy level is that obtained directly from D, or Hp p/dp,p, and
the other two are roots of a quadratic obtained, say, from the functions 4 and
B. Now the first energy value proves to be just the energy of the quartet, so
that we see that D is the wave function of the quartet. The wave functions
for the doublets are then two orthogonal linear combinations of 4 and B
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(or A and B and C, which comes to the same thing). To set up the secular
equation between 4 and B, we make use of one fact: since A +B+C=0, we
have at once

Hps + Hap+ Hoe =0
Hup + Hpp + Hpe =
Hyc + Hpe + Hee = 0.

Eliminating from these equations, we have Hap=%(H¢c—H4—Hpp). That
is, we can write our nondiagonal elements of energy in terms of the diagonal
elements. The same result holds for the matrix of unity. Now substituting
in the secular equation, and using the abbreviations

Hyy = P, Hpp = Q, Hee = R, daa = p, dps = q, doo = 7,
we easily find that the solutions of the quadratic are
Pp—qg—n+Q—=p+qg—r+R(—p—qg+7)
PP+ @2+t — 2pq — 2qr — 2pr
L AP+ Q%+ R2pg+PQr(r—p—q) +QRp(p—qg—7)+PRe(g— p—r))'/?
- P+ ¢t — 2pg — 2gr — 2pr '

This equation takes an interesting form in the case where we can neglect
the lack of orthogonality of the functions II, III, IV. For then we have
p=g=r=1, and the limiting form is

W:

=S8Ry 2t ot e - PO~ OR — PRI
P+Q+4+R 2
=IO 2ar - 0r @ - Btk & - Py,

It is easily found that the diagonal elements of the matrix of I, required in
these formulas, are

Hya = P = (abc/H/abc) + (abe/H/ach) — §((abc/H/bac) + (abe/H/cba))

— (abe/H/cab)

Hpp = Q = (abc/H/abc) + (abe/H/bac) — 5((abc/H/ acb) + (abc/H/cba))
— (abc/H/ cab)

Hce = R = (abe/H/abc) + (abe/H/cba) — ((abc/H/ acb) + (abc/H/bac))
— (abc/H/ cab).

The formulas for p, ¢, 7, are the same with unity in place of 7. In the limiting
case where p=¢g=r=1, we can then use P—Q=3/2((abc/H/ach)— (abe/
I/bac)), etc., obtaining®

8 F. London, Zeits. F. Electrochem. 35, 552 (1929); Sommerfeld Festschrift, Hirzel, p. 104,
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W = (abc/H/abc) — (abc/H/cab) + {%(((abc/H/acb) — (abe/H/bac))*
+ ((abe/H/bac) — (abe/H/cba))? + ((abc/H/cba) — (abc/H/ ach))?)}/2.

The method we have used deserves a certain amount of comment for its
physical interest. The function 4 is essentially II-III. Now if the electron a
were removed to a large distance from b and ¢, so that we had large interac-
tion just between b and ¢, we should have the case of a diatomic molecule, and
from the preceding section we see that this function would give just the singlet
state of that molecule, the one givng strongest molecular binding. Thus 4
corresponds essentially to a valence bond between electrons b and c¢. Similarly
B corresponds to a bond between ¢ and b, and C to a bond between a and c.
Thereal situation appears as a combination of these, taking some of the char-
acter of each. Generally one of the three bonds will appear much stronger
than the others, and then the real wave function is much nearer the function
4, B, or C, as the case may be, as we can find by actually working out the
transformation coefficients.? The energy in such a case takes on a particularly
simple form. We can get at this in either of two ways. First, we can expand
the quadratic, regarding certain interaction integrals as being large, others
small. For example, if the electron ¢ were removed to a large distance, the
integral (abc/H/acb) would still be large, for it is essentially an exchange in-
tegral between b and ¢, but the integrals (abc/H/bac) and (abc/H/cba) would
be small. Expanding the quadratic, taking for simplicity the case p=qg=7r=1,
we have

W = (abc/H/abc) — (abc/H/cab)
+ (abe/H/ ach) — %((abe/H/bac) + (abe/H/cba)).

The diatomic molecule b¢ by itself would have the energy (abc/H/abc)
+ (abc/H/acb), where the a in the integrals plays a purely formal role. Thus
we see that the addition of the electron ¢ has two results: first, the small
term (abc/H/cab), coming from cyclic permutation of electrons, is introduced.
This is unimportant. But second, the exchange integral (abc/H/acb) between
the electrons b and ¢ is diminished by half the integrals (abc/H/bac) and
(abc/H/cba) between a and b and ¢ respectively. For example, if we take the
negative sign, the interaction integral between b and ¢ would normally give
an attraction between these atoms. Then the interaction between a and the
other atoms will be one of repulsion, but this repulsion will be only half as
great as if b and ¢ were not bound into a molecule. Physically, then, if a uni-
valent atom approaches a diatomic molecule formed of two univalent atoms,
the single atom will repel the molecule. On the other hand, if the atom ap-
proaches too closely, the approximation no longer holds, and it may even
become bound to one of the atoms of the molecule, liberating the remaining
atom of the molecule in the process, and resulting in a chemical reaction. The
necessary energy which the molecule must have to rise over the hill of po-
tential to the valley corresponding to the other form of molecule is the heat of
activation, as has been shown by Eyring and Polanyi.!

9 Compare W. Heitler, Phys. Rev. 38, 243 (1931).
10 Eyring and Polanyi, Zeits. physik. Chem. B12, 279 (1931).
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The second way in which we may get at the approximate energy, when
the wave function is very nearly one corresponding to a pure valence bond is
to notice that the functions 4, B, C correspond exactly to these bonds, and
that by first order perturbation theory the diagonal energy values of these
states give the best approximations to the energy. Thus for the bond between
atoms ¢ and b, we have the state 4, and we see that the diagonal energy
H 44 =P is exactly the same that we found by expanding the quadratic. More
accurately, we should take the energy to be Haa/daa=P/p. By taking ad-
vantage of this fact, we can avoid the necessity of expanding in quadratics
entirely in many cases, although of course not in finding activation energies,
for in that problem we must be able to pass continuously from one limiting
case to another. For discussing a single molecule, however, the linear formula
is in general sufficient, as we shall see as we progress. And we may well state
in words the characteristic of the wave function and energy level which we
have to express this case. The wave function is made up of the two unper-
turbed functions for which the electrons to be bound have opposite spins, the
two functions being added with opposite signs. And the energy is the sum of
the Coulomb interaction (abc/H/abc), the exchange term (abc/H/ach) be-
tween the electrons being bound, diminished by half the exchange term be-
tween the remaining electron and the two bound in the molecule, and further
corrected by the cyclic term. As we progress, we shall find this general situa-
tion characteristic of valence binding.

(c) Four electrons, with only spin degeneracy

The case of four electrons, with functions a, b, ¢, d is similar in most re-
spects to that of three. There are one quintet level, three triplets, and two
singlets, so that we cannot get the triplets in explicit form without solving a
cubic. Since the levels in which we are most interested are the singlets, we
limit ourselves to solving for them. There are sixteen unperturbed functions,
of which we list those having positive or zero total spin. The function I is

Spin of Spin of b Spin of ¢ Spin of d Total spin

I

II
III
v
\Y
VI
VII
VIII
IX
X
XI

I
b 11 |+t
e
S+

COCCOOOR R FHIIN

a quintet function. II, III, IV, and V give a biquadratic equation, of which
one root is the quintet energy, the others the three triplet energies. Finally
VI-XI lead to a secular equation of the sixth degree, having as roots the
roots of the biquadratic, and also the two singlet energy levels. If we now
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evaluate the fourth power and sixth power equations, as polynomials in W,
we must find that the sixth power one is divisible by the fourth power one,
leading to a quadratic equation. We can greatly simplify the calculation, how-
ever, if we introduce at the outset seven linear combinations of the functions
VI ... XI. These combinations may be denoted as follows:

A:1(VI — VIII — IX + XI)

:3(VIIT — VII — X + IX)

:3(VII — VI — XI + X)

:1/212(VII — X)

:1/212(VIII — IX)

11/212(VI — XI)

G:1/6'2(VI 4 VII + VIIT + IX + X + XI)

N D a W

As with three electrons, the functions 4, B, C are not independent, but in-
stead 4 +B+C=0. When now we compute the matrix components of /7 and
of unity with respect to the functions 4 - - - G, using for this purpose the
components between the functions VI - - - XI, we find that the functions fall
into three groups: 4, B and C, D, E, and F, and G, such that the matrix
components between the groups are exactly zero. In this way we have an
automatic factoring of the secular equation into a quadratic, a cubic, and
a linear equation. Simple discussion shows that two combinations of 4, B,
and C correspond to the singlets, D, E, and F to the triplets, and G to the
quintet level. To solve for the singlets, then, we need only use the quadratic
secular equation between states 4 and B.

Since 4 +B-+C=0, we have just the same situation that we did in the
case of three electrons. All the calculation goes through as before, and we need
not even rewrite the solutions of the quadratic equation. The only difference
isin the values of the diagonal energies, H 44, Hgp, Hce, or P, Q, and R. These
are

P = (abcd/H/abcd) + (abed/H/cbad) + (abed/H/ adcb)
— 4((abed/H/bacd) + (abcd/H/dbca) + (abed/H/ achd) + (abed/H/ abdc))
— 3((abecd/ H/ cabd) + (abed/H/bdca) + (abed/H/dbac) + (abed/H/ acdb)
+ (abcd/H/bcad) + (abcd/H/dack) + (abed/H/cbda) + (abcd/H/ adbc))
+ ((abed/H/badc) + (abed/H/cdab) + (abcd/H/dcba))
+ ((abed/H/bcda) + (abed/H/ dabc))
— $((abcd/H/bdac) + (abcd/H/ cdba) + (abed/H/ cadb) + (abed/H/dcab))
Q = (abcd/H/abcd) + (abed/H/bacd) + (abcd/H/ abdc)
— 3((abecd/H/ cbad) + (abed/H/dbca) + (abed/H/ acbd) + (abed/ H/ adcb))
— 3((abed/ H/cabd) + (abed/H/bdca) + (abed/H/dbac) + (abed/H/ acdb)
+ (abed/H/bcad) + (abed/H/dach) + (abcd/H/ cbda) + (abed/H/ adbc))
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+ ((abed/H/badc) + (abed/H/cdab) + (abcd/H/dcba))
+ ((abcd/H/cdba) + (abcd/H/dcab))
— 1((abcd/H/bcda) + (abed/H/bdac) + (abed/H/cadb) + (abed/H/dabe))

R = (abcd/H/abcd) + (abed/H/dbca) + (abed/H/ achd)
— Y((abcd/H/cbad) + (abcd/H/ adcb) + (abed/H/bacd) + (abed/H/ abdc))
— L((abcd/H/ cabd) + (abed/H/bdca) + (abed/H/dbac) + (abcd/H/ acdb)
+ (abed/H/bcad) + (abcd/H/dach) + (abed/H/cbda) + (abed/H/ adbc))
+ ((abcd/H/badc) + (abcd/H/cdab) + (abcd/H/dcba))
+ ((abecd/H/bdac) + (abcd/H/ cadb))
— Y((abcd/H/bcda) + (abcd/H/dabc) + (abed/H/cdba) + (abed/H [dcab)) .

The values of p, ¢, and 7 are just the same, with unity in place of H.

On account of the rather formidable nature of these formulas, it is worth
while describing the physical nature of the terms. First in each case comes
the Coulomb interaction (abcd/H/abcd). Next come six terms connected with
the six possible resonance interchanges of pairs of electrons. These six terms
alone are large and important. Two of them in each case have positive coeffi-
cients, and hence produce binding, since the integrals themselves are generally
negative. They correspond to valence bonds between two pairs of electrons:
the pairs ac and bd in state 4, ab and ¢d in B, ad and bc in C. Thus as with the
three electron case we may say that each of our three states corresponds to one
of the three possible ways of drawing the valence bonds, and the leading
terms in the energies P, Q, R give just the sum of the binding energies for the
two bonds, in each case. The remaining four resonance terms are for the other
four possible bonds, and they come with coefficients —1/2, showing that the
other pairs repel, but only half as strongly as if they were by themselves.
The next group of eight terms come from cyclic permutations of three elec-
trons, and the last nine come from permutations in which all four electrons
change. Thus these last terms are all small, and we need not consider them in
detail. As far as the broad outlines are concerned, we see that the diagonal
energies follow the same principles as with three electrons. The solutions as
well follow the same general lines. The real wave functions are combinations
of 4, B, and C, so that they do not correspond exactly to any one way of draw-
ing the valence bonds. Nevertheless, in many cases one way will be much
nearer the truth than any other, and in such cases one of these three functions
will be a good approximation, and we may use the corresponding diagonal
energy, as for example P/p, as a good approximation to the truth. It is worth
while noticing how the wave function corresponding to a given way of draw-
ing the valence bonds is constructed. Let us take, for instance, the function
B, where the bonds are between a and b, and between ¢ and d. Then in the
first place the function is made up of the separate functions VII, VIII, IX,
and X, in each of which @ and b have spins opposite to each other, and simi-
larly ¢ and d have spins opposite to each other. Then these four functions are



1128 J. C. SLATER

combined with such coefficients +1 that whenever we go from one function
to another by interchanging the spins of ¢ and b, or of ¢ and d, we go to a func-
tion of opposite sign. This description proves to be a general one for the cor-
rect function to use in a case where there are definite valence bonds drawn in
a certain way.

(d) More than four electrons, with only spin degeneracy

With more than four electrons, we cannot solve the problem of spin de-
generacy, even to the extent of obtaining the levels of lowest multiplicity.
For example, with five electrons, there are five doublet levels, and with six
electrons there are five singlets. The energies would then be roots of an equa-
tion of the fifth degree, and it is useless even to set it up. On the other hand,
we have noted in the case of four electrons that there can be cases (very im-
portant ones in actual practice), where the energy of the lowest state can be
found as the mean energy of a wave function connected with one definite way
of drawing valence bonds. And this can be done in general: whenever one
method of drawing the bonds is very much more likely than any other, we can
use this method for writing the energy in terms of the exchange integrals, to
a good approximation. To set up the wave function, we proceed as follows:
First, we draw the valence bonds, between definite pairs of electrons. All elec-
trons are understood to be paired off, if the molecule has an even number of
electrons, and all but one if it has an odd number. Then we take all the 2¥
wave functions (if NV is the number of complete pairs) for which the two elec-
trons of any pair have opposite spins. We combine these functions with coeffi-
cients +1, such that when we pass from one function to another by inter-
changing the spins of a pair of electrons, we go to a function of opposite sign.
This sum, divided by the square root of the number of terms for convenience
in normalization, is the required function expressing the valence binding. The
energy connected with the state is the ratio of the mean value of H over the
state to the mean value of unity. Each of these quantities involves integrals
connected with all sorts of permutations of the electrons. But if we confine
ourselves to the most important terms, namely those in which no electrons
change, or in which only a pair of electrons is interchanged, then the mean
values are easily described. First there is the Coulomb term in the energy, or
the term 1 in the matrix of unity. Then there are the interchange terms,
with coefficients 41, between all the various pairs (V such terms) of elec-
trons bound together. As far as these terms go, then, itis just as if all thepairs
were independent of each other, and as if the energy required to dissociate the
whole molecule were the sum of the energies required to dissociate its various
bonds if they were by themselves. But the other possible interchange terms,
between all other pairs of electrons, come in with coefficients —1/2, so that
we interpret it as saying that all other pairs which are not definitely bound by
valence forces repel each other, but by only half the amount they would exert
if they were by themselves in the repulsive configuration. The further terms,
in cyclic and other interchanges, come in with smaller coefficients, in different
ways depending on the number of electrons.
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In the general case, we can go even further than setting up these linear
expressions for energy. We can work out a case where the valence bonds are
not definite, but where they are intermediate between two of the definite cases
we have considered. For them the correct wave function is a combination of
two of these approximate functions, and we have only a quadratic equation
for the energy. The simplest case is that where four electrons, @, b, ¢, d, are
bound in some way intermediate between our three possible cases ab cd, ac bd,
ad be, but in which there are also many other electrons, which however are
bound to each other in perfectly definite ways. This is the problem which we
should meet in a rather general case of a chemical reaction, where two mole-
cules approach, each one breaks into two halves by the parting of a single
valence bond, and the parts recombine in either of the two possible ways.
Here, just as with the four electron problem, we can set up three functions
A, B, and C, corresponding to these three ways of drawing the bonds. These
functions are set up, and their energies computed, according to the rules we
have just described. But now, just as with four electrons, we find that these
functions are not independent, but rather that 4 4B+ C=0. Thus all the
calculation of the preceding sections can be applied to this case, we obtain
the energy as the root of the same quadratic, and the only difference is in the
value of the diagonal energy values P, Q, and R. When we substitute in the
correct values, we find that only those terms involving interchanges between
the four electrons @, b, ¢, d remain inside the radical, so that this looks just as
in the four electron problem. QOutside the square root sign come the inter-
change integrals between other pairs of electrons, just as if we were using a
linear solution rather than a quadratic one.

(e) Two electrons, one s and one p

The problem of two atoms, one containing an s and one a p electron, in-
volves orbital as well as spin degeneracy. There are three possible p wave func-
tions, and we must consider how this affects the energy levels. Further, we
have a choice as to what three functions to take. For on account of the de-
generacy, we may take any three linear combinations of the functions with
which we start. First, however, we shall choose the conventional p functions.
These may be denoted as p, po, -, having respectively the components 1, 0,
1 — of angular momentum along the fixed axis. We naturally choose this axis
as the line on which the nuclei are placed. Then we have twelve unperturbed
functions: for p,s we have four on account of spin degeneracy, for p¢s four,
and for p_s four more. But now there is a fortunate fact: just as with atoms,
the component of orbital angular momentum about the axis of figure is a
constant of the motion, and the matrix components of energy, and of unity,
between two states with different values of this quantity, are zero. In other
words, the matrix components vanish between states in different groups of
four, and the secular equation automatically factors into three factors, each
involving four states. Each of these yields a problem exactly like that without
orbital degeneracy which we have considered before, and therefore results in a
singlet and a triplet, the formulas being as before. As a matter of fact, how-



1130 J. C. SLATER

ever, we shall not have three singlets and three triplets, but only two of each,
for the states ps and p_s will yield the same energies, although different wave
functions. Thus these will result in an orbital degeneracy which persists, at
least until further perturbations are taken into account, and the states are
IT states. The final conclusion, then, is that we will have from p,s and p_s
alll and a’l, and from pos a'2 and a*Z. To tell which of these is the lowest
state, we must consider the magnitudes of the exchange integrals, for the ener-
gies of the singlet states are essentially given by these exchange integrals, and
the one which has the largest negative value will correspond to the most sta-
ble level. But now these exchange integrals are such things as [a(1)b(2)-
Ib(1)a(2)dv. That is, they involve in their integrands the quantities a(1)b(1)
and a(2)b(2), as if they were charge densities. Now if the functions ¢ and b do
not overlap at all—that is, if there is no region of space where they are simul-
taneously of considerable size—the integrand will be everywhere small, and
the integral will be small. In general, the more they overlap, other things
being equal, the larger will they be. But now the functions p, and s will over-
lap far more than p, and s, or p— and s. The reason is found in the spatial
arrangement of the functions, as has been described in an earlier paper. p, is
concentrated along the axis joining the p and the s electron, so that it has its
maximum intensity in just the place where it can overlap the s. On the other
hand, p, and p_ have their concentration along the plane normal to the axis,
and they are zero right on the axis. Thus we see that the 'Z state will be the
most tightly bound, and will be the normal state. And in the course of our dis-
cussion, we have seen that the p electron will tend to take up that particular
degenerate state which points out along the direction toward the other elec-
tron with which it is in valence binding. To get the actual energy, we have the
formula, from our discussion of the two electron problem.

(f) Two atoms, each with a p electron

Here we have more degeneracy than before. Both electrons can be in p,,
or both in p_. These will yield A and A, with very weak binding. Then either
one can be in p, and the other p,, or either one in p_ and the other in p,. This
degeneracy would result in two I, and two ®II, and we should have to solve
quadratics to determine the energy, were it not for the symmetry of the prob-
lem, by which we can actually separate into functions symmetric and anti-
symmetric in the nuclei. Finally we have the problem of no component of
orbital angular momentum, with three possible orbital arrangements: p,p_,
popo, or p_py. As a result of this we should have three 'Z and three 3Z. We
should have to solve a cubic to get either of these, except that symmetry
in the nuclei permits factoring into a linear and quadratic term. But the states
. and p_ have very little overlapping, while po and p, overlap a great deal.
Thus the latter state corresponds to a much lower energy, and we may antici-
pate that one of the wave functions, the one connected with the lowest energy,
will correspond very closely to this particular orbital arrangement. We
should be able therefore to obtain a fairly good approximation by taking
just the singlet and triplet coming from pop, alone, getting strong binding
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for the singlet. Here again, then, we can say that for the valence bond the
correct p electrons are those which point in the direction of the other elec-
tron.

Bartlett! has computed the integrals in this case of two p electrons, and
in general finds verification of the statements of the preceding paragraph.
In one respect his results are in extraordinary disagreement with what we
should expect: he finds the exchange integral between the two p, states
in the two atoms to be positive rather than negative, so that he finds the
triplet, rather than the singlet, state to lie lower. This is so entirely in dis-
agreement with expectation that we must question the result, and we cannot
regard this question as being closed until further calculation is made. As a
possible source of explanation of this discrepancy, however, we may note
that Bartlett’s calculation is for hydrogen, with nuclear charge 1, whereas in
ordinary molecules the effective nuclear charge would be decidedly greater
than 1. It seems altogether possible that the integral could depend enough
on nuclear charge to change sign, and be negative with these larger charges.

(g) Two atoms, one with two equivalent p electrons, the other with an s
electron

The atom with two equivalent p electrons furnishes an atomic problem,
and we consider it first, assuming the atom with the s electron to be removed
to infinity. This procedure is not necessary, but it is useful in that it suggests
an improved method of dealing with the degeneracy of the p electrons, in this
sort of problem. First we tabulate the various exchange integrals which we
shall need. Being an atomic problem, we can go much further toward calcu-
lating them than we can without great difficulty in the molecular case. They
can all be obtained from the tables in the paper on complex spectra, where
they are given as combinations of certain integrals F° and F?, integrals over
the radial part of the wave functions of the electrons. The three degenerate
functions in which we are interested may be symbolized in the interest of
brevity by +, 0, —. Then from the paper mentioned we derive the values

(+ +/H/+ +) = F° 4 1/25F?, which we may symbolize (1, 1/25)
(+0/H/+0) = (1, — 2/25); (+ 0/H/0 +) = (0, 3/25)
(+ =/H/+ =) = (1,1/25); (+ —/H/— +) = (0, 6/25)
(00/H/00) = (1, 4/25).

Now we may tabulate all the possible states we can set up, considering only
the orbital degeneracy. These states may be tabulated as follows:

I

I+ +
IT + o0
I+ —
IV. 0 0
vV — 0
vi — -—

1 J. H. Bartlett, Phys. Rev. 37, 507 (1931).
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The state I is connected with M =2, II has it equal to 1, III and IV each
have 0, V has —1, VI has —2. Hence all states may be considered separately,
and have no matrix components of energy between them, except I1I and IV,
which must be grouped together. When now we consider the spin degeneracy,
I and VI will lead only to singlet levels, on account of the exclusion principle.
The energy will be (++/H/++)=(——/H/——)=(1, 1/25). The levels
are two of the five sub-levels of 1D, and this then is the energy of that state.
IT and V, being nondegenerate problems with nonequivalent electrons, will
each give a singlet and a triplet, the singlet having energy(+0/H/+0)
+(4+0/H/0+) = (1, 1/25), and accounting for two more of the sublevels of
1D, and the triplets having energy (+0/H/+0)—(4+0/H/0+) = (1, —5/25),
accounting for two sublevels of the 3P. Finally III will lead to a singlet and
a triplet, and IV to a singlet only, on account of the exclusion principle. But
we cannot get these energies without solving a cubic between the states.
One singlet is of course the remaining level of 1D, the triplet is the remaining
level of 3P, and the other singlet is 1S5, so that as a matter of fact we can easily
find the energy: we know the sum of roots, and also all the roots but one, so
that we can subtract. Thus, considering only states of M =0, we have three
states, of diagonal energies (+ —/H/+ —), (+—/H/+ —), (00/H/00). Add-
ing, and subtracting the energies of 1D and 3P, we at once have for 1S the
energy (1, 10/25). But this procedure, while feasible with the atomic problem,
will not work with the molecular one. For there we cannot assume that the
energy values will be repeated in problems with different values of 1/, and
the device of subtraction is no longer open to us to any such extent as with
atoms. Further, these very levels with M7, =0 are the ones that lead to stable
molecular binding, and for that reason they are the most important ones for
the molecular case. Thus if we retain the +, 0, — p functions, we will meet
real difficulty when we try to solve the molecular problem. Fortunately it is
possible, however, to introduce other p functions which overcome this trouble,
and which prove in general to be much more suited to calculation in molecular
problems.

To set up these new functions, we start with the expression of p, po, p—in
rectangular coordinates. If the axis is chosen as the z axis, then these func-
tions are

po = 3f(r)
e
b+ = lelggf(")
x— 1y
p- = e f.

But now we can immediately introduce three linear combinations of these,
Pz = xf(r)
Py = 3f )
pe = 2f(r),
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which prove to be the desired functions. We can obtain the exchange inte-
grals with respect to them immediately, using their expression as combina-
tions of the previous functions, and we find

(wa/H/ xx) = (yy/H/yy) = (s3/H/2z) = (1, 4/25)

(xy/H/xy) = (y3/H/y2) = (za/H/zx) = (1, — 2/25)

(xy/H/yx) = (yz/H/2y) = (za/H/xz) = (wa/H/yy) = (yy/H/7)
= (z3/H/xx) = (0, 3/25).

All other coefficients are zero, such as (xx/H/xy), or (xy/H/x2). Using these
functions, we have the following states, considering only orbital degeneracy:

Il

Il

I » =«
II vy v
IIIr =z
IV = v
V v =z
VI 2z «=x.

When we investigate the matrix of the energy, we see that I, II, III must
all be considered together as a group, since the matrix components between
them do not vanish. On the other hand, each of the states IV, V, and VI forms
a separate group by itself, without components to any other states. On ac-
count of the exclusion principle, I, II, III will between them yield three sing-
lets, and examination shows that these are the 1S, and two sublevels of 1D.
IV, V,and VI give each a singlet and a triplet, each leading to one of the levels
of 1D and one of 3P. Thus we have for !D the energy (xy/H/xy)+ (xy/H/yx)
= (1, 1/25), and for 3P (xy/H/xy) — (xy/H/vyx) = (1, —5/25). Finally by sub-
traction we find 15:15+421D =3(1, 4/25), 1S=(1, 10/25). Since we must use
subtraction here as before, it would seem at first sight as if we should be no
better off then we were before. But this is not true, for it appears that the
states xy, vz, zx are the ones concerned in the lowest states of the molecule,
and the orbital degeneracy is entirely removed from these states.

We may now pass to the molecular problem, using the x vy z functions. We
assume the other atom to be located along the x axis, and denote its wave
function by X. Again considering only orbital degeneracy at first, we have the
following table of functions:

I » « X
IT v » X
a1z 2z X
IV = vy X
V v 2z X
VI z =« X
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Now when we investigate the matrix of the energy, we still find, as we did
before, that IV, V, and VI may be considered by themselves, although I, II,
and IIT must be grouped together. The reason is a very general one of sym-
metry. Let us for instance take the substates of IV and V for which all spins
are parallel, so that we need not consider them. Then

Hiyy = (xyX/H/y3X) — (xyX/H/2yX)
— (xyX/H/Xzy) — (xyX/H/yXz) + (xyX/H/Xy3).

The terms most likely to give something different from zero will be those
in 1/7,; in H. Take these for example in the first integral. This is [x(1)y(1)-
y(2)2(2) X (3) X (3) (1/r12+ 1725+ 1/75)dvidv.dvs. But now the first integral is
zero, because interchanging the z coordinates of both electrons 1 and 2
changes the sign of the function 2(2), leaving everything else unchanged, so
that each contribution to the integral is balanced by an equal and opposite
one. The second term is zero for the same reason, and the third on account of
the possibility of interchanging the v coordinates. We note that this argu-
ment is dependent on having the function X symmetrical with respect both
to y and 2, so that this electron must be on the x axis.

As with the atom, then, we have three states, IV, V, and VI, without
orbital degeneracy, and three others, I, I1, and ITI, which must be considered
together. These last three give rise to three doublet levels, which prove to be
a?X, and the two sublevels of a?A. On account of the fact that two roots coin-
cide, we can solve the cubic equation, and it proves to be the case that these
levels are high up, as we would expect from the fact that they come from the
higher atomic levels. Thus if we are interested only in the lower molecular
levels, we may confine ourselves to the states IV, V, VI. Each of these is a
problem of three electrons with spin degeneracy, but without orbital de-
generacy. The solution, then, can be carried out as in section (b), and we ob-
tain in each case a quartet and two doublets, the latter as the two roots of a
quadratic. The problems IV and VI lead evidently to the same energy levels,
and examination shows them to be II levels, while V yields 2 levels. A simple
discussion shows that the II levels will be lower than the 2 ones, the lower 21
being the lowest level of all. For illustration, let us take assumed values for the
exchange integrals, and actually work out the energies.

As an example, we choose OH, for which some of the quantities are ap-
proximately known. The O atom, of course, has four p electrons rather than
two, but the energy formulas for the case where two are lacking from the
closed shell should be the same as when only two are present. It is known that
the heat of dissociation of OH into O and H is of the neighborhood of 5.4
volts.22 Further, the energy difference between the 3P and 'D of the O atom is
about 2 volts.® Let us now make most crude assumptions, merely to get or-
ders of magnitude. We shall suppose that we can neglect all lack of orthogon-
ality, that the energy comes entirely from resonance terms, so that we can

2 R, S. Mulliken, Phys. Rev. 33, 739 (1929).
13 R. Frerichs, Phys. Rev. 36, 398 (1930).
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neglect Coulomb interactions, and that we can neglect exchange terms from
cyclic permutations of electrons. We shall need, then, values for a number of
exchange integrals. First, we can derive the value of (xyX/H/yxX)=
(yzX/H/2yX)=(2xX /H /x2X) from the 2 volt separation between the terms
of the atom. For this separation should be twice the integral, which is therefore
about 1 volt. Next, we note that the other exchange integrals fall into two
classes: (xyX/H/Xyz) and (x2X /H/Xzx), in which X and x electrons are in re-
sonance, and (xzX/H/xXy), (x2X/H/x2X), (ysX/H/yXz), etc.,in which an X
and either a y or z electron are in resonance. Now the X and x electrons over-
lap greatly, while the X and v or 2 overlap much less. Thus the integrals of
the first group are large numerically, those of the second group small. Both
are negative, presumably. In the absence of calculation, we make the rough
approximation that the second is 1/5 of the first. Then to get the correct heat
of dissociation we may take the integrals of the first sort to be about —5
volts, and those of the second sort —1 volt, for the value of distance of separa-
tion which gives the minimum of energy. Having values for our integrals, we
may now use our solutions of the three electron problem to find the approxi-
mate energies, for the assumed distance of separation. From states IV or VI,
we have a 4T and two *[I’s. The energy of the first should be — (xyX/H/yxX)
— (xyX/H/Xyx) — (xyX/H/xXy)=—(1)—(=5)—(—1)=5 wvolts, corre-
sponding to large repulsion. For the doublet states, we must solve a quadratic:
the energies are

{3((xyX/H/ yaX) — (xyX/H/Xyx))* + (wyX/H/ X yx)
— (x9X/H/xX9))* + (x9X/H/xXy) — (xyX/H/yxX))?) } 12
+ {3+ (= 5+ D2+ (— 1 — 1)2]}12 = + 2812 = + 5.3 volts.

H

Thus the one doublet lies as high as the quartet, but the other one corre-
sponds to attraction, of about the right amount, and represents the normal
state. In the same sort of way, the energy of the 2 is —1+4+1-+1=1 volt, and
of the two 22’s + {%[(1+1)2+(—1+1)2+(——1—1)2]}”2= +2 volts. One
doublet is attractive, but not nearly as much so as the I state, so that it
would correspond to an excited level.

The lowest state, then, comes from the problem in which we have a reso-
nance interaction between the X electron of the one atom, and the x electron
of the other, which can overlap with it a great deal. No such overlapping is
possible in the other cases, and there is not nearly as tight binding. In this
lowest state, the binding between X and « is so strong that we can speak of a
definite valence bond between them, and it is interesting to see if the approxi-
mate formula for energy based on the assumption of a definite bond is appli-
cable. This gave for the energy the interaction integral concerned in the
bond, decreased by half the sum of all other interaction integrals. Thus in
this case it would be —~§5—3(1—1) = —35 volts, which is a fairly good ap-
proximation to the root of the quadratic, —5.3 volts. Thus in this case we
should be justified, if we were not looking for very accurate values, in using
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this approximation, and saying that the valence bond was definitely between
the electrons which have large overlapping, the X and x electrons.

It is interesting to consider what our II levels do in the case of large inter-
nuclear separation. There the leading term in the energy is the atomic integral
(xyX/H/yxX), which is independent of distance. Noticing how this enters
the expressions for energy, we see that the 41, and the lower %I, go to the
lower, 3P state of the atom, while the other 2II goes into the 1D of the atom.
Atlargedistances, the energy isgiven to a next approximation by using our lin-
ear functions. Thus the energy of the lowest state is given by — (xyX/H/yxX)
+31((xyX/H/Xyx)+ (xyX/H/xXy)). The binding energy, (xyX/H/Xyx),
comes in only with a factor . But more significant than this is the fact that
the interaction energies between X and x and y both come in with the same
sign, so that they both contribute to the binding. In the other limiting case,
on the other hand, when the binding between X and x is the large term, these
two interactions come in with opposite sign, so that while X is bound to x,
itis in repulsive interaction with y. Itiseasy to see, therefore, that the qualita-
tive nature of interactions can change depending on whether molecular inter-
action is large or small compared with atomic energy differences. The whole
theory of directional valence, as developed by the present writer and by
Pauling, is a phenomenon connected with strong valence binding. In that
case, definite interaction energies come in with positive sign, and contribute
to binding. Our object is then to adjust the orbital wave functions, by making
concentrated bond functions, so as to make these interaction integrals as big
as possible. On the other hand, all other interactions come in as repulsions,
so that it is necessary to make them as small as possible. By applying these
principles, we are led to the idea of sharply concentrated wave functions for
valence binding, sticking out in definite directions in space. If the valence
binding were weak compared with atomic energies, on the other hand, there
would not be this necessity, for there are no definitely defined bonds which
give attraction with others leading to repulsion. Thus in these cases we should
not be led to concentrated wave functions, and to directional effects. Now it
is very significant that Heitler in his discussion has always limited himself to
consideration of a single atomic energy level. That means essentially that he
assumes the atomic interactions to be so large that he need consider only the
lowest state, as if the other atomic states lay much further up. In this case we
would expect no such directional effects as with strong valence bonds, and it
is interesting to note that Heitler has not inferred the existence of such effects
from his calculations.

(h) Three atoms, one with two equivalent p electrons, the others with an
s electron each

This problem could serve as a simplified model of the HyO molecule, just
as the preceding one resembled the OH. In general, we shall find the problem
too difficult to get accurate solutions. There is a special case, however, in
which we can carry through the calculations, and we assume that special
case to start with. Fortunately it is not far from the truth. This is the case in
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which the lines joining the monovalent atoms to the divalent one make an
angle of 90° with each other. Assuming this case, we let one s electron be
along the x axis, the other along v, and we denote their functions by X and V.
We use the x, v, 2 p functions, as before. Then considering orbital degeneracy
alone, we have just the same six functions as in the previous case. Moreover,
the addition of the extra atom, so long as it is just on the y axis, does not
interfere with the vanishing of matrix components between the groups of
states IV, V, and VI. As before, then, I, II, and III lead to a group of high
levels, which we must consider together. The problem is no longer linear, and
we cannot use the notations Z,1II, A, etc., but can denote states only by their
multiplicities. We can thus only say that from these states we have three
singlets and three triplets, and we can be quite sure that they will be high,
repulsive levels. Next we consider the states IV, V, VI. The lowest level will
come from state IV, with x and y, p electrons, for then we have the possibility
of two strong bonds. The states V and VI allow only one strong bond each,
and so must be much less strongly attractive levels, and we may neglect
them. Now the problem of x, y, X, ¥V electrons is a four electron problem with
only spin degeneracy, and therefore leads to two singlet states, three triplets,
and a quintet, of which one singlet will be the lowest. The energy of this
singlet comes as the solution of a quadratic, as we have already found, but
just as with the preceding case, we can often use the linear approximation
to the quadratic. To investigate this, we may put in rough approximate values
for the integrals in H,O, as we did for OH.

Neglecting the same terms that we did for OH, we need a number of ex-
change integrals to determine our energies. We will assume the same values
of the integrals which have already occurred in OH, as follows:

(xyXV/H/yxXY) = 1
(xyXY/H/XyxY) = (xyXY/H/xVXy) = — 5
(xyXYV/H/YyXx%) = (xvXV/H/2XyY) = — 1.

The only other integral which we need is (xyX Y/H/xyYX), the exchange
integral between the two hydrogen atoms. This we can get approximately
from the band spectrum of hydrogen, for its energy is given directly in terms
of this integral. To get the distance between the two hydrogens, we note that
the OH distance in H,0, according to all calculations, is about 1A, so that the
distance between the hydrogens, assuming the right angled model, is 1.41A.
This is about twice the distance of equilibrium for two hydrogens interacting
with each other, and the exchange energy at this distance is about —0.8 volts.

We now have for our energy the value — {3((—5—5-+1+1)24(—1—1
—140.8)24+(1—0.8+5+5)2) }1/2 = —9.3 volts. This is not far from the
energy indicated for dissociation of H;O into H, H, and O. Thermochemical
data would lead to a value of about 10 volts. Thus we see that our general
calculation is fairly good, in spite of its many crude features. It is now in-
teresting to note that here again the valence bonds are strong enough so that
we can use our linear approximation. This would give for the energy —5—5
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—31(—1—-141-0.8) = —9.1 volts, quite a good approximation to the qua-
dratic. This should be a‘fairly representative case for the magnitudes in ac-
tual compounds, so that it seems as if we were justified in using this approxi-
mation in general.

For angles other than 90° between the bonds, we can no longer get such a
valid solution. For then our nondiagonal terms between states IV, V, and VI
no longer vanish on account of symmetry, and we cannot consider the states
as leading to independent problems. There is one other case which we can
solve properly, however: that where the angle is 180°, the linear molecule.
In that case we still can separate our problem, and states IV or VI lead to
identical energy levels, and give the lowest state. Suppose our two s electrons
are on the x axis, and denote them by X, — X. Then we have

(xyX — X/H/yzX — X) =1

(xyX — X/H/Xyx — X) = (ayX — X/H/— XyXx) = — 5
(x9yX — X/H/2Xy — X) = (xyX — X/H/x — XyX) = — 1
(xyX — X/H/xy — XX) = 0 practically,

the last because the I atoms are so far apart. Then the energy of the lowest
singletis — {3((—=5—14+5+1)24+(=5—1—1—024+(14+04+5+1)2) }112= —7
volts. In other words, the right angled arrangement is decidedly more stable
than the linear one. For this linear model, we cannot use our approximate
method, for no one way of drawing the valence bonds is preferred over any
other: we cannot say whether the X or the — X hydrogen is bound to the x $
function of the oxygen.

For angles near 90° we can have resort to an approximate method to indi-
cate the general form of the'curve of energy against angle. Even if the non-
diagonal terms between our state IV and other states are no longer zero, they
will still be small, for small deviations of the angle. Thus we may still use a
first order calculation, taking the unperturbed wave function as formed in
IV, and averaging the correct energy over it. To be more precise, we assume
the functions X and Y to be located, not just on the x and y axes, but on axes
in the same plane, but inclined by an angle ¢ to these axes, so that they make
an angle of 90°+2¢ with each other. We still have the same six states,
considering orbital degeneracy, and the lowest state will come from IV, but
now with some contributions from the other state. We neglect these contribu-
tions, however, solving merely the problem of state IV by itself. The only
difference from our previous calculation comes then in the values of the ex-
change integrals. If previously the integral (xyX Y/H/XyxY) was —35 volts,
and (xyXY/H/xXyY) was —1 volts, then we can easily show that in the
present case, with the new definition of X, we have (xyXY/H/XyxY)=—35
cos2p—1 sin%p, and (xyXY/H/xXyY)=—1 cos’—>5 sin%. We do this by
noting, for example, that the function x can be written as a linear combination
of two functions, one pointing along the direction at the angle ¢, the other
along the direction at right angles to it. Each of these functions is just like an
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ordinary p function, and has interaction integrals with the s electrons just
as if the latter were along the x axis. When we put in these expansions, we at
once get the expressions mentioned. Now we are ready to substitute in the
energy formula. For convenience, we use only the linear formula, which we
have already shown to be sufficient. We know all terms except the exchange
integral between X and Y, which will depend on ¢ because that affects the
distance between hydrogen atoms. We now have for our energy

2(— 5cos?¢p — 1sin?¢) — 3(2(— 1cos?¢p — Ssin?¢) + 1 + (xyXV/H/xyY X)).

This can be put in the form —9.5+12 sinp—1(xyX Y/H/xy¥X). Of course,
it reduces properly for ¢ =0. On the other hand, it is not correct for the linear
model, which we get by putting ¢ =45°; in this case it reduces to — 3.5, rather
than the correct value —7. Thus we see that it will give in general too high
energy values, as of course we can see from general principles, for the mean
value of the energy over an incorrect wave function always will give too high
energy. Nevertheless, the general form of the variation with angle is certainly
a suggestion of the correct law: surely the energy increases as the angle devi-
ates from a right angle, and presumably the correct law could at least be well
approximated by a sin? law. We can then say at least qualitatively what to
expect. If the hydrogen exchange integral (xyXY/H/xyYX) could be neg-
lected, the stable position of the molecule would be with the right angle form.
But actually this integral decreases numerically as the hydrogens move far-
ther apart, or as the angle increases. Since it appears in the form of a repulsion
between the hydrogen atoms, we shall find equilibrium at an angle slightly
larger than a right angle. The p valences by themselves have a definitely
directional effect, but this is superposed on an ordinary repulsion of the
atoms which are not bound by valence forces.

(i) Four atoms, one with three equivalent p electrons, the others with an s
electron each.

Here we have a model of the NH; molecule, for example. We shall not
discussitin as great detail as we have used in the preceding cases, for the prin-
ciples are similar. Again the only cases which we can treat correctly are those
in which the three monovalent atoms make angles of 90° with each other.
But as before this is the stable position if we can neglect the repulsion of these
atoms for each other, and if we consider the repulsions the angles are slightly
increased. Taking account of orbital degeneracy, and taking the s atoms to
have wave functions X, ¥, and Z, we have the following states:

I xxyXVZ
IT xyyXVZ
IIT  yy2XYZ
IV yzXVZ

V zxxXYZ
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VI zzaXVZ
VII xysXVZ

The states like xxxX VZ are forbidden by the exclusion principle. Now as
before, when the states X YZ are really along the axes, the state VII has
vanishing matrix components to all other states. It is from this last state that
we expect to get the lowest level of the molecule. It is the only one which al-
lows strong bonds between X and x, between Y and y, and between Z and 2.
In this connection, we can use a principle which we did not mention with the
other cases, but which was equally applicable there. In such a state as xxy-
X YZ, the two electrons x form essentially a closed subshell, and cannot take
part in valence binding. Only the single electron y is free to form a bond, and
naturally in these functions there can be no great binding energy, and they
will lead to high and probably repulsive levels of the molecule. Thus we are
led to the problem xyzX YZ, a six electron problem without orbital de-
generacy. We cannot get its exact solution, but we can use our approximate
method valid in cases of strong binding, and that should be satisfactory here.
According to this, the energy is the sum of the exchange integrals between
X and «x, between Y and y, and between Z and z ,which are all large and nega-
tive, and diminished by half the sum of all other exchange integrals. Those
between X and y and z and the other similar ones, will reduce the energy, as in
the preceding problem. Those between X and ¥, and the other similar ones,
will represent the repulsion between the hydrogen atoms. There are, then, no
essential differences between this problem and those we have already dis-
cussed.

(j) Five atoms, one with four s and p electrons, the others with an s electron
each

This problem could represent the methane molecule, CH4. A new situa-
tion enters here, in that we may not confine ourselves to p electrons only. For
then we should have to have for the atom a combination, say, like xxyz, neces-
sarily having two electrons in a closed group, and leaving only two free for
forming bonds. We must then consider the possibility that some of the elec-
trons in the large atom are in s orbits. Since two s electrons would again form
a closed group, defeating our purpose, we have but one possibility, namely
that there be one s electron and three p’s. Then by analogy with our previous
case we expect the lowest state to come from the configuration in which the
four electrons in the large atom were all in different states, as s x ¥ 2, so that
all could take part in binding. With our four other atoms, we then have an
eight electron problem, in which we hope to be able to neglect orbital degen-
eracy. We cannot do this in general, however, any more than we could with
the other problems except in special cases, for particular positions of the other
atoms. For we have nondiagonal terms of the energy, between our function
and others in which two s or p electrons are in the same wave function. Our
object, then, is so to move around our other atoms, and also to make such
linear combinations of the functions s, %, y, 2, that these nondiagonal terms
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will become as small as possible, and the solutions of our problem without
orbital degeneracy will approach as closely as possible to the real solution of
the problem. Now we may regard this in either of two ways. First, if we can
really make the nondiagonal terms zero by such manipulation, then when we
have done it we shall be justified in neglecting orbital degeneracy, and the
solution we get will be correct. But second, if we leave out of account these
nondiagonal terms from the beginning, we can always solve for the lowest
level coming from our one set of orbital functions. This energy level will vary
as we manipulate the positions and orbital wave functions of the electrons,
and by the general variation principle we know that the lowest possible
energy which it can get will be the correct energy value. Thus we simply
manipulate the orbital functions to make the energy a minimum, and use this
minimum property as a criterion for the correctness of the functions. This
process, to take care of spin degeneracy by exact or approximate solution
of the perturbation problem, but to treat orbital degeneracy by a variation
method, may be considered to be the real essence of the scheme suggested
by the present writer and by Pauling for the treatment of molecular problems.
When now we try to make the energy of our lowest state a minimum, we
have very definite information to assist us. First, the energy will surely be
lower if we can form definite strong valence bonds than otherwise. If we can,
then we know that the lowest state of the problem of spin degeneracy can be
approximately set up, and that the energy will be a sum of the exchange inte-
grals connected with the bonds, diminished by half the sum of all other ex-
change integrals. All these exchange integrals connected with molecular inter-
actions are presumably negative. Then we have a perfectly definite way to
make our energy low: We must manipulate the functions in such a way as to
make the exchange integrals connected with our definite bonds as big nu-
merically as possible, and to make all others as small as possible. But this is
just what is accomplished by making the orbital functions as concentrated in
space as possible, and by making the two functions involved in a bond overlap
as much as possible. By this maximum overlapping and concentration, the
desired integrals will be made large on account of their large integrand, and
those which we wish to be small will do so, since the very concentrated orbital
functions will keep out of the way of other functions, overlapping them very
little, and not contributing greatly to other exchange integrals. Thus the
requirement of concentrated bond functions, each strong in a restricted region
but keeping out of the way of others, which has been emphasized by the
writer and by Pauling, is just the requirement necessary to make our energy a
minimum, and hence to result in an approximation near the true solution.
In particular, for four combinations of s and p functions, those which most
nearly possess the desired property are the tetrahedral ones, described in the
previous paper. Let us then introduce these functions, in place of sxysz.
We must still move around the four univalent atoms, if we want to make the
energy a minimum. They must be so placed that one overlaps each of the four
tetrahedral functions. This definitely fixes them in a tetrahedral arrangement.
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When we have done this, the energy will be made up of the attractive terms
binding each hydrogen to its corresponding electron in the carbon; the repul-
sive term between each hydrogen and all the other carbon electrons; and the
repulsions of the hydrogens for each other. Of course, we will also be interested
in finding the energy of the molecule when the hydrogen atoms do not have
just these positions, in order to investigate vibrational frequencies. Then we
must simply move the hydrogens, and compute the energy by the same for-
mulas for the different orbital functions. It is entirely likely, however, that if
the hydrogens are slightly displaced, it would prove that a slight compensat-
ing displacement of the oxygen functions would reduce the energy. We can
imagine that four functions could be set up, not pointing just to the corners of
a regular tetrahedron, but in slightly different directions, which would be
more advantageous in this case. In a detailed theory this possibility would
have to be investigated, and in any case those orbital functions used which
gave the lowest energy.

It is quite worth while considering what our lowest energy level will do as
the hydrogen atoms are removed from the carbon. At first we should say that
it would go into the 5S level of the atom, the lowest level of the configuration
sxyz. But this presumably will not be the case, for we have the possibility of
a state of the same nature going into the 3P level of the configuration s%xy, a
lower level, and we know that levels of the same character do not cross. Thus
our lowest level will gradually change its properties, as the distance of separa-
tion is increased, until finally it will have the correct properties for this *P.
atomic state. Our method will not give a correct description of this whole
process. Still, on account-of the term in the Coulomb interaction energy which
gives essentially the interaction within the atom, our solution will show the
level built up as we have done it going to a high energy at large separation,
and we should find that by changing the orbital functions by going to the
s?p? configuration we could reduce the energy. It is thus in the spirit of the
variation method that at each distance of separation we should seek the
compromise between these which gives the lowest energy, and treat that as
giving the correct description of the state. It is worth while noting that
this sort of situation is very common: very often the electronic configura-
tion present in molecular binding at small distances of separation is not
that characteristic of the atomic level into which the molecule would dis-
integrate adiabatically. Lack of knowledge of this fact has been the cause
of much misunderstanding.

(6) GENERAL METHODS FOR VALENCE BONDs

In the course of the illustrations in the last section, we have been develop-
ing several general principles for use in discussing molecular binding which are
worth describing separately. By use of these methods, it is believed that
approximate solutions for the lowest states of most molecules may be ob-
tained, accurate enough for rough discussion of chemical problems and
of band spectra. In the first place, we make in this method a characteristic
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difference in treatment between orbital and spin degeneracy. The treatment
of spin degeneracy is based on an approximate solution of the perturba-
tion problem in which we have spin degeneracy without orbital degeneracy.
This solution is valid in cases where there are strong and unambiguous valence
bonds; that is, where the electrons can be all divided into pairs, such that the
exchange integral between the two electrons of a pair is large, but those be-
tween electrons not forming a pair are small. It states approximately that the
energy is a sum first, of the Coulomb energy; then of the sum of the exchange
integrals over all pairs forming bonds; finally of the sum, with coefficient
—1 of all other exchange integrals. That is, the electrons very definitely
form bonds from pairs of electrons, rather than just having bonds in an in-
definite way between atoms, as Heitler has assumed. And the two electrons
in a pair result in attraction, but each electron is in repulsive interaction with
every other electron except the one with which it is paired, although these
repulsions are diminished to half the value they would have had if the elec-
tron were not bound in a shared electron pair. Itis worth while noting that,
for use in problems of chemical reaction, we have a somewhat more general
solution than this, in which we can follow through in detail the process of
breaking apart of a single bond in each of two molecules, and of joining to-
gether the remaining parts in either of the two possible ways to form other
molecules.

We have found it most practicable to treat orbital degeneracy, not by
the perturbation method at all, but by the variation method. This rests essen-
tially on the hypothesis that it is possible to find a set of orbital functions,
one for each electron, such that the lowest energy level of the problem of spin
degeneracy connected with these orbital functions is a good approximation to
the lowest state of the problem. We have seen cases where we could find such
functions, others where we could do it approximately, though perhaps not
exactly. No doubt as more cases are examined in detail, many will be found
where the hypothesis is justified, but also very probably some will be found
where it is not, and where our method is not applicable. It seems likely that
all simple problems of molecules with only single bonds will fall into this
scheme, but probably at least some cases of double and triple bonds, as for
example the rather anomalous case of the lowest state of O,, will require
special treatment. Other cases which we surely could not treat by the general
method would be those like C¢Hg, the benzene ring, where an ambiguity be-
tween two ways of drawing the valence bonds seems to be an essential feature
of the structure. But if our hypothesis is justified, then we may proceed by
varying the orbital functions to try to find the lowest energy level. On ac-
count of the expression for energy in terms of exchange integrals mentioned
above, the way to do this is very definitely to set up concentrated bond orbital
functions, in order to make the desired exchange integrals large, and all others
small. This in turn leads to functions very definitely localized in space, with
definite directional properties. When we have found such functions, by the
methods suggested by Pauling, or by straightforward variation of the energy,
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we may then use the formulas developed in the present paper to find the ac-
tual energy of the molecule, deriving the necessary exchange integrals either
from calculation based on atomic models, or partly on experimental material
from band spectra of simpler molecules. This method, which suggests a defi-
nite and quite feasible procedure for dealing with a great variety of molecules,
should surely be applied to many cases, and should result in chemical and
physical information of considerable value.



