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ABSTRACT

The steady state of motion of a fluid between two infinite plane parallel bounda-
ries is found for the case in which one of the boundaries is given a prescribed periodic
motion normal to its surface, the other boundary being infinitely rigid or being
assigned a coefficient of reflection. The excess pressure at any point in the fluid is
found, being of particular interest at the boundary of the source where it has a term
in phase with the velocity of the source and one in phase with its displacement. These
terms pass through cyclical values as the distance between the source and reflector is
increased, the first passing through sharp maxima, the second changing rapidly from
negative to positive values at reflector distances of an integral number of half wave-
lengths in the fluid. Application is made to the case where the source is the surface of
a piezoelectric plate maintained in forced vibration. The equivalent electric network
of the plate and coupled fluid column is found to be the same as that for the plate
alone, with modified resistance and capacity coefficients, making possible considera-
tion of the theory of the acoustic resonator interferometer in conjunction with driving
and measuring circuits.

I. INTRQDUcTIQN

~HE present paper considers the theory of an electro-mechanical system
composed of a vibrator such as a piezoelectric plate which is electrically

driven by an independent source and to which is coupled a column of Huid
set into longitudinal vibration by the plate. This study was undertaken with
reference to its application in acoustic interferometry, particularly the meas-
urement. of the velocity of high frequency compressional waves in gases and
liquids, and their coefficients of absorption and reflection. Mr. A. L. Loomis
and the writer' in collaboration have applied the piezoelectric resonator to
the systematic study of the velocity of high frequency compressional waves
in liquids, and the methods have been extended by the writer' to the study of
gases. In these experiments a piezoelectric plate is maintained in forced vi-
bration by an independent vacuum tube oscillator, while one of the vibrating
faces of the plate produces plane compressional waves in the medium in con-
tact with it. If a reHecting plate be set opposite and parallel to the vibrating
face of the crystal) multiple reflection takes place and as the reflecting plate
is made to approach or recede from the vibrator cyclical changes of phase
and amplitude of the forced vibrations occur, the reHector passing through
successive positions of resonance in the fiuid medium. These changes of phase

J.C. Hubbard and A. L. Loomis, Nature 120, 189 (1927);Phil. Mag. 5, 1178—1190 (1928);
A. L. Loomis and J. C. Hubbard, J.O.S.A. , and R.S.I. I'7, 295—307 (1928). See also E.B.Freyer
with J. C. Hubbard and D. H. Andrews, J.Am. Chem. Soc. 51, 759—770 (1929).' J. C. Hubbard, Phys. Rev. 35, 1442 (1930);36, 1668—1669 (1930).
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and amplitude of the vibrator give rise to effects which can be measured elec-
trically and the object of this study is to arrive at expressions for these ef-
fects in terms of mechanical and electrical constants of the system.

The theory of the piezoelectric resonator and methods for its study were
first treated in the comprehensive paper of W. G. Cady' and further exten-
sive analysis has been presented by D. W. Dye. 4 Part I of the present. paper
consists in a development of the theory of the vibrations of a fluid column
and an extension of the methods of Cady and Dye so as to include the reac-
tion of the fluid medium upon the resonator.

G. W. Pierce' was the first to develop methods of high frequency acoustic
interferometry. He and his collaborators have made use of piezoelectric and
magnetostriction oscillators in which the vibrating element serves not only
as generator and indicator of acoustic vibrations in a gas, but also maintains
electric oscillations in a vacuuni tube circuit. The theory of the reaction of
the acoustic system upon the circuit developed in the present paper is also

I ig, 1.

applicable in this case, but. the problem is complicated by the necessity of con-
sidering the characteristics of the vacuum tube and its circuit and calls for
separate treatment.

2. THE I'ORCED VIBRATIONS OF A I'LUID COI.UMN

Let the space between two infinite, parallel, plane surfaces at normal
variable distance r be filled with an elastic fluid of density p and isothermal
compressibility P. Let the boundary surface 5, Fig. 1, be given a normal vi-
bratory motion of infinitely small amplitude by an external agent such that
when a steady state of motion is reached throughout the system the motion
of S is given by

$.=n = 4n&'"'

and the motion of .R is given by

~i (co t+b)

' W. G. Cady, Proc. I. R. E. 10, 83—114 (1922).
4 D. W. Dye, Proc. Phys. Soc. Lond. 38, 399—458 (1926).
~ G. W. Pierce, Proc. Am. Acad. 60, 269—302 (1925).
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If R is infinitely rigid, $„,0 = 0 and the surface R is a perfect reflector. Such is
the case to a very high degree of precision when the Huid is a gas at ordinary
pressures and the reflector is of metal. In the more general case the surface R
will transmit motion from the fluid and the reflection coeAicient will be less
than unity.

It is assumed that the particles of fluid in contact with both S and R have
the same motion as those surfaces. Particle velocity in the Huid is propagated
with the velocity 2)= (E'/pp)'/2, X being the ratio of specific heats. We shall
assume that the velocity is propagated in the Huid with an attenuation n due
to absorption, such that

dj/$ = —42d2:

or
R Sg W4) E

If we define the coeScient of absorption p by I=Ioe &*, then, ' since I=-.',
(()//)„„)2p(/, where ()//)„„ is the maximum pressure due to particle velocity, and
is 6p,. =vpgoe *, we have p, =2o..

At any point x between R and 5 when the steady state has been reached
we shall have at a given time t a total disturbance made up of a term due to
particle velocity propagated directly from S, that once reflected from R,
that once reflected from R and once from S, that twice reflected from R and
once from S, and so on, and in addition a similar series of terms due to the
motion, if any, of R. It comes to the same thing if we assume that at each
reHection from R the particle velocity term is multiplied by a coeAicient y,
the two modes of calculation yielding equations from which the phase and
amplitude of the motion of R may be evaluated in terms of the reHection
coefficient, or vice versa. The value of the particle velocity at x is thus

eizi
( (&

—(a+iz/v)z + ~e (a+iz/v) (2r+—z) +, . )

(+&
—(a+(a/v) (2r—z) + +2&

—(a+ia/v) (ir z) +. . . )I—
6 &ia) V ( ~ m&

—(a+ia/v) (2 mr+a), ra+)& (a+4m/v) —[2(m+4) r z])—
The total forward particle velocity at x is

$z(+) —$6e/ziS —(a+/a/v)z/(1 Pe
—(a+(a/v)2r)

and the total backward particle velocity at x is

j,(—) = —$664 4~S—(a+(a/v)(»' z)/(] —pS
—( a4 +zv)/)2s (fi)

Boundary conditions: %hen x = 0, the total particle velocity is g,. o
——

&
e'"",

which satisfies Eq. (1), and when 26 =r

$6Si /(1 +z)S
—(a+iz/v)r/(1 +&

—(a+(z/v)2r) —
g 64(vi+6) (7)

from which the coefficients g, and 6 may be evaluated in terms of (0, a, y and r.
Thus

' I. B. Crandall, Vibrating Systems and Sound, p. 92.
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from which

J. C. HUBBARD

(o(1 —y)e (~+4~/'&~/(1 —ye (~+4~&~& ~) = P„e44

tan $ = tan —r 1 + ye '~" 1 —ye '~~ (9&

If 7=1, $„=0, (gas with rigid reflector). If r =r&X/2, 4or/v =nor and tan 5 =0.
In resonance positions the phase of the motion of the reflector is the same as
that for the vibrator in the even numbered nodal positions, and diff'ers by w

in the odd numbered nodal positions.
The excess pressure 5p, hereafter referred to as p, in the medium at the

point x is given by +v&o(, the plus sign being used with the forward particle
velocity and the minus sign with the backward particle velocity, thus:

%hence
p. = v~5.(+) —ek.(—). (10)

in which, from Eqs. (5) and (6)

[e *I y'e —& " '&~]cos(4ox/v)+y[e "' *&~ ye &—"+*&~]cos( /v4)4(2r x)—
y ——(12)

1 —2y e
—o'«cos (2ro&/v) + 74e—4«

[e "+y' "e" *'~]Sin(o&X/V)+y[e "" ~'~+ye ""+*'~]Sin(4o/V)(2r —X)
(13)

1 —2y'e o«cos —
(2r4o/v) + 7'e 4«—

The expressions (12) and (13) take various forms of interest depending

upon the conditions to be imposed by experiment. For example if the fluid is

a gas, we have at the surface of the source S, x = 0, and taking y =- 1,

P -o = sinh 2ra/( chos2re4 —cos (2ro&/v))

Q,=o ——sin (2r /v)o&/(c ho2sm —cos (2ro&/v))

giving as the excess pressure, p 0, at the surface of 8
p*=o = vote *=o + v&&o&$Q*=o

(14)

(15)

(16)

The first term on the right of Eq. (16) is in phase with the velocity of the
vibrator and is responsible for the transmission of energy into the fluid. This
term, as r is varied passes periodically through very sharp maxima, for values

of 2r&o/v = 2rrn, or r = r&)4/2, that is, for positions of R, an integral number of

half wave-lengths from 5. The function (sinh 2reo)/(cosh 2re4 —cos 2ro&/v) is

shown graphically in Figure 2 for values of n and co chosen so as illustrate its
general form. It will be seen that as a result of the damping as the path
length is increased the maxima, given by 1/tanh 2ra decrease approximately

7 Crandall, reference 6, p. 93.
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along a hyperbola and not logarithmically as seems to have been assumed by
several workers with the interferometer.

~= Q. I2cm
o' ='O. l

ak
i/2 2iIZ ai/Z Axjz

Fig. 2. I' = (sinh 2')/(cosh 2' —cos 2r~/v} as a function of r.
=0.1, P =0.12 cm, and 2')jv =47fr/X.

The second term on the right of Eq. (16) is in phase with the displace-
ment and hence is proportional to the reaction of the fiuid on the vibrator.
The function (sin 2ra&/v)/(cosh 2m cos 2rco/v—) is shown in Figure 3 as a func-
tion of r.
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Fig. 3. Q = (sin 2r~/v) j(cosh 2' —cos 2')/v) as a function of r.

u =0.1, X =0.12 cm, and 2r~/v =4mr/X.
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If the reflector is itself a piezoelectric plate it may be used as a detector
of excess pressure variations, and the expression for the latter at its boundary
becomes of interest. In this case for a gas, y = 1 and x = r, and we have

8, , = 2(cos a&r/s)(sinh rn)/(cosh 2m —cos 2rco/s) (1&)

(18)Q,=„= 2(sin r~/ s)(c osh2rn)/(cosh 2m —cos 2rcv/n).

In the case of liquids, except certain solutions and suspensions, o. is so
small that the decrement is difficult of observation. We may accordingly put
o. = 0. In the case of liquids, however the reflector transmits a measurable part
of the wave-motion out of the medium, particularly if the latter is of a density
and compressibility of the same order of magnitude as for the substance of the

r)A'/2 &r)+ f)A j2
Fig. 4. {a) I' and {b) Q as functions of r. n =0 and y =0.9, the Huid being a liquid.

reflector, R. Such a case is that where the liquid is mercury and the reflector
is of steel, or if the liquid is water and the reflector glass. In this case

& =0 = [1 + y(1 —p) cos 2r~/s —y']/(1 —2p' cos 2rcu/v + y') (19)

and

Q,=o = [j (1 + p) sin 2rcu/v]/(1 —2ps cos 2rcu/u + y4). (20)

These functions are shown graphically as functions of r in Fig.f 'nFi . 4 ataandb
respectively.

THE ACOUSTIC SYSTEM AND ITS ELECTRICAL EQUIVALENT

If, in the foregoing discussion we limit the planes S and R to the Rnite
area A, then we may ignore the effects of diffraction provided that, compared
with the linear dimensions of A, the length of the compressional wave in the
fluid is small, and, second, that the path r is not large. Neither of these condi-
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tions can conveniently be met in working with audible sound, but are not
difficult of fulfillment in ultrasonic interferometry.

Let the vibrator 5 be a piezoelectric plate provided with electrodes and
excited by an independent oscillator. Under these conditions the piezoelec-
tric plate acts as a resonator, the theory of which has been worked out by
W. G. Cady. We will now extend this theory to include the combined action
of the resonator and the Huid column coupled to it.

Let us assume that we have a plate of piezoelectric quartz with electrode
faces perpendicular to an X or electric axis of the crystal. Following Cady's
notation, let 1, b and e be respectively the length, breadth and thickness of
the plate, and let them be parallel respectively to the I", Z and X axes of the
crystal. The equation of motion along the X axis in the neighborhood of res-
onance is shown by Cady to be represented by

(2&)

where M, N and G are respectively the equivalent mass, resistance, and stiR-
ness of the plate for the mode of motion considered, and Ii is the equivalent
mechanical force exerted by the electric field'applied between the electrodes,
This field has the value V/e, where U is the instantaneous potential differ-
ence of the electrodes, and the mechanical stress in the crystal in the X direc-
tion is X = e» V/e, where e.~ is the piezoelectric constant of quartz for the X
axis. The equivalent mechanical force is shown by Cady to be F=2beX=
2c»b V. Let. V= Voe'"', then, in the steady state

where
( ~i(cut —0)

$0 261]VQ/co [fl ' + (Mco —G/co)'] '"

0 = [tan-' (M(o —G/co)]/cV.

(23)

(24)

The leads going to the electrodes of the crystal carry the current i which is
made up in part of the currenti& due to the capacity of the system as a con-
denser and in part of the current i2 generated by the crystal itself as a result
of the excess of its instantaneous strain due to its motion over that which
would be the equilibrium value produced by V itself. The current i& will be in

phase with V andi& will have a phase depending upon the phase of the velo-
city of extension of the crystal in the direction of its vibration and is shown

by Cady to be f2 =- blD, where D = (2$ —5»ts/e)e»/f, 2$ being the total elonga-
tion of the crystal, ( for each face, and e» and 5» being respectively the piezo-
electric constant and modulus of the crystal for the axis considered. The
equilibrium elongation of the quartz for the potential Vis 6»lU/e. Near res-
onance the crystal reaches great amplitude of vibration and the static elonga-
tion may be neglected, giving for the piezoelectric current generated by the
crystal i2 = 2be~~g. Thus the total current to the electrodes is

i = UKg+ 2beig) (25)
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where X& is the capacity of the crystal and its electrodes considered as a con-
denser, and g is subject to Eq. (21).

An examination of Eqs. (21) and (25) shows that the crystal and its elec-
trodes behave as a pure capacity shunted by an effective capacity, induc-
tance and resistance in series, for, substituting $ = ~2/2be~, in equation (21) we
have, since R = 2ei&b V, and putting 4eu2b' = 1/B,

where
Id 'l2/d$ + Rd12/d( + fp/K = dV/dt

I. = BM, R = BX, 1/K = EG

(26)

K. S. Van Dyke' has shown that the equivalent inductance, resistance, and
capacity of the series branch of the equivalent electric network of the crystal
have in fact these respective values for the mode of vibration here considered.
The crystal and its electrodes may therefore be replaced by the network
shown in Fig. 5.

K

Fig. 5. Equivalent network of piezoelectric plate, and, with
modified R and E, of plate coupled to Quid column.

Let us now assume that the electrodes are of negligibly small mass, stiff-
ness, and resistance, and that they are in contact with the surface of the cry-
stal, and that furthermore one of the electrodes serves as the boundary of the
Quid medium. Consideration will be given later to the slight modifications
introduced by variation of these restrictions. In addition to the force Ji, we
now have the reaction of the excess pressure on the face of the crystal given
by Eq. (16), where P and Q have the respective values given by Eqs. (1.4)
and (15) if the fluid is a gas, and by Eqs. (19) and (20) in most cases if the
Huid is a liquid. The equation of motion of the crystal is now

Mj+ Ej+Gp = I' —Ap (28)

where A is the area of the vibrating surface in contact with the fluid. The
excess pressure p as has been seen has a term in phase with g and one in phase
with P. We may accordingly write

' K. S. Van Dyke, Proc. I. R. E. 16, 742—764 (1928); See also D. W. Dye, reference 4,
p. 401.
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or

where we now have

and

3f)+ S'$+6'$ = Il

Id't'g/dt'+ R'di, /dt + i,/E' = dV/dt

R' = R+ ABpvI'

1/K' = 1/E + ABpv&oQ.

(29)

(31)

(32)

It is to be noted that the effective resistance R' and capacity X' of the
acoustic system are constants involving the values of 0., y, r, and co. The
acoustic system may thus be represented by the same network as the piezo-
electric plate alone (Fig. 5), the resistance R and capacity X of that net-
work being replaced by R' and X' defined respectively by Eqs. (31) and
(32). It is often convenient, especially in the interferometry of gases, to work
with a transverse face of a crystal instead of with one of the electrode surfaces.
In this case the piezoelectric constant and modulus are different, leading to a
different value for 8 in equations (31) and (32) but the form of those equa-
tions is unchanged,

In Part II of this paper the acoustic system will be considered in combina-
tion with suitable driving and measuring circuits in accordance with the
necessities of specific experimental objectives, such as the determination of
compressional velocities in liquids and gases, and the absorption coe%cients
of gases.


