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ABSTRACT

This paper develops mathematically the state of an electron gas in equilibrium
with a plane electrode when the electron gas obeys the Fermi-Dirac rather than the
classical distribution law. For a part of the range of integration graphical methods
were found necessary, but fortunately a change of variable leads to a solution, shown

graphically, which is independent of the temperature and of the nature of the emitting
electrode. Thus a single graphical integration can be applied to any emitting surface
at any temperature, giving the density, electric intensity, and potential at any desired
distance from the surface. A simple extension of the theory makes possible the calcula-
tion of the thermionic current between plane electrodes. Numerical examples are
given, and the validity of the asumptions is discussed briefly.

HEN Schottky' first proposed that the thermionic work function could

~ ~

be explained by the attraction of an escaping electron to its electric
image in the surface, he discussed at some length the possible effects of space
charge and "structure effects, " and finally concluded that other forces were
small compared to the image force. Recently Waterman and the author' have
questioned this conclusion, and have suggested that, at least under certain
conditions, possibly always, space charge and structure effects are more im-

portant than the image force.
Schottky, assuming the image force to be correct, and assuming a Max-

well distribution of electron velocities, was able from measured electron emis-
sion currents to calculate the concentrations of the electron atmosphere at all
points outside the metal and found it so rarefied that space charge could be
neglected. This extension of the image force from a region out from the sur-
face where it can be confirmed experimentally down towards the surface
through a region where it could not be expected to be valid appears to be un-

justifiable. The alternative treatment by space charge analysis, which is to
be developed in this paper, is certainly not free from criticism. In particular,
it is necessary to apply Poisson's equation to an electron gas, thus assuming
a continuous distribution of electricity which certainly does not exist. On the
other hand it would appear, as is pointed out in a previous paper by Water-
man and the author, that the choice of suitable statistics may in part avoid
that difhculty. In any case the space charge method of attack seems justified
close to the surface where the image force certainly breaks down. In order to

' Schottky, Phys. Zeits. 15, 872 (1914).
' Bartlett and Waterman, Phys. Rev. [2] 37', 279 (1931).
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shed more light on this question certain calculations have been carried out,
assuming that the electron concentration is controlled by space charge alone.

EgUrnaRIUM. CLAsslcAL DisTRrBUTION LA W

After the manner of Fry, ' Langmuir, ' and others, consider a stream of
electrons emerging from an infinite plane electrode with initial velocities
distributed according to some law. The electrons outside the surface of the
electrode will induce a charge on the electrode tending to draw the electrons
back to it. There will be a potential distribution outside the metal surface
through which the electrons move, those with higher initial velocities normal
to the surface getting further out before they are turned back.

With no external held and no neighboring electrode, we may write an ex-
pression for the charge density at any point in potential space.

f(vo)
p = 26

I
Zap

(2Ve/m)'t'

where f(v, )dvo gives the number of electrons emerging from the surface per
square cm with initial velocities normal to the surface lying between vp and
vp+dvp, while v represents the normal velocities of these electrons at the point
in question. Clearly

'V
o

0

Using Poisson's equation we get

d'V r
" f(vo)—4~p =

dx2 (2V. /m)'"

Multiplying both sides by 2 d V/dx and integrating in the usual manner
gives

(
dV 00

= 16vvs I vf(vp)dvo.
dS (IVY/m) j

We cannot proceed further without knowing the distribution law of velo-
cities expressed in f(v 0). For the classical case

8$Vp

f(v ) —v s—mvo ~2&T or f(vo) = ly'0 —— vov ~"o &2 "r
kT 2zkT

where np is the number of electrons passing through a square centimeter of
the surface per second, and Xp is the number of electrons per unit volume at
the surface. Then

(
dV m= 16m.m.Vp pp g-m&0'»I &dp .d$2x k T (/gal/m) f

' Fry, Phys. Rev, [2] 17, 441 (1921),
4 Langmuir, Phys. Rev. [2j 21, 419 (1923}.
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Changing the variable to v gives

= i6mm2Vp &2&
—me /2kT —Ve jkTd~

= Sm.A pkTe eV/~T

since the integral is a well known form having the value ~(8prk'TP/npP)'iP.

Taking the square root and performing the next step in the integration
gives

&T ~/2 i
x ~eV

/2kT

x Ap 2e
(8)

The first boundary condition requires that U and x shall approach infinity
together as d V/dx approaches zero, and this is satisfied by the above equa-
tions. The second condition specifies that at the surface the number of free
electrons per cubic centimeter has a fixed value, in this case N p. That requires
that &he surface of the metal shall be at xp given by

Combining Eqs. (1) and (5) and integrating at once gives Boltzmann's
equation

g —g g
—eV/kT (10)

We could, in fact, have arrived at Eq. (8) by combining (10) with Poisson's
equation. But (10) is of interest now in that, combined with (8) it gives us the
concentration at various distances from the surface. The quantities V,
d V/dx, x, and K are so related that as soon as we have fixed one all the others
may be determined from various combinations of Eqs. (7), (8), and (10). It
is also seen that a different metal, with a different electron concentration at
the surface, could be handled by the same equations with an appropriate
value of xp at the surface.

EQUILIBRIUM. FERMI-DIRAC DISTRIBUTION LAW

If in Eqs. (1) and (4) we replace the classical expression for f(vp) by that
obtained from Fermi-Dirac statistics, the problem becomes much more com-
plicated.

Now
2x kTGm2

f(ep) = pp log (Ape ~"~ "" + 1)
h'

where A is a measure of the degeneracy of the electron gas. This gives us
instead of (1) and (4) the following.

4x k TGm2 (' " vp
log (g e tllvp /2H + 1)de

~ &2Ve/~)'/'
(12)
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and

dV m ~ f'
=. 32m'kTG —

~ vv, log (Age ~"~'~"v+ 1)dvo
dx ~ (2Ve jm) ~

Making the change of variable from vo to v gives

4~ k TGm'E= log (Ae " "'v + 1)dv
h'

dV 5$3
= 32v'kTG — v'log (Ae-""I'"v+ 1)dv

dS 0

Since the evaluation of these integrals is rather complicated, it vrill be
convenient to make certain substitutions.

Let

2kr'

Let

f(A) = t log (Ae " + 1)de
0

g(A) = t I".log (Ae "'+ 1)du.

Then

2vG(2m k T) '"
f(A)

(
d V ' 16v'Gm"'(2k T)"'

g(A) .

For the case where A &1 the solution is fairly simple. Expanding the log
(Ae "+1)du we get

f(A) = t [Ae-"* —~A'e-"' y -'4'e-'" ]dl
0

(18)

g(A) jt [Agg2e
—h 1A2~2e—2u + 1A 3~Re- eel . . . ]dg
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The integrals involved are ordinary probability integrals. Hence

f(A) = p(s)'"[A —A'/2'i'+ A'/3'" ]

g(A) = —'(m)'"[A —A'/2'i2 + Ae/3'i' ]

(20)

(21)

Further, for the case where A «1 we get the usual Boltzmann relation that
N = %pe ' ' ~~. When the gas is not classical the Boltzmann relation becomes
A =A pe ' I ~, as Waterman has found from a different point of view.

When A &1 the solution becomes more difficult since the expansion used
above is not valid over the total range of integration. It is necessary to divide
the range of integration into two parts, for which Ae "' is less than or greater
than unity. Then

and

i/2 l/8
(logA) (logA )

f(A) = log [Ae—"]de + log [e /A + 1]dl
0 0

+ t log [Ae— + 1]dg
~ (logA) /

(22)

i/2
p (»gA)

g(A) =
I e

aJ p

1/2
(logA )

'log [Ae-"']el y
0

m'log [e" /A + 1]dl
(23)

+ I I' log [Ae-"'+ 1)dN
(logA) /

If A)&1 (i.e., the electron gas completely degenerate) the first term is the
only one of consequence.

This first term can be integrated directly to give

f(A) = 2/3(log A)"'

g(A) = 2/15(log A)'"

(24)

(25)

And finally by means of series expansion and integration by parts, involving
steps of questionable rigor but justified by the result, one obtains

2 s' /ir4 31'�'
A = —logA 'i' 1+

3 8(log A)' 640(log A)4 6144(log A)'

419iw'
+ ~ ~ ~

5 X 2"(log A)s

(26)

2 Sm' 7x4 i55m'
g(A) = —(logA)'" 1+

15 8(log A)' 384(log A)4 43008(log A)'

38ix' (27)

2"(log A)'
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where these series, though not convergent, may be used for large values of A,
and have been checked by graphical integration.

In the Sommerfeld-Fermi-Dirac statistics, the number of particles per
unit volume and the energy per unit volume are expressed in terms of two
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functions F(A) and G(A). It turns out that f(A) as used above is equal to
m'ls/2 F(A), while g(A) =s""/4 G(A), thus confirming the results of the
questionable steps mentioned above.
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We now have expressions for f(A) and g(A), hence for X and (d V/dx)'
over four regions, completely degenerate, less degenerate, approaching clas-
sical, and completely classical. The two extremes are handled by exact ex-

pressions, the intermediate regions by series, and there is a region between for
which neither series is valid. f(A) and g(A) have been evaluated graphically
for this intermediate region. Numerical results of this graphical integration
and of the series expansions are given in Figs. 1, 2 thus covering the regions
between the exact expressions for completely degenerate and completely
classical states.

For the degenerate state %=4sG(2mkT)'~'/3k'(log A)'~2 and for the
classical state X=G(2vrmk T)'~'/k' A. For intermediate states X= 2+G
(2mk T)e~'/k' f(A) where f(A) for any value ofA may be found from the 6gures.

Further for the degenerate state

dV = 32'. Gnz ~'(2kT)e~ /15k' [log (Aoe ' I "r)]'~'
dS

Taking the square root of both sides and integrating directly gives

ps'/2h3/2
log ~-~/4

27 I 4xG»~yg& I4(k T) ~/4e

For the classical state

dy ' /Gag'&~(2xkT)'&'
g
—eV /kT

dÃ h'

This also may be integrated directly to give

h3/2
.g —1/2

2 "4G"'m "4s5t4(k T) "4 (29)

For the intermediate region graphical integration is required, since there is no

exact solution. It is seen that

= const (g(A))'" = const (g(Aee ' r~ l))r'~'
dS

Since values for the expression under the radical have been tabulated as a
function of A, easily convertible to a function of t/', it is possible to perform a
graphical integration. To simplify the arithmetical work this has been done
to give a new function P(A) proportional to x, values for which are given in

Figs. 1 and 2.
f(A), g(A), and p(A) are perfectly general functions, independent of tem-

perature and of the nature of the electron emitter. The coefficients of these
functions in the various equations take care of the effect of temperature. The
curves in Fig. 1 show these functions plotted against A. The origin at log
A =0 is purely arbitrary. In e8ect there is no origin, or better, perhaps, each
particular problem provides its own origin, fixed by the conditions of the sur-
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(34)

(37)

face. In practice it is convenient to consider distances and potential differ-
ences fromx~, V~ corresponding to A~, to x2, V2, corresponding to A2. The for-
mulae below together with the tables cover the entire range of an electron gas.

V(volts) = 300kT/e log A = 690.8kT/s log~0 A
(30)= 1.9851 g 10 4T log o A

E = 2xG(2///kT)'"/h'f(A) = 5.4830 X 1 0" T' /'f( A) (31)

A» 1 E = 4mG(2///kT)'"/3h' (log A)'" = 1.2772 X 10"T' /'(1 og~ DA)"' (32)

A « 1 S = G(2xmkT)3/'/h'A = 4 8591 X 10"T'"A (33)
A' = 2 "/4+G'/'m'/4 (k T) '/4/h'/' [g (A) ] '/'E. S.U/cm

= 1843.9T'/4[g(A) j'" volts/cm

A» 1 E = 2""7rG'"m'"(kT)'"/15"'h"'(log A)'"
= 1909.8T'"(log/0 A) "' volts/cm (35)

A « 1 E = 2"'x"'G'"m'"(kT)'"/h"'A"' = 1227.4T'/'A"' volts/cm (36)

x = h'" X 0.046052/2""wG'"///, '"(kT)'"e @(A) cm

= 2. 1631 X 10 'P(A)/ T' '/cm

A» 1 x = 15"'h"'/2'"~G'"m'"(kT)'"e (log A) '"
= 4. 1770X10 '/T'" (log~o A) "' cm (38)

« l / —ha/2/25/4G1/2///3/4~5/4(kT)1/4s. A —1/2

= 1.4112X 10 '/ T"' A '/' cm. (39)

A small additive correction is necessary to join different regions. This
may easily be calculated, but has been omitted here to avoid further com-
plications.

!
(0

8

9
os

~4

2

5000'K

Image f'or"ce

hcLl 6

ZOOO'6

0 -6 -7 -6 -5
lo0 x

Fig. 3, Height of potential barrier at different distances from the surfaces.
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If then N is known for any point, A, U, x, and Z may be found from these
formulae used in conjunction with the figures. And as soon as one of these
is fixed for another point, all the others may be found. The separation of the
points in space and in potential is found by subtracting the U's and x's for the
two points. Figs. 3, 4 give some characteristic results for various conditions.

v ~l

-7 I/
69 -8 -7 -6 -5

log .~

Fig. 4. Distances between electrons at different distances from the surface.

CURRENT TO THE ANODE

The analysis just given applies to the case of no current, effectively an
equilibrium case, though it was considered from the point of view of emerging
and returning streams. Fortunately it is possible to take advantage of earlier
work by Fry and Langmuir in going over to the case where a current is fiow-
ing from the hot cathode. In Langmuir's paper two variables are defined

f. = 4(9r/2kT)'"9/5'"(ei)"'(2: —2: )

9/
= 4(V —V )/kT

(40)

(41)

It is easily seen that q =log A —log A in our notation. Now the current
passing a potential barrier U is given by

i = 29r5kTG//52/k3 24 log (A9e ~" /25T + 1)d35
(2Ve/m) &/2

i = 2 Gm95(kT4) /k A9e ' /5 = 29/G/995(kT) /k3 A

provided A oe .v~ kT g f
If this value of 9 is put into the expression for $ above we get

(42)

(43)

29/4935/4(kT)1 4 3//4 /9A515/2s &v/5T(95 —2 )/k3/2 (44)

from which it appears that / =0.0460529r'/'/23/' Q(A) A'/' with similar rela-
tions beyond the range of /t1(A). Thus it is possible to apply the Langmuir
Fry analysis to this case if a little care is exercised, using the relation P

1/2s —ev/2 5T —
$ A 1/2
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The Langmuir-Fry analysis assumes electrons streaming out from the elec-
trode with velocities according to Maxwell's distribution law. Of these the
highest velocity electrons escape completely, so that the returning stream
consists of only a part of the Maxwellian distribution. Now in thermionic
emission the currents are generally so small that the loss of electrons to the
returning stream is of no consequence close to the electrode where the distri-
bution is no longer classical. In the region where the loss of electrons is of
consequence, the distribution is classical or so nearly so that the Langmuir-
Fry analysis can be joined to mine as indicated without serious error.

ILLUSTRATION OF TIIE METHOD OF CALCULATION

Let us take the case of an emitter at 3000 K.
Xo ——6.2 X 10" (tungsten) Parallel plane electrodes 1 cm apart.
From the figures log A, =9.534 A, =A at surface
Arbitrarily log A = —3.0000 A =A at potential minimum

A simple calculation gives f corresponding to A as 3.612&&10—' amps/cm'
From the figures Q(A, ) = 126.59 Q(A „)= 2002.06
Using equation (45) $&

——43.399 (&,
———2.744 f, = 46.143

Multiplying by A""gives $ = 1.4592
To this we add 1.1397 to fit classical to Fermi,
giving )j (from surface to potential minimum) =2.5989
From 40 or 44 ('=43.041
so that $2' (from potential minimum to collecting electrode) =40.442
From tables of Langmuir, extended to cover some cases dealt with here,
g2=87.49 (from potential minimum to collecting electrode. )
p(total) = 74.96 V=19.387 from equation 41
Repetition of this process for a series of values of A leads to the results given
in Fig. 5.

O

io f55 f 2Q 55
V

Fig. 5. Current from emitter at 3000' to parallel electrode i cm distant for
diEerent accelerating potentials.
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Fig. 3, showing the height of the potential barrier at various distances
from the surface, for tungsten, No=6. 2X10"/cm' is interesting in that it
shows a value for the work function much larger than that conventionally ac-
cepted, this larger value being necessary to nullify the effect of the zero-point
energy of a highly concentrated electron gas.

Fig. 4 shows in effect the average distance between electrons as a function
of distance from the surface. The distance between electrons is comparable
with the distance from the surface at a point so close that the image force is
meaningless, and slightly further out it is seen that an electron is further from
the surface than its nearest neighbor, showing that space charge is certainly
important.

When considering the calculations shown in Fig. 5, it should be remem-
bered that the calculations were carried out for plane parallel electrodes,
whereas experiments have almost invariably used coaxial cylinders. The
rapid change of space charge outward radially from a fine wire would natur-
ally lead to different results. In order to test this question, an attempt is now
being made to reproduce experimentally the conditions here treated theoreti-
cally.

There are two more questions of importance that must be recognized here.
In the first place, the calculated electric field at the surface is so large that a
great reduction of electron concentration within the surface should result
from the very large surface charge Just. what e8ect this might have on the
case of a current cannot be predicted. The calculations for the equilibrium
case are still valid, if one chooses a proper electron concentration at the sur-
face. A second question, of course, is that of the validity of Poisson's equa-
tion. It seems to the author that probably this calculation is reasonably close
to the truth in regions where the concentrations of electrons is large. But at
considerable distances from the surface, where the concentration is low,
the approximation to the truth cannot be as good. It is for this reason that
for the calculation of emission currents the electrodes were chosen so close
together. Also for this reason results are not given for currents at lower tem-
peratures. This particular problem will be investigated further.

In conclusion the author wishes to thank Professor A. T. Waterman for
many helpful discussions of the problem.


