New Lines in the Near-Infrared Spectrum of the Neutral Hg Atom

Thirty-nine new lines have been observed in the region 0.9μ to 2.25μ with an automatic recording spectrograph of the Littrow type using the equivalent of five 60° prisms. The lines are extremely weak so that an effective slit-width of approximately 15 A° was necessary for detection with a single junction ther-

Research Tokyo, Sci. Papers No. 232, March 20, 1930). All the lines in the region 0.9 to 1.0μ , observed photographically by Takamine and Suga were discernible, and the line at 0.940μ resolves into two, 0.9432 and 0.9447μ . The line at $2.108\mu\pm10^{-3}$ is of the same intensity as the one 2.2489μ observed by F. Pas-

NT	New HgI Lines and Possible Classification.		
No.	λ	ν	Classification
1	0.9253	10807.3	
$\frac{\tilde{2}}{3}$	0.9432	10602.2	$2^{1}P_{1}-6^{1}D_{1}=10600$
3	0.9447	10585.4	$2^{1}P_{1} - 6^{3}P_{2} = 10581$
4	0.9697	10312.4	
5	0.9774	10231.0	$2^{3}P_{0}-2^{1}F=10231$
6	0.9780	10225.0	$2^{3}P_{0}-2^{3}F=10227$
4 5 6 7 8	0.9918	10083.0	$2^{1}D_{1} - 5^{3}S_{1} = 10083$
8	0.9983	10017.	$2^{3}P_{1}-4^{3}D_{1}=10016$
9	1.0211	9793.3	1 121 10010
10	1.0240	9765.6	$2^{1}P_{1}-5^{1}D_{1}=9764$
11	1.0276	9731.4	$2^{1}P_{1} - 5^{3}P_{2} = 9730$
12	1.0294	9714.4	$2^{3}P_{1} - 4^{3}P_{0} = 9713$
13	1.0307	9702.1	2 2 1 1 1 1 0 7 1 10
14	1.0361	9651.5	$2^3D_3 - 5^3D_3 = 9654$
15	1.0436	9582.2	$2^{1}D_{1} - 5^{3}P_{1} = 9583$
16	1.1008	9084.3	2 21 011 3000
17	1.1018	9076.0	$2^3S_1 - 9^3P_1 = 9078$
18	1.1036	9061.2	$2^{3}P_{2}-4^{3}S_{1}=9060$
19	1.1129	8985.5	$1^{3}S_{1} - 2^{3}D_{1} = 8986$
20	1.1363	8800.4	$2^{3}S_{1} - 8^{3}P_{1} = 8805$?
21	1.1433	8746.6	2 51-61 1 - 8805:
22	1.1790	8481.7	$2^{3}P_{2}-4^{3}D_{2}=8482$
23	1.1916	8392.1	$2^{1}P_{1}-4^{3}D_{2}=8397$?
23 24	1.2193	8201.4	${}^{3}P_{2} - 3{}^{3}D_{1} = 8200{}^{2}$
25	1.2224	8180.6	$2^{3}D_{2} - 4^{3}P_{2} = 8180$
26	1.2376	8080.1	$2^{1}P_{1} - 4^{3}P_{0} = 8082$
20 27	1.2440	8038.5	$2^{3}D_{1} - 4^{3}P_{0} = 8039$
28	1.3634	7334.3	$2D_1 - 41_0 - 8039$
29	1.3979	7153.6	$2^{3}P_{1} - 3^{3}P_{2} = 7161$?
30	1.4027	7133.0	211 - 312 - 7101
31	1.4027	7078.6	$2^{1}D_{1}-4^{1}S_{0}=7068$?
		7078.0	$2^{3} S_{1} - 5^{3} P_{2} = 7062$
32	1.4160		
33	1.7269	5790.7	$2^{1}P_{1} - 3^{3}D_{1} = 5791$
34	1.7696	5651.0	$3^3P_1 - 6^3S_1 = 5656$?
35	1.7980	5561.7	$3^3F - 8^1D_1 = 5563$
36	1.8084	5529.7	$2^{1}P_{1} - 3^{3}P_{2} = 5530$
37	1.9481	5133.2	$2^{1}D_{1} - 3^{3}P_{1} = 5134$
38	1.9571	5109.6	$2^{3}D_{1} - 3^{3}P_{0} = 5110$
39	2.1080	4744	$2^{3}P_{1}-3^{1}S_{0}=4742$

¹ Constructed by E. D. McAlister, Smithsonian Institute.

mocouple. The intensities of these lines are of the order of 0.002 that of the strong line at 1.0142μ , which gave a 45 cm scale deflection at 4 meters. The arc was operated at 86 volts and 3.8 amperes.

Wave-length standards were taken from E. D. McAlister's report (Phys. Rev. 34, 1142-1147, Oct. 15, 1929) and T. Takamine's and T. Suga's report (Inst. Phys. and Chem.

chen, and the wave-length uncertainty is due to the fact that the nearest known line is 1300A away.

This brings the number of lines in this spectral region, 0.90 to 2.25μ , to a total of 96.

H. J. UNGER

Department of Physics, University of Oregon, March 10, 1931.

 $^{^2}$ Takamine's x-term given by F. Paschen as a 3P_2 -term that may assume two different values.