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ABSTRACT

A brief review of the statistical theory of the equation of state is presented. Upon
the basis of a recent quantum mechanical calculation of the interatomic energy, the
second virial coefficient of helium has been calculated, With the use of the theoreti-
cally determined virial coefficient some properties of helium have been computed. A
detailed comparison with experimental data is given.

INTRODUCTION

'HE past several years have seen a great advance in our understanding of
intermolecular forces. The work of Heitler and London on the resonance

interaction of two hydrogen atoms suggested the nature of the repulsive force
operating at small intermolecular distances to determine the effective molecu-
lar cross-section. More recently the work of Eisenschitz and London followed

by that of other investigators has permitted a calculation of the polarization
force, operating at larger intermolecular distances to produce the van der
Waals' attraction. However the theory has so far been subjected to no critical
comparison with experiment. It is the object of the present paper to make
such a comparison in the case of helium, the only gas for which a fairly ac-
curate calculation of the intermolecular energy has been carried out.

THEORY OF THE EQUATION OF STATE

Many empirical equations of state have been suggested for gases. All of
them, however, may be expanded in the familiar virial form

pV 8 C—=&+ + +
RT V V'

where p is the pressure, V the volume of a gram-mol of gas, R the ideal gas
constant, and T the absolute temperature. The coefficients, 8, C, are in

general functions of the temperature.
Although a complete statistical theory of the equation of state has not

been worked out in detail, it is possible under certain conditions to obtain a
correlation between the second virial coefficient, 8, and the intermolecular
forces.

Above the critical temperature, it seems legitimate to assume that the
fraction of the molecules in quantized collision states will be insignificant.
Moreover, the Boltzmann distribution function may probably be regarded as
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valid for all gases until temperatures in the neighborhood of absolute zero are
reached. Thus even in the case of hydrogen at a pressure of one atmosphere
and a temperature of 2'K, both the Fermi-Dirac and the Bose-Einstein dis-
tribution functions give the same result as that of Boltzmann within a few
percent insofar as the translational energy is concerned. ' Subject to these
limitations, it is possible to identify the sum of state with Gibbs phase in-
tegral'

s = e
—~~ "dpi . dPgy

where Z is the total energy of a gas consisting of N molecules averaged over
all internal coordinates and k is Boltzmann's constant. The integration is to
be taken over all of the 6X dimensional momentum-configuration space
available to the system. If the thermodynamic potential, P, (Helmholtz free
energy function) is defined by the relation

4=E —TS

where 5 is the entropy, Gibbs has shown that

f = —LT ln s
Moreover,

(3)

The integral (2) may be evaluated in simple form under certain conditions. '
It is to be assumed that the density of the gas is low enough so that molecular
configurations in which the fields of more than two molecules overlap, are
suSciently rare that they may be ignored. In the case of neutral gas mole-
cules where the molecular forces are effective only at very short range, this
condition is often fulfilled even at relatively high densities. Under these cir-
cumstances it is possible to write

where

(5)

Here e is the mutual potential energy of two molecules and the integration
is to be taken over all values of their relative coordinates. From Eqs. (3), (4),
and (5), after expansion of the logarithm in powers of 8/ V, it is found that

pV 8 48'
+ + +

ET V 3V'

' R. H. Fowler, Statistical Mechanics, p. 539 (1929).
' J. W. Gibbs, Elementary Principles in Statistical Mechanics (1902).
' F. G. Keyes, Chem. Rev. 4, 175 (1929). K. F. Herzfeld, Muller-Pouillets Lehrbuch der

Physik, Vol. 3, Kinetische Theoric der Warme, p. 167.
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where the second term may be identified with that of the virial Eq (.1). If,
as in the case of helium the molecules are spherically symmetrical

8 = 27rX ~" (1 —e "~~ )r'dr
0

(6)

where r is the distance between the two molecules.
Perhaps the most well known of empirical equations of state is that of van

der Waals:
RT

P 0

V —b V'

It is of interest to see what form the intramolecular potential, e, must assume
to be consistent with it. The virial Eq. (1) may be transformed into van der
Waals' equation if 8/U is assumed to be very small relative to unity and

8 = b —A/RT.

If the molecules are treated as rigid spheres of diameter, 0., it is obvious that
when r &e, e = ea, and formula (6) yields, after expansion of e 'I "r;

8 = b —A/RT
where

2m N(r3—= 4 (total volume of the molecules)
3

and

2~ y "+2 g&+ Ir2d)
g

It must be concluded, therefore, that the coefficient A appearing in van der
Waals' equation is not a constant, but a slowly varying function of the tem-
perature. This conclusion is born out by experiment in the region of low

temperatures where the sum g An/(RT)" may no longer be neglected.
n=1

Moreover, experiment at high temperatures, invalidates the assumption of
rigid molecules. Thus, it is found that b is a slowly decreasing function of the
temperature, a fact which can only be explained as due to an interpenetration
of the molecules. Van der Waals' equation is therefore to be regarded as merely
a first approximation even at small densities. '

THE MOLECULAR FIELD

Empirical information furnished by the equation of state suggests that
the general character of the force between two molecules may be conveniently
represented by means of two potentials, e„and e,. The potential e„, which
predominates at small molecular separations, must ascend steeply with in-

4 F. G. Keyes and R. S. Taylor, J.Am. Chem. Soc. 49, 896 (1927).
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creasing slope as two molecules approach and diminish rapidly as they recede,
thus giving rise to a strong repulsive force at small intermolecular distances.
The potential, e„nullified at small separations by e„, must fall off less rapidly
with the distance, giving rise to an attractive force at larger intermolecular
separations. Thus the total intermolecular potential, e, might be written

6y +
This representation is to be regarded as more or less schematic, since no
sharply defined physical significance can be independently assigned to e„or

Still, it has the advantage of suggesting two different types of molecular
interaction which we believe to be effective in determining the intermolecular
energy.

According to present quantum mechanical ideas, the "repulsive" poten-
tial, e„, is to be regarded as arising from a resonance interaction between the
molecules. A calculation of the resonance energy has so far been accomplished
only for atomic hydrogen' and helium. ' In the case of atomic hydrogen, the
situation is complicated by the existence of two alternative modes of inter-
action, one of them giving rise to the repulsion of which we have spoken, and
the other to valence union. Helium is, therefore, the only simple gas for which
we have a knowledge of the repulsive field. Although a somewhat complicated
function of the interatomic distance, the resonance energy in the range of im-
portance in the thermal interaction of gas molecules may be adequately repre-
sented by the formula

~, =he'"
The "attractive" potential is to be regarded as arising from a mutual po-

larization of the molecules, ' chiefly due to a rapidly pulsating field associated
with the internal motion of the electrons in the molecule. The dominant
term in this energy comes from the oscillating dipole. If terms from multi-
poles of higher order are ignored, the attractive potential has the form

a
g6

A general scheme for the calculation of ~, has been developed by London and
Eisenschitz. ' They have made an exact calculation of the mutual energy of
two hydrogen atoms as well as rough estimates in the case of some other
gases.

Heitler and London, Zeits. f. Physik 44, 455 (1927); Sugiura, Zeits. f. Physik. 45,
484 (1927).

' Slater, Phys. Rev. 32, 349 (1928).
7 In 1920 Debye (Phys. Zeits. 21, 178, 1920) suggested that the van der Waals attraction

in gases had its origin in a mutual electrical polarization. Upon the basis of an electrostatic
molecular model, he attempted to calculate the van der Waals A constant for several gases in
&erms of their electrostatic multipole moments. That his theory was not very successful from a
quantitative standpoint, is readily understandable in view of the inadequacy of the molecular
model employed.

Eisenschitz and London, Zeits. f. Physik 60, 491 (1930);London, Zeits. f. Physik 63, 245
(1930).

' Slater and Kirkwood, Phys. Rev. 37, 682 (1931).
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A calculation of the mutual energy of two helium atoms by another
method has been carried out by Slater and Kirkwood. ' They obtain for the
total intermolecular potential of helium:

0.68
o
———]0 "ergsrao6 (7)

where ao is the Bohr radius of the hydrogen atom. In this expression, terms
arising from variable multipole moments of higher order than the dipole have
been neglected. Moreover, an error of a few percent in the coeAicient of the
exponential term is not unlikely since an approximate wave function was em-

ployed in its calculation.

THE EQUATIoN oF STATE QF HELIUM

With the expression for the intermolecular potential given by Eq. (7), we

have computed the second virial coefficient of helium at several temperatures,
by graphical integration of Eq. (6). The results are listed in Table I together

TABLE I. Second trial coegcient of helium.

r ('K)

350
300
250
200
100
20

B (theory)
cc/mol

10.80
11.14
11.34
11.58
10.75—6.94

B (H and 0)
cc/mol

11.60
11.80
11.95
11.95
10.95—4.00

with experimental values of Holborn and Otto. " The theoretical values of
the virial coefficient 8 have been plotted as a function of the reciprocal tem-
perature in Fig. 1, and as a function of the temperature in Fig. 2. For com-

parison, the experimental results of a number of investigators have been in-

cluded. "" From Table I it may be seen that the computed values of the
virial coefficient, while consistently lower than the experimental ones of Hol-
born and Otto, do not differ from them by more than five or six percent
between 100'K and 400'K. Below 50'K, the agreement between the two is

not quite as close. This fact may probably be attributed as much to error in

the experimental measurements as to error in the theoretical values of the
virial coefficient. However, a real discrepancy at low temperatures might be
expected if the proportion of molecules in quantized collision states became
appreciable, for in that event, Gibbs' phase integral would cease to be an
adequate representation of the sum of state and Eq. (6) would lose its valid-

ity. At present it is impossible to decide whether or not this effect is of im-

Holborn and Otto, Zeits. f. Physik 33, 1 (1925); 38, 359 (1926).
' NijhoR, Keesom, and Iliin, Leiden Communications 188C, Oct. 1927.

» Onnes, Leiden Communications, Verslag Akad. Amsterdam 102a) 495 (1907); 102c, 741

(1908);Onnes and Hoks, ibid 170a, 170b, (1924);Onnes and Van Agt, ibid 176b, 625 (1925).
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Fig. 1. The second virial coefficient of helium plotted as a function of
the reciprocal temperature.

& 7heoret/ca/
8, Ho/born + Otto
Q Nij boff + K'eeyore

+ OnneS W CO.Why.ke~
4

ZO0
T ('K)

I

goo +oo

Fig. 2. The second virial coefficient of helium plotted as a function of the temperature.



portance because of inconsistency in the experimental values themselves in
the low temperature region.

On the whole the agreement between the theoretical and experimental
values of the virial coefficient is extraordinarily good. The slight discrepancy
between them is not surprising in view of the approximations which were
made in the calculation of the intermolecular energy, Eq. {7).

An examination of Fig. 1 shows that both the theoretical and experimental
curves pass through a maximum at about 173'K. This phenomenon has been
observed only in the case of helium, but presumably it should occur at suf6-
ciently high temperatures for all gases. Thus, for hydrogen, neon, nitrogen
and a number of other gases, the curve obtained by plotting 8 against 1/T
shows a decided concave bending in the region of high temperatures. The
limitations of van der Kaals equation are clearly brought out in Fig. 1. Below
100 K, it would be possible to apply van der Kaals' equation. to helium, since
in a narrow temperature range the relation between 8 and 1/T may be ap-
proximated by a linear function. However, above 150'K, the van der Waals
form of equation is entirely inadequate. Not only does the coefficient, A,
cease to be constant, but it becomes very sensitive to temperature variation.

SOME PROPERTIES OF HELIUM

In order to obtain a more detailed comparison with experiment, some
properties of helium have been computed with the aid of the theoretically
determined virial coefficients. By means of Eq. {1)the pressure has been cal-
culated at several temperatures and volumes. The computed and experi-
mental pressures are given in Table II.

TABLE II. helium pressures calculated from the first three terms of the theoretical virial.
Expansion: p = (R'lj V}(1+8/V+48'/3 V'.)

V (liters jmol)

t =200'C

t =100'C

t =O'C

t = —100'C

2,000
0,400

2.000
0.333

2.000
0.250

2.000
0.200

p (calc.)

19.51 atm.
99.60

15.39
94.96

11.27
93.97

7.15
75.45

p (obs. )

19.52 atm.
99.82

15.40
95.11

11.27
94.12

7.15
75.66

—0.01 atm.—0.22

—0.01—0.15

0.00—0.15

0.00—0.21

The Joule-Thomson coefFicient, p, may be expressed in terms of the virial
coeScient 8, and the heat capacity C„ in the following manner:
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At 25'C, p is calculated to be —0.061' atm. '. Moreover, between +100' and
—100'C, the value of dB/d(1/T) is extremely small and therefore the tem-
perature coefficient of p is very small. Roebuck" has recently obtained the
value —0.06' atm. ' from measurements of the Joule-Thomson effect between
+100'C and —100'C. The temperature variation in p, lay within his experi-
mental error. A rough calculation of the Joule-Thomson inversion point leads
to the temperature, 54'K. Although there is no reliable experimental deter-
mination with which to compare it the temperature 54'K is in accord with
the fact that helium cannot be liquefied at the lowest temperature attainable
by evaporating liquid nitrogen, about 70'K.

The thermodynamic temperature scale may be identified with the scale
of the ideal gas thermometer. In order to reduce the scale of an actual gas
thermometer to the thermodynamic temperature scale, corrections which are
functions of the virial coefficients of the gas must be applied. .We have used
the theoretically determined values of 8 in conjunction with recent measure-
ments of the coefficient of expansion and the coefficient of pressure of helium'
to determine the position of the freezing point of water under a pressure of
one atmosphere on the absolute temperature scale. The coefficient of pres-
sure of a gas at constant volume is defined as,

P l00 PO
A

100pp

where PD is the pressure at O'C and p&00 the pressure at 100'C. It is easily
shown that

Tp = 1 Ap

where T0 represents the position of O'C on the absolute temperature scale
and na is the coefficient of pressure of an ideal gas, for which p U= RT. More-
over, it is possible to calculate na in terms of the n, of an actual gas if its
second virial coefficient is known.

n'o = n~ + Po(6. 0988o —4.4648 too) 10 r

where Pa is again the pressure at O'C, Bi00 the virial coefficient at 100'C ex-
pressed in cc/mol, and Bo its value at O'C. no may also be obtained from the
coefficient of expansion in a similar manner. From the measurements of
Heuse and Otto on helium, we compute for the average value of ND.

0.0036609 atm. /'
which corresponds to

Tp = 273. 16.
By linear extrapolation Heuse and Otto find that

TQ = 273. 16.
The International helium thermometer is defined as a constant volume

gas thermometer in which the pressure of helium at O'C is equal to that of a
'3 J. R. Roebuck and H. Osterberg, Phys. Rev. 3V, 110 (A) (1931)."W. Hense and J. Otto, Ann. d. Physiit [5] 2, 1012 (&92&).
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one meter column of mercury at O'C and standard gravity. The gas tem-
perature is defined as

Ptg PO

P 100 PO

The corresponding temperature on the absolute scale is of course

T —T0.

The correction At which must be added to the gas temperature t, to bring it
into agreement with the absolute temperature scale may be computed from
the second virial coefficient by means of the formula

ht = 5.870I3.731t„(B„p—Bp) —(373.1+ tp)(B, p
—Bp) I 10 '

where the virial coefficients Bppp, Bp, and B«are expressed in cc/mol. The
corrections have been calculated for several temperatures. They are listed
with those given by the Reichsanstalt in Table III.

TABLE III, Corrections to international helium thermometer scale.

200
100
50
0—100—200—250

~t (calc.)

+0.006
0.000—0.0003
0.000

+0.009
+0.032
+0.051

st (H and O)

+0.008
0.000—0.001
0.000

+0.009
+0.028
+0.043

L. Holborn and J. Otto, Zeits. f. Physik 38, 359 (1926);30, 1 (1925).

Baxter and Starkweather" have measured the density of helium. Their
value at O'C and a pressure of one international atmosphere (pressure of a
column of mercury 76 cm in height at O'C and at standard gravity; g = 980.665
dynes sec ') is

0. 17847 g/liter.

Using this density together with our value of 8 at O'C and taking the gas
constant, 8, as 0.08206 liter atm. the mean for a large number of gases, we
calculate the atomic weight of helium as 4.0022. This is to be compared with
the atomic weight 4.0020 obtained by Baxter and Starkweather from the den-
sity given above and their own compressibility measurements at low pressures.

In all of the cases which have been considered, the theoretically deter-
mined virial coefficient gives results which are in substantial agreement with
experiment. When it is remembered that the calculation of the virial coeffi-
cient is based upon purely a priori considerations and depends upon experi-
ment only through the values of ce& tain universal atomic constants, it seems
to furnish a striking confirmation of the present theory of intermolecular
farces.

» Baxter and Starkweather, Proc. Nat. Acad. Sci. 11, 231 (1925).


