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ABSTRACT

A calculation of van der Waal's potential of two atoms at large separation has
been carried out for hydrogen and helium. The method depends upon a representa-
tion of the perturbed wave function of the system as

where Pp is the unperturbed wave function, v the perturbing potential and R is a func-
tion of the radial coordinates of the electrons. The method is equally well adapted to
the calculation of polarizabilities. A computation of the mutual energy of two hydro-
gen atoms confirms the results of Eisenschitz and London. The polarizability of helium
is calculated as 0.210)&10 '4 cc which agrees well with the experimental value,
0.205 X10 '4. The mutual energy of two helium atoms is found to be —3.18 Ep/(R/ap)6.
A correlation between the mutual energy of the two molecules, e, and the polariza-
bility, cx, is obtained:

—1.36 vp ap a3 Ep/R'

where vp is the number of electrons in the highest quantum state in the molecule,
Ep the energy of the hydrogen atom in the normal state, and R is the separation of the
molecules. By means of this formula, the van der Waals cohesive pressure constant
is calculated for Ne, A, N2, H~, 02, and CH4.

I. INTRQDUcTIQN
' 'T HAS been recognized for some time that the van der Waals forces in'. gases have their origin in a mutual polarization of the molecules. The idea
was suggested by Debye, ' but his calculation of intermolecular energies, based
upon an electrostatic molecular model, did not meet with great success. This
fact is not surprising in the light of recent work, which has shown that a
rapidly pulsating field associated with the internal motion of the electrons in
the molecule is the chief factor in determining the mutual energy of two mole-
cules at separations su%.ciently large to prevent the exchange of electrons.
This fact was suggested, although not explicitly stated, in a calculation of
the mutual energy of two hydrogen atoms by Wang. ' Recently, Eisenschitz
and London' have presented a general method of calculating the mutual
energy of two molecules at large separation. Their method depends upon an
expansion of the wave function of the system in terms of a selected set of the
unperturbed wave functions of the two molecules. They have confirmed the
form of Wang's result for two hydrogen atoms, although they have shown

' Debye, Phys. Zeits. 21, 178 (1920).
~ S. C. Wang, Phys. Zeits. 28, 663 (1927).

Eisenschitz and London, Zeits. f. Physik 60, 491 (1930);London, Zeits. f. Physik 63, 24$

(1930).
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it to be numerically in error. Hasse, 4 with a variational method, has calcu-
lated the polarizability of helium. The wave function obtained by Wailer'
in a treatment of the quadratic Stark effect in hydrogen, serves as a basis for
the calculation. An empirical extension of the method employed in this case
permits him to calculate the mutual energy of two atoms at large separation
both for hydrogen and helium.

The present method resembles that of Hasse in that use is made of the
variation principle. However, his choice of wave function was more or less
empirical and the perturbation energy was calculated as a part of the total
energy. On the other hand, we have formulated the variation problem for a
direct determination of the perturbation energy by itself, and from the origi-
nal wave equation have obtained a simplified Euler equation for this varia-
tion problem, which when it cannot be solved directly, serves as a guide in
choosing an approximate function. The method, while lacking the generality
of that of London and Eisenschitz, is applicabl+ to most non-polar molecules
in the normal state.

II. POLARIZABILITY AND INTERATOMIC ENERGY OF HYDROGEN

We shall begin by considering a system of v electrons with an unperturbed
wave function Pp, while the correct wave function under the infiuence of a
perturbing potential v is P. The wave equations in the two cases may be
written

V'Vo + ~'(Eo —Uo)4o = o

q'P + rc'(E —U)P = 0

z' = Sm'm/h'

E = Ep+e
U= Up+v.

Here Ep and Vp are the initial total and potential energies of the system and 6

is the energy acquired by virtue of the perturbation. The operator p' is
understood to be referred to the 3v dimensional configuration of the system
of v electrons. If we let

0 = A(1+ 4)

we obtain the following equation

Since we shall not be interested in perturbation effects of higher order than
the second, it is only necessary to retain terms of the first order in v and p.
Thus we can replace the factor (1+/) by 1, since it is multiplied by a small
quantity. Further, in all the cases to which our method is applicable, the
mean value of the perturbing potential over the unperturbed wave function

' H. R. Hasse, Proc. Camb. Phil. Soc. 25, 542 (1930).
' %aller, Zeits. f. Physik 38, 635 (1926).
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is zero, the first order perturbation in the energy vanishes, and e is small of
the second order. For this reason we may replace e —v by —v, obtaining an
equation which does not contain an energy parameter at all. KVhen we make
these approximations, Eq. (3) becomes

8 lngp Bp
q~y + 2 Q ————g~p = 0.

8$, 8$;

The polarization of the hydrogen atom in its normal state by an homoge-
neous electric field, F, aSords the simplest; example of the application of Eq,
(4). Here

e
—r

where r is the radial distance of the electron from the nucleus expressed in

units of ap, the Bohr. radius of the normal state, and

=- —eP'~'

The components F,. of the field, F, are referred to a rectangular system of co-
ordinates with origin in the nucleus of the atom. If we choose as new vari-
ables, r and v, and if we let

vR(r)

Ep

(6)

where Ep is the absolute value of the energy of the hydrogen atom in the
normal state, a separation of variables in Eq. (4) is effected and there results

d'A' 4 de 2'
+ ——2 ——— ——1=0

dr2 r dr r

where r is measured in units of ap. The solution is

1+—+Ci +,+,; +

In order that the integral

JI ippdr

may exist, it is necessary to set C& and C2 equal to zero. The new wave func-
tion takes the form

v rP=e" 1 ——1+—
2E'p 2

If the original rectangular coordinate system is chosen with s-axis parallel to
the field, v= —eFz, and the above wave function becomes identical with that
obtained by WValler. ' The energy is given by

' Wailer, reference 5.
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t QFFPdr
1

K
I PPdr

When P has the form, vR(r), and $0 is a function of r alone, the integrals oc-
curring in the evaluation of e are of the form

v"f(r)dr zz = 1, 2, 3.fe
If v is a harmonic function which vanishes when r is zero, the term for. hz =1
(and zz=3) vanishes. That is, the first order perturbation energy is zero.
Then the only term which we need consider is the one with n =2. This con-
dition is of course fulfilled in the problem which we have just considered, and
will be fulfilled in the subsequent problems to be treated. The expression for
e now becomes

Vt|5gp d7

I)t p'd7-

with the neglect of perturbation terms in the normalization of P. These will

contribute only to terms in e of higher order than the second.
A computation of the polarization energy of the hydrogen atom using the

wave function which we have obtained yields

e =— —2. 25a.p3I&'~

which corresponds to a polarizability

o. = 4. 5ap'.

These, values, of course, agree with those obtained by Wailer.
In this simple case, the solution of Eq. (7) offers no difficulty. It is of

interest, nevertheless, to see what value of the energy may be obtained, if
our information is restricted to the fact that P =vR(r). I.et us try as a repre-
sentation of R(r) the expression, Xr". The energy integral becomes

J
~ozdr

where
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If we minimize the integral with respect to the parameters X and v, we obtain

e = —2 24uo'J 2

X = —0.728/Eo, i = 0.5.

This value agrees with the exact one to somewhat better than 0.50%.
The method may be applied with almost equal simplicity to the interac-

tion of two hydrogen atoms. If the separation, Ro, of the two atoms is suf-
6ciently large to prevent electron interchange, the wave function of the
system is

fo = foifo2 = ~ "'+"'

where rI and r~ are the respective radial distances of each electron from its
own nucleus. VVhen referred to two rectangular coordinate systems with
their respective origins in the two nuclei and with s-axes directed along Ro,
the dipole term in the perturbing potential is given by

g2

[x,x, + y, y, —2s,s,].
Ro3

Terms due to multipoles of higher order will be neglected. If we let

sR(ri, r,)

and change the variables in Eq. (4) to v, ri and rm, a separation is again
effected and we have

+ + ——2 —+ ——2 ——2R —+ ——1=0 9

The existence of a solution of this equation is assured by the negative value
of the coef6cient of R.' A solution by successive approximation may be ob-
tained in the following manner. Let us write Eq. (9) as

+ ——+ ——2 —+

If the differential function is neglected

fIr2
R

2 rl+ r2
(10)

Substitution of this expression in the differential function will yield a second
approximation. Repetition of this process will yield a still closer approxima-
tion. If we use merely the first approximation (10), we calculate a value of
the energy,

e'ao'
6. 14——.

Ro'

' Goursat, Cours d'Analyse Mathematique, vol. III, 249.
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This is about 5 percent higher than the value

e'-ap"
6 47-—

A'o'

obtained by Eisenschitz and London. ' The use of higher terms in the expan-
sion of R would permit us to approach the true value as closely as we pleased.
Although no difhculty is encountered in the evaluation of the integrals oc-
curring in the energy expression, the tedium of the calculation is reduced by
using the variation method. Eq. (10) suggests as a representation of R, the
expression

'Ar "r"
If the function is inserted in the energy integral and the latter is minimized
with respect to the parameters X and v one obtains

e'ap'—6.49—
Rp'

v = 0.325.

This is in excellent agreement with the result of London and Eisenschitz.
The fact that their value lies slightly higher instead of slightly lower than
the one which has just been obtained is doubtless attributable to an error in
estimating the contribution of the continuous spectrum in their expansion of
f, since the variation method cannot give too low a value of the energy.

The fact that the wave function in the two cases which have been con-
sidered may be expressed as

fo(1 + nR)

where R is a function of the radial distances of the electrons from their nuclei,
is indeed logical from a physical point of view. In the absence of degeneracy,
one would expect the distortion of the wave function to depend in some simple
way upon the perturbing potential. Moreover, for a given value of the per-
turbing potential it is evident that the distortion will be greater, as the
distance of the electron from the nucleus becomes greater, since the restoring
force exerted by the nucleus will be smaller. The function R provides for this
eRect. The separation of the diRerential Eq. (4) in terms of s and the r's
appears to depend upon the linear properties of v in the rectangular coordi-
nates of the electrons, and the spherical symmetry of the unperturbed wave
function.

II I. GENERALIZATION OF THE METHOD: POLARIZAHILITY AND

INTERATOMIC ENERGY OF HELIUM

For the helium atom, or in general for an atom with v electrons each
having a spherically symmetrical distribution, the wave function may be ap-
proximately represented by

' Eisenschitz and London, reference 3.



where the function lf; depends only upon the radial coordinate of the electron
j. Such a function may be approximated by an expression

where n is an effective quantum number, s a screening constant, Z the total
nuclear charge. If we wish to represent the wave function accurately in the
region of its maximum, we may choose n and s by minimizing the total
energy, as Zener has done. If, however, we are more interested in the value
of the function for large values of z, we may choose s to be equal to the total
number of electrons except for the one being considered, and use an effective
quantum number which is non-integral. Thus for He, in the neighborhood of
the maximum, we choose Z —s = &.6875 (or, for some purposes, 1.70}, & = &;

while for large r's, we take Z —s = 1, m=0. 745.' AVe use these formulas for
approximate computation of polarizability and interatomic force.

A better representation of the wave function can be obtained by more
complicated methods, as that of Hartree, '" or the method used by one of the
authors on He." These give almost identical results for He, as far as the pur-
poses of this paper go, and for quantitative work we make use of the latter
in one calculation of the polarizability and interatomic energy of helium.

We shall hrst consider the polarization of the molecule by an homogeneous
held F. The perturbing potential is

and make use of the facts that 8 In Po/Br; depends only upon r;, the distance
of electron j from the nuc1eus and that

we find that Eq. (4} splits into i equations of the form

1. = ().

If we use a wave function of the simpler type discussed above this equation
becomes

' C. Zener, Phys. Rev. 36, 5 j. (1930);J. C. Slater, Phys. Rev. 32, 349 (1928);J. C, Slater,
Phys. Rev. 35, 57 (1930)."D. R. Ha, rtree, Proc. Comb, Phil, Soc. 24, 89 (1928).

C. Slater, Phys. Rev. 32, 349 (j.928).
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+2 —+2 —— R —1=0. 14

The energy given by Eq. (8) is

po'd7

Since upon integration all terms involving vs& with jAk vanish

and

Jt v/p /fp dr

In the computation of e; it will be convenient to use the variation method
rather than to solve Eq. (14) explicitly. The expression becomes

v/P, [1 —
/p [14,j ]Pp'dr

where

We shall try

J
Pp'dr

) &p(z—s) r/n

Z —;)

which is analytically somewhat more convenient than the representation ) r'
employed in the case of hydrogen. When the energy integral is minimized
with respect to the parameter X there results

J 2

e = ——-e'F'
I''p J2

where

Jg—

(n + 1)(/z + —,') r/ ' 1
o'—— --—2n, + 3

3 Z —s (1 —P/2)
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'l5

J
m

I I
— (P' —&P)I"" + I( + &)P —&I" '+ 2( —D -" '

)Z —s Z —s

1+ (26 —S)P/S + (2N2 —~ + S)P~/6
e'i'&'-'"~" cos' g()'d7- = —oo

(1 P)Re+3

For the energy we have

where

(n, + I)'(s, + —,')'e
9(Z—s;)'

(l P) 2n;+3

0
(1 —p/2) 4-+6[1 y (2~, —s)p/s + (zs,' —I, + s)p~/6]

Minimizing with respect to P shows that for vs=1, 0;=0.124. In general
0.124 ~0;~0; e;& 1. For the total polarization energy we may write

~'(~ + I)'(~ + 2)'(1+ ~~)
e = —2ao'F' Q—

9(Z —s;) 4

and for the polarizability

n,'(e, + 1) '(n; + —,') '(1 + 0;)

9(Z —s;)'

We shall first compute the polarizability of helium taking n as 1 and Z —s as
1.6875, the values obtained by minimizing the total energy of the atom. We
obtain

o, = 1.11m()' ——0.164 X 10—"cc.

If on the other hand we use the limiting values at large distances for n and
Z —s we have n =0.745; Z —s =1, and we obtain

o. = 1.51@0' ——0.222 X 10 '4cc.

The value of o. corresponding to measurements of the refractive index is
0.205X10 '4. As we should have anticipated it lies between the two values
which we have calculated. The first wave function which emphasizes the
smaller r's at the expense of the larger gives a value of a about 20 percent
below the experimental one, while the second wave function which empha-
sizes the larger r's gives a value about 8 percent higher than the experimental
one. The second wave function which is accurate only for large values of r
gives a surprisingly good result.

A more exact determination of the polarizability of helium may be ob-
tained with the use of the more accurate wave function mentioned above.
After normalization and integration over the configuration space of one elec-
tron, the square of the wave function for each electron may be represented by
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0. 7604(1+ 1.440e ''"')e '"+"'"" r ( 3

0. 1414
0.0048(2+1.440 '"'") ""' ""(2+ +

r

691

;r&3.

We shall use as a representation of R the function Xr'. Minimizing the
energy integral with respect to the parameter X gives

1 Jg'
E. e'u', F'

~0 J~JO

where

Jo = Jt 4 0'&~

J = r"+'P p'd~

d in/()2 = ~ ( +2)~"+2( +1) —'"+')0'd.
dr

Properly, this expression should be computed for different ~'s and the mini-
mum chosen. On account of the labor of the integration, however, we have
arbitrarily chosen the value v =0.5. This was the value found for the simple
wave functions used above, and moreover it was found that the result was so
insensitive to v that a variation of +0.1 in v did not affect the final result by
more than one percent. The above integrals have been computed graphically
for v =0.5 and the polarizability of helium was found to be

n = 1.43ao' = 0.210 && 10 ~'cc.

This yields a value of the dielectric constant at 0' and 1 atm. of 1.0000715
which is slightly lower than the experimental value, 1.000074. It is however,
somewhat higher than the square of the measured refractive index extrapo-
lated to infinite wave-length, 1.000070. The agreement among the various
values is not unsatisfactory when one remembers that the accuracy in the
measured refractive index, and dielectric constant cannot be very great, in
view of the experimental difficulties in such measurements.

A calculation of the mutual energy of two atoms may be carried out in a
similar manner. The dipole term in the perturbation potential may be
written

k= 1

where the sum is understood to be taken over all possible electron pairs be-
tween the two atoms. Each v;~ has the form

e 2

lx,x, + y,y; —2e,e;].
0

If we let
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P V

&'vp, R(r, , rp) .
+0 j=I i= I

Eq. (4) separates into v2 equations of the form

4 2(3 ln go BR 4 2a ln P() aE
+ + + + +

BP& 8'f/, f'j Brj Bfj r/c Bfp Bt y

1 Bingo 1 81npo
+ 2R —+ — — —1=0

rj ~k ~/k

Moreover the energy may be written

where

j=1 /c= I

&~ad r(I p~7)0~ d—r

~j/ =-
4o'd7-

If an exact solution of Eq. (17) is used, ,o;q which is the differential expression
on the left hand side of Eq. (17) ~anishes. We shall use the two representa-
tions

E,„=X/, /
' r&,. = re~( +»

j/s j l~ ~ j/i

which proved eRective in the case of hydrogen, according to their analytical
convenience in conjunction with the unperturbed wave function which is
chosen. The parameters are determined by minimizing the energy integral.
The details of the calculation are quite similar to those in the calculation of
polarizabilities. AVith the simple wave function

fo = n ~.w.;—I~- p;r;/n;.
7

j=1

we obtain the following result

I & ~o' " " »»~'(», +&)'(»;+l)'(»~+&)'(»~+l)'
—,—(»)

27 &06;=i ~=i V V~" IV~'» (»;+&)(»-;+2)+V»~"(»I'+&)(»~+I) I-
For convenience in representation certain factors 1+gj/, occurring in each
term have all been assigned the value which they assume for 1-quantum elec-
trons. Since

0~0, /, ~0.07

the above formula will approximate the true one to within a few percent in
every case. Ke shall calculate the mutual energy of two helium atoms first
taking Z —s = 1.6875 and n = 1. AVe obtain
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e2a 5

e = —1.13
Rp'

If we now take the values n =0,745, Z —s = 1, which occur in the asymptotic
form of the wave function we obtain as in the case of the polarizability a
somewhat larger value:

e cp
~ = —1.78

Rp

The same calculation has been made with the use of the more accurate wave
function for He. As a representation of the function R, 'Ar;"rI, " was selected.
The integrals, similar to those encountered in the calculation of the polariza-
bility, were evaluated graphically. The energy of two helium atoms was com-
puted as

e2ap5 A
159— = —318—

Ro' (Ro/ao)'

This value lies between the two values obtained with the hydrogenic wave
function. It is about 30 percent higher than that obtained with values of Z
and n determined to give the best energy for the atom and about 13 percent
below the value obtained with the asymptotic values of n and Z. Since the
wave function which gave the above value also gives a good value of the
polarizability, it is likely that the above value is correct within one or two
percent. Hasse obtains a value

g Q—2 93—
(R/ao) o

which differs from our result by about 8 percent. Both of these values are
slightly above the upper limit for the mutual energy of two helium atoms
calculated by London:

o = —3/4n'V /R'

where n is the polarizability and V; the ionization potential. This has the
value

jVQ—2.65—
(R/ao) '

The fact that both Hasse's and our values lie above London's upper limit is
not to be considered as alarming. For London, in using the second order
perturbation method, neglected a factor which has been rather consistently
overlooked in such calculations: transitions in which two electrons are excited
may contribute appreciably to the dispersion and similar terms, and they are
connected with larger energy differences than the ionization potential, so that
in the upper limit of such an expression as London's we should really have the
highest potential connected with a double jurnp, much larger than V;. The
relation of our results to London's limit suggests that these double jumps are
strong enough to shift the center of gravity of the term system beyond the
ionization potential.
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A result of considerable interest may be obtained from formulas (16) and

(18). While neither of them gives particularly accurate representations of n
or e, it is possible to reach through them a correlation between these two
quantities. First, it is to be noted that in both formulas only terms arising
from electrons in the outer shell of the atoms contribute appreciably to the
sums. Terms arising from inner shells (if any), are virtually nullified both
through a decrease in the effective quantum number and by an increase in

the effective nuclear charge. AVe may therefore write

4. 5vpap' np'(np + 1)'(np + —',)'
(Z —Sp) 4 9

6.5vp' ePap" npP(np + 1)'(np + —",)'
(Z —Sp)' RpP 27

where vo is the number of electrons in the outer shell of the atom; no and Sp

are the effective quantum number and screening constant of these electrons.
Elimination of np and (Z —Sp) gives

p = —p/Idpp

where

P = 1.36vp"'ap"'n'"Ep.

Corresponding to the empirically determined polarizability for He, this gives
a value P=3.16ap'Ep. This is in excellent agreement with the value 3.18,
calculated with the aid of the accurate wave function above.

IV. CORRELATION K ITH THE EQUATION OF STATE

Although the computation of the last section applied only to atoms for
which each electron had a spherically symmetrical distribution, still it is
interesting provisionally to compute van der Waals forces in other cases from
the polarizability. In cases where the whole atom is spherically symmetrical,
though individual electrons are not, this seems fairly reasonable. Thus we
obtain values of P/apPEp for the noble gases as listed in Table I:

TAaLe I.

He
3.16

Ne
17.0

A
148

Kr
275

Xe
582

These values can be tested by calculating the equation of state. Of course,
the attractive force is not the only interatomic force; there is also a repulsive
force, increasing very rapidly as the atoms approach. This is often repre-
sented by assuming the atoms to be rigid, and if the van der Waals attraction
is fairly large this is justified. For He, however, large errors are committed by
this assumption. The repulsive potential has been computed for atomic hy-
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drogen" and for helium. " It appears possible to represent it in the range of
importance in thermal interaction between gas molecules by the approxima-
tion formula

e, =At. 'o
It should therefore be possible to write approximately

e = ge '+o —p/go6

for the total interaction energy of two molecules. If the equation of state of a
gas is written in the familiar virial form

pV B—= &+ —+
RT V

where p is the pressure, V the volume, R the ideal gas constant, and T the
absolute temperature, it is possible to show that at high temperatures

under the assumption the molecules are spherically symmetrical. Here e is
the mutual potential energy of two molecules. If, further the molecules are
treated as rigid spheres of diameter 0., and the exponential function in the
above integral is expanded, it is found that approximately

where
2~%0'

Bp ———
3

A = —2vrX' eR'dE
0'

and the equation of state may be written in the van der Waals form

A
p=

V —Bp V'

Moreover, if the repulsive potential is ignored when R)o, we may replace t.

by e, calculated from Eq. (19). The expression for 2 then becomes

= 4. 76 && 10"P/80 ergs cc/mol (20)

where BD is expressed in cc/mol. It is to be remembered that this is a very
rough approximation, for in reality the repulsive potential cannot be ade-
quately represented by a potential wall which rises to infinity when R=o..
This model is indeed entirely inadequate when the attractive field is very

"Heitler and London, Zeits. f. Physik 44, 455 (1927); Suguira, Zeits. f Phvsik 45, 484
(1927)."J. C. Slater, reference 11.



weak as in the case of helium and hydrogen. This is illustrated in Fig. 1. The
interatomic potential

0.68
8
—2.438/eo ~ 10 "ergs

(R/ao)'

which we have obtained for helium has been plotted as a function of the
separation of the two atoms. The dotted line represents the attractive com-
ponent alone and the distance marked 0. on the R-axis represents the effective
atomic diameter calculated from the van der Waals Bo constant. In a later

I

I
I

6 7
R/eo

Fig. i. The mutual energy of two helium atoms plotted as a
function of the interatomic distance.

paper a calculation of the second virial coefficient 8 of helium, based upon the
above expression for the interatomic potential, will be presented. It leads to
an equation of state and to a description of the thermodynamic properties of
helium which are in striking agreement with experiment.

In the present paper, however, we shall. Content ourselves with the ap-
proximation of rigid molecules. tA"e have calculated values of A for several
gases by means of Eqs. (19) and (20), from the experimental values of the
refractive index and the constant 80. We have not restricted ourselves to
the ~hie gases, but have included several gases with poly-atomic molecules.
The electron configuration in most non-polar molecules resembles that of the
noble gases except in the particular case of spherical symmetry. It was thought
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that Eq. (19) might still be approximately valid in these cases, since most of
the characteristics of the wave function employed in the calculation of n and
e were eliminated in the formulation of this relation. The computed values of
A are compared with the empirical values of Beattie and Bridgeman' in
Table II. The A constants for Kr and Xe were computed from viscosity

TABLE II.

Ne
A
Kr
Xe
Ng
H2
02
CH4

o. . 10-''

(cc)

0.39
1.65
2.50
4.12
'1.74
0.82
1.59
2.59

Bo
(cc/mol)

20.6
39.3
52.8
70.4
50.5
21.0
46. 2
55.9

A (calc) . 10 "
(ergs cc)

0.37
1.67
2.33
3.70
1.58

.55
1.64
2, 32

A(exp). 10-»
(ergs cc)

0.21
1.29
2.07
3.86
1,34
0.20
1,49
2.28

measurements. The agreement appears to be quite satisfactory. The com-
puted values of A are of course somewhat larger than the empirical ones due
to the neglect of the repulsive potential outside the sphere R =O'. However, as
A becomes large, the error introduced by this approximation becomes less
important just as we should expect. It is to be hoped that a method of calcu-
lating the repulsive potential may soon be developed, in order that a more
adequate comparison with experiment may be made.

"Heattie and Bridgeman, Proc. Nat. Acad. 63, 229 (1928).


