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ABsTRAcT

Expressions are derived for the hyperfine structure separations of the levels of
complicated electron configurations in diferent types of coupling. The few available
experimental data are in distinct disagreement with the theoretical calculations. This
undoubtedly means that our present knowledge of the interaction with nuclear spin is
incomplete. The expressions in this article are derived by the well-known method of
the invariance of energy sums.

DESCRIPTION OF METHOD

ORMULAE for the interaction energy of a nuclear magnetic moment
- - with a single electron outside of closed electron groups have been given
by Fermi, ' Casimir, 2 Hargreaves, ' and Breit.4 If more than one electron is
present besides complete groups the formulae are only known for a special
case. They have been derived when only s-electrons interact appreciably with
the nuclear magnetism and the interaction of other electrons may be neg-
lected. ' This paper is a 6rst attempt to treat the general case of the interac-
tion of several electrons with the nuclear magnetic moment.

The method followed in this paper is very analogous to the one used to
derive expressions for multiplet separations. ' It therefore is the well-known
method of the energy sums, which originally goes back to work of Pauli' and
which found its representation in modern quantum mechanics in an impor-
tant article by Slater. ' Ke will follow closely Slater's procedure, as it shows
especially clearly the restrictions of the validity of the results to be obtained.

~ The problem studied in this paper was started in the spring of 1927 at Copenhagen in
cooperation with L. Pauling, with whom I later corresponded occasionally about the questions
involved and to whom I owe many valuable suggestions.

' E.Fermi, . Zeits, f. Physik 60, 320 (1930).
H. Casimir, quoted in Pauling and Goudsmit, Structure of Line Spectra, page 225. Also

Phys. Rev. in preparation.
' Hargreaves, Proc. Roy. Soc. A12'7, 141 (1930).
' G. Breit, Phys. Rev. 3'7, 51 (1931).
5 S. Goudsmit and R. F. Bacher, Phys. Rev. 34, 1501 (1929).
6 S. Goudsmit, Phys. Rev. 31, 946 (1928).
~ W. Pauli, Zeits. f. Physik 10, 155 (1923).
' J. C. Slater, Phys. Rev. 34, 1293 (1929).
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The application of the method of sums goes as follows. One thinks the
interaction between the electrons to be removed, in order that each electron
can be treated as independent of the others. For certain purposes one may
also imagine the interaction between the spin of each electron and its own
orbit to be absent. One can think this done by the introduction of a fictitious
very strong magnetic field, which should break all couplings between the
electrons or their quantum vectors. One now calculates under these circum-
stances the perturbation energy in which one is interested for each electron
separately. '

Each state of the complete atom is now characterized by a large set of
quantum numbers, each of which can be said to refer to a particular elec-
tron. " For this state one finds the total perturbation energy by simply add-
ing together the perturbations of the individual electrons. If one next con-
siders the sum of the perturbation energies for a/l states having the same total
projection of angular momentum M (in units h/2') on the direction of the
fictitious field, this sum will remain unaltered after one introduces again the
proper interactions, which were at the start thought to be absent (or, which
is the same, after one reduces the applied strong fictitious magnetic field to a
weak one).

This last sentence contains the fundamental principle of the sum rules, as
it can be derived from quantum mechanics. It holds only for first order pertur-
bations and moreover as it stands it does not give much information, because
the sums are to be taken over all states of the atom. In order to get further
results out of this sum rule one must make, according to Slater, certain ap-
proximations. It is assumed then that the above stated sum rule will hold if
one takes the sum only over the states belonging to one electron configura-
tion. " This may become quite incorrect when the levels arising from the
configuration considered intermix with those of other configurations. This,
for instance, is one of the reasons why the relations derived by Slater are not
fulfilled very well in the actual spectroscopic data. " For special perturbations
one can sometimes even go one step further with approximations. Slater, in

his above quoted paper, purposely neglects the spin-orbit interaction of each
electron. This causes the spins to be independent of the orbital angular mo-

menta. Instead of considering the sum of the perturbation energies for a fixed
value of the total projection 3', he may consider the sum for the states which

' In the above quoted paper of Pauli this was the interaction energy with an external mag-

netic field, giving rise to the g-sum rule, In the paper on multiplet separations by the present
author the spin-orbit interaction was considered, resulting in the I"-sum rule. Slater treated
the interaction between the electrons and it is clearly seen from his paper that his results are
obtained by first calculating this interaction for each pair as if it did not disturb the approxi-
mate independence of the different electrons. The sum rules finally gave the generally valid
relations between multiplet distances." In the case of a nuclear moment Ih/2m the nuclear quantum numbers I and nial must be
added also to this set."One calls a configuration the assembly of states for which each electron has the quantum
numbers n and l fixed. Two states for which one of the electrons has a different n or I are said to
belong to different configurations."Compare on this point a recent paper by E. U. Condon, Phys. Rev. 36, 1121 (1930).
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have a fixed value of both M& and M&, the total projection of all spins and
all orbits respectively. Each of these sums, which are a part of the total sum
for a fixed M, will be invariant. This approximation holds only when the
spin-orbit interaction is indeed negligibly small compared to the interaction
between different electrons, the case in which Slater is interested. This means
that one expects to obtain extreme Russell-Saunders coupling. "

In order to make use of the method described here it is obviously neces-
sary to know the eRect of the perturbation on one single electron considered
as independent of the others. '4 This will be considered in the following sec-
tion.

In most cases the hyperfine structure is smaller than any other one of the
interactions present in the atom. It is possible to apply a magnetic field which
will just decouple the nuclear spin from the rest of the atom, giving each an
independent projection on the field direction, M& and 3f~. From the theory
of the Zeeman eRect of hyperfine structure" one knows that the interaction
between the nucleus and the electron core under those circumstances is given
by

W =A(J) MrMz.

The constant A in front is exactly the one which will govern the magnitude
of the hyperfine multiplet of that particular level after one removes the mag-
netic field, That is, the levels of the hyperfine multiplet are given by

W~ = A(J)TJ cos(J, J) = —,'A(J) IF(F+ 1) —I(J+ 1) —J(J+ 1) I (2)

Here F denotes as usual the resultant of I and J.
As we are finally interested in the magnitude of just that factor A, we

may all the time think that there is such a field present which causes 3II& and
the total projection of the core to be independent. This simplifies our calcu-
lation very much. We do not need to calculate the sums for all states with
the same total M~ = Ml+MJ. According to Slater the sum rules will also be
valid for the smaller group of states which have a fixed value for both M~ and
MJ. We take therefore in the following procedure a particular value of 3/I~ in
our mind and extend the sums over levels with a fixed value of Sf'.

It has to be kept in mind that the independence of 2VI& and M& can only
be used in case their interaction is indeed very much smaller than any of the
other interactions which are to be taken into account. One can not use it,
for instance, in the case of ionized Lithium. Here the hyperfine structure
happens to be of the same order of magnitude as the multiplet splitting. "

2. INTERACTION BFTWEEN A SINGLE ELECTRON AND A NUCLEAR

MAGNETIC MOMENT

The interaction of a magnetic nucleus and an electron in an s-state has
been treated in detail before. The energy happens to be simply proportional

~' If one needs information about the interaction between electrons- in a case of (j, j)
coupling one has to alter the procedure followed by Slater somewhat." In Slater's special case one needs it for each electron pair.

' E. Back and S. Goudsmit, Zeits. f. Physik 47, 174 (1928),see also Pauling and Goudsmit,
reference 2, p. 215.

"S.Goudsmit and D. R, In;li, Phys. Rev. 37, 283 (1931).
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to the Lande cosine between the spin s of the electron and the nuclear moment
I. It is therefore possible to treat the cases where an s-electron is a part of a
configuration, completely with the vector model. We will now consider the
case of a non-s electron.

We think the spin-orbit interaction to be removed (or apply a fictitious
strong magnetic field). In the classical theory the interaction energy consists
of two parts. The nuclear magnetic moment is acted upon by a magnetic
field caused by the orbital motion of the electron and also by a field produced
by the electron spin. According to perturbation theory one must write down
the instantaneous values for the interaction energy and must average this
over the unperturbed motion. The expression for this interaction energy is:"

Wi + W, = a [II cos (I, t) —Is cos (I, s) + 3Is cos (I, r) cos (r, s) ] . (3)

The factor a in front of this expression governs the absolute magnitude of the
interaction energy. We are not interested in it for our problem. For a hydro-
genic orbit its value is given by

eh Rhea'Z'
a(I) —= , a(I)

4~rmoc r' ri'I(I + —', )(I + 1)
(4)

The symbols used in Eqs. (3) and (4) have the usual meaning, r denotes the
radius vector combining the nucleus with the electron, g(I) stands for the
Land~ g value of the nucleus and as the nuclear magnetism is believed to
arise from protons, one expects g(I) to be only of the order 1/1840.

We start out with the case where we neglect all interactions between the
quantum vectors; these will each have independent projections on the direc-
tion of the fictitious field H. These projections we denote by 3E&, m& and m„
the nuclear, the orbital and the spin moment respectively. The vectors I, /

and s will have independent Larmor precessions about the field direction and
we can therefore expand the cosines of Eq. (3) and obtain:

Wi + W, = a[Mimi —3Irm, [1 —3 cos' (II, r) ]].
Our problem thus reduces to finding the average of cos'(H, r) In the cla. ssical
picture with a plane orbit the vector r would be at any time perpendicular to
the angular momentum vector l. This, however, is no longer true in quantum
mechanics. The relative probability that r makes an angle 8 with the field
direction is given by the square of the tesseral harmonic Pi '(cos 0). Thus
the required average becomes

I"
cos' (II r) =

I
cos' 8 (Pi ']' sin Od8

0

2 (f ' —mi 2) + 2/ —1

(2/ —1)(2l + 3)

I'I ' ' sin ed8

(6)

'~ L. PauIing and S. Goudsmit, reference 2, p. 205.



Substituting this in Eq. (5) gives finally

6mi2 —21(l + 1)
&V = tV) + f~V8 = a~y mi —~s

(2/ —1)(2l + 3)

One verihes easily that for large values of I Eq. (6) approaches the classical
result: -', sin2(l, H) = (P —mi')/2l'.

Expression (7) will be the fundamental formula for all further applica-
tions. It is, however, not valid for s-electrons.

3. TIIE SUM RvLE Arrl. TED To oxE ELHcx'Row

The application of the sum rule and Eq. (7) to the case of a single electron
provides a very simple derivation of the results obtained by Fermi, Casimir,
Hargreaves and Breit. It also gives an illustration of the method before we

apply it to the many electron case. A single electron gives rise to a doublet
state, one level with jI ——L+-,', the other with j2 ——I—-,'. In a weak magnetic
Geld, which just decouples the nuclear spin, the interaction with the nuclear
magnetism is (compare Eq. (1)):

and kV = a"Mgm

In a very strong magnetic field this interaction is (Eq. (&)):

6mi2 —21(I + 1)
W = aMg m) —m.

(2l —1)(2l + 3)

The sum rule says that, keeping 3f~ fixed„ the sums of the energies for all
levels with a given value of m; =m, +m~ must come out the same, whether we
use Eq. (8) or (9). KVe choose first m; =1+-,'. This occurs only once; in (8) for
ji and in (9) when riii ——I and m, =+-,'. The sum rule states

(10)

One obtains at once

l(l + 1) l(l + 1)= 8 8
(I+ s)(1+14) jiVi+1)

Next we choose I;= / ,'. This occurs—t—wice, namely in (8) both for ji and jg,
and in (9) for mi =i, nz, = ——', and mi ——l —1, m, = +2i. Applying the sum rule
gives

a'Mi (I ——,') + a"Mr (l —-,') (12)

1 61' —21(l + 1) 1 6(l —1)' —21(l + 1)= @MAL l+ —— + a3fr (/ —1)——
2 (2/ —1)(21+ 3) 2 (2/ —1)(21 + 3)

As we know u' already we can solve for a" and hand

l(l + 1) l(l + 1)

(I —k)(I+ r) j2(j2+ 1)
(13)
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These expressions for a' and c"are indeed identical with the results obtained
by other authors. Substituting them in Eq. (2) gives the hyperfine structure
in the absence of a field. The result shows that for the two levels of a doublet
the interval constant of the hyperfine structure is inversely proportional to
j(j+1). The absolute magnitude can only be given when the constant a can
be calculated. This would require an exact knowledge of the eigenfunctions
of the state under consideration. For penetrating orbits one can make the
same kind of an approximation as was applied by Lande to the calculations
of doublet separations. One obtains for such cases, instead of Eq. (4), the ap-
proximate expression

(&4)

In this expression Z; and Z, stand for the eAective nuclear charge in the inner
and outer part of the orbit respectively, n, represents the "effective" quantum
number or Rydberg denominator.

4. TEiE SUM RULE APPLIED TO CONFIGURATIONS

We will give as an illustrative example the case of three equivalent p-
electrons. The first column of Table I gives the values of m, and m~ for the
individual electrons, chosen in agreement of course with the Pauli exclusion
principle. The quantum numbers l and n are supposed to be the same for all
three electrons and are therefore omitted from the table. We need only to
consider the states which give rise to positive values of the total projection
M&, given in the second column, negative values of 3I~ do not give any addi-
tional information. The last column gives the interaction with the nuclear
magnetism obtained by applying Eq. (9) to each electron individually and
adding the result for the three together. As they are equivalent electrons they
have the same constant a.

TABLE I, Interaction for P'in strong field.

m, , m~,

2 1

ms m~
2

0

m 3 m$,

12 22

Eq. (7)

2-'; aMr

1 ]2
12

12

1

1

0
1

2 0
0

—1
0

0
1

1

1

2

2

1
2
1

1
2
1
2
1
2

—1

0
1
1

—1

0
1

0—1

aMr
-' aM(
~ aMr

1-', aM(

-', aM(—g4 aM(
-'.- aM(

1~5 aM(
1-'.- aMI

sum
3-',, a.]VI

Sum
r

The states in the table are ordered according to their values of Mg. The con-
figuration gives rise to five levels, one with J=2-'„ three with J=1-,'and one
with J=-,'. We want to know the constants A for each of these levels and
shall denote them by A(2-,'), A(1-,'), A'(1-', ), A "(1-',) and A(-', ) respectively.



The sum rule applied to the projection Mq = 2~, which occurs only once,
gives

A(2$) Mr 2g = 2-', aber.

The projection 3Ixg= j.-', occurs four times, namely J=2~ as well as all three
levels with J= j.-', can give this projection on the field direction. It also occurs
four times in Table I. The sum rule gives

IA(2-', ) + A(1-', ) + 2'(1-', ) + 2 "(1-',) I
M'r 1g ——3~saM, . (16)

lnaIIy ~g =
2 occuis five times, giving

I A(22) + A (1-',) + A'(12) + A "(12) + A (2) I iVr ~s = 2s2aMr.

Solving these equations one obtains Anally

~(22)

(17)

Exactly Bs in the case of thc wcII-known g-sum rulc wc arc only able to obtain
the sum of the A's for the levels with the same value of J. That we 6nd the
indivjdual values for the levels with J= 2-,' and J=-,'is because there is only
one level with each of these J values.

The values of the individual A's will in general depend upon the type of
coupling between the quantum vectors of the electrons, just as in the case of
g-values. The method to obtain their values for extreme couplings mill be
described in following sections of this paper.

It is not at all difficult to make a table like Table I for any other example.
When the electrons are not equivalent each has a different constant u which
one has to carry along into the final result. We want to mention once more
that most of the formulae used here are only valid for the interaction of a
non-s electron with the nuclear magnetism. For an s electron one has to re-
place Eq. (7) by the simple expression

Here follow the results for a number of configurations

T&BI.E II. IIyPergrle structure sums. "

ZA =1-,'u
A =Ou

A ='4/25u
ZA = 1"/7'
ZA. =2-,'a

P's and P4s ZA =1'/25a+jb
ZA = V'/25a —'/1gb
ZA =Oa+1-', b

A =-45u+$b
ZA =2a+'/12b
ZA =2-',u —&b

* The constant a refers to the p- and b to the s-electron.
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5. HYPERFINE STRUCTURE FOR ExTREME (j, j) COUPLING

The above described method gives only the sums of the factors which

govern the hyperfine structure separations. Their individual values for each
level are only determined completely in extreme couplings. The simplest case
is that of extreme (j,j) coupling which we shall now discuss with the example
of the P' configuration. We mean by extreme (j,j) coupling that the spin vec-

tor s of each electron is strongly coupled to its own orbital vector I and that
therefore one can ascribe to each one of the electrons of the configuration its
own resultant vector j. The spin-orbit coupling has to be considerably
stronger than the interaction energy between the different electrons. It is
then possible to think of an applied magnetic field which is strong enough to
decouple the different electrons so as to make them independent of each other,
but not yet strong enough to decouple the s and l for each of the electrons.

Under these ideal circumstances the quantum state of each electron will

be characterized by the quantum numbers j and m;, its resultant moment and
the projection on the field, rather than by m, and mt. We now have to make
again a table similar to Table I but now with the different designation for
each electron. We also need to know what the interaction with the nucleus
will be for each electron, when its state is characterized by j and m;, that is
when its spin and orbit are coupled. But this is just the problem solved in
Section 3. Eq. (8) is the one we must use now, especially after we introduce
for u' and a" the results of Eqs. (11) and (13).

TABLE III. Configuration p'in (j,j ) coupling.

fS j'

12 ik

12

12

1-'
1-'

2
1
2

12 12

22

11
2

1-'-
2

1
2

—1-'
2
I
2
1
2

23 m3

11 1
2 2

11
2

1 1
2

21
2

12

Eq. (8)

12a'Mr

21a'Mr

( "+-:"')
(2a' ——.', a")Mr
(a'+ 2a")Mr

(a' —ka") Mr
2a".&r

1-,'a'Mr

'2a'Mr

sUm
3a'~r

sum
(a'+-', a")Mr

Table III represents the equivalent of Table I for the extreme (j, j) coupling.
The example chosen is again the configuration p'. For reasons to be discussed
later the values for a' and a" have not been substituted.

In the ideal extreme case the electrons are quite independent of each
other. Following Slater we therefore need not take the sums over all levels
with a fixed value of the total MJ. The sum-rule will hold already for the
levels which are designated by a special set of values of j and m; for each of
the electrons. If we choose a set of values for these quantum numbers it
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happens that we find only one state in our table which possesses just this set.
Thus we do not need to consider any sums at all and the third column of the
table gives at once the correct value of the interaction with the nuclear spin
for this extreme case.

We are, however, not yet finished. When we now gradually remove the
field which decoupled the electrons, the quantum numbers sn; for the individ-
ual electrons will lose their significance and be converted together into the
total IVY. In the extreme (j, j) coupling the values of j for each electron will

keep their meaning, This means that for this last transition the sum rules
will hold within each group of levels characterized by fixed values of the indi-
vidual j, but no longer for the individual nz;. Table III has been arranged ac-
cordingly.

JI J2 J&

)i )j (
1

2 2 2

Fig. 1. Schematical representation of Paschen-Hack eEect for p' in extreme (j,j) coupling.
(a) without field, quantum numbers: j» j2, j3, J. (b) weak field, quantum numbers: j&, j&, j&,
J, MJ. (c) strong field, quantum numbers: j&, j2, j3, m;„m;„' mj3.

Figure 1 may help to understand the situation described above. At the
left is shown the p configuration in extreme (j,j) coupling. The highest level
arises when all three electrons have maximum energy, that is when they all
have j=1-,'. The next lower group occurs when one of the electrons has j=-,'-.
The lowest level has two electrons with j=-,' and one with j=1~~.'" The
hyperfine structure is not included in the figure. Going to the right in Fig.
1 the effect of an applied magnetic field is represented. In a weak field
each level splits into its Zeeman components. With increasing field strength
each level group will undergo a Paschen-Back transition and the result is rep-

"There exists here no lower state with all three electrons having j= —,', because our example
consists of equivalent electrons for which the Pauli principle allows only two with j=—,. This
also will be clear from considering Table III where all states are gathered which do agree with
the Pauli principle. Compare Pauling and Goudsmit, l.c., page 257,
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resented at the right of Fig. 1. Notice that the field does not yet break the
coupling of each spin with its orbit, the three level groups are still distinctly
separated. A further increase in the field would also break up this last coup-
ling, all couplings would be broken and one would have the case represented
in Table I. One sees that the right side of Fig. 1 is to be correlated with Table
III. The sum rule as applied in Table III means simply that we may assume
the sum rule for fixed lVJ to hold within each level group separately in this
extreme coupling. This gives us a means to go from the strong field to the
intermediate field and to obtain our final information.

In this intermediate field, which we suppose just to decouple the nuclear
spin from the rest of the atom, the interaction with the nucleus for each level
will be given again by Eq. (1):

lt' =—.CiVgMg.

Our problem is to find the value of A for each one of the many levels.
Applying the sum rule to the states which have j& ——j2=j3 = 1-,', that is the

upper level, we find at once

A(1-,') = a'.

This result is found by choosing M& either 1-,', or —,'.
For the middle group of levels, j& =j&=1—,', j3=-,', one finds the following

sums

M = 2~: A(2-)Mr 2— = (2a' + a)Mr, —

Mg = 12'. IA(22) + A (ls) I Mr'1s = 3a'Mr,

Mz = —', . I A (2-,') + A'(1-,') + A (r) I Mr -,'——(a' + ,'a")Mr—
From this one obtains

A(2-,') = —,'a'+ -,'a"; A'(1-', ) = 1-,'a' —,'-a"; A(g) = a".

Finally the lowest level gives

After one substitutes the values of a' and a" from Eqs. (11) and (13) the re-
sults become

A(1—',) = /ilia) A(2-', ) = "/„a A (1-,') = '/r, ai A(-,') = 23ai A"(1-',) = '/rsa.

As is to be expected the sums agree with those given in Section 4 and Table II.
6. UsE QF THE VEcTQR MDDEL FQR ExTREME (j, j) CDUPLING

V~hen the spin and orbit of an electron are coupled the interaction with
the nuclear magnetism is given by the Eq. (2)

l& = a'Ij cos (I,j) or a"Ij cos (I,j). (20)

The choice of a' or a" depends on whether one considers the state with j= I+-',
or the one with j= / ——,. This simple expression brings it about that one often
can use the vector model with advantage in extreme (j, j) coupling.
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For several electrons the total interaction with the nucleus is

1V = pa&, lj„cos(lj t). (21)

The sum has to be extended over all electrons, which we shall distinguish by
the index k. As all jk form together the resultant J one can average over their
precession about this resultant and obtains

'h~e may write this

I1 = gaalj, . cos (I, J) cos (J, Ij,) .

IV = ~1IJ cos (I, J)

(22)

(25)

in which expression we finally want to know the value of

(2&)

The problem is thus to evaluate the average cosines of each of the individual

jk with the resultant J. This can be done easily when only two jk form the
resultant J, but with more electrons it is in general impossible, unless we use
again the method of sums instead of the vector model. For a restricted but
interesting number of cases we can find relations between these cosines and
the g values of the levels. The magnetic moment gJ of a state is given by the
sum of the magnetic moments gkjk of each electron resolved along the result-
ant J, thus

gJ = Pgjgi, cos (J, jt.) or g = Qgt, —cos (J, j„).J (25)

This defines the g value for this level. Futhermore, as J is the resultant of all

jk we have

J = Pjk cos (J,j r) or 1 = g—cos (J,j z).J (26)

If we now restrict ourselves to the case of equivalent electrons the sums in

expressions 24, 25 and 26 fall apart into two sums, one over the electrons with
j'= l+-,'and one over those with j"= / ——,'. We shall again denote these two
kinds by a prime and a double prime. The formulae become

jk jk
h = a' g —cos (J, jk') + a" g cos (J, j&") (24a)J J

g = g' P —cos (.I,, j,') + g" g—cos (J, j,.")
J J (25a)

jl.
Q—cos (J, js").J (26a)

I or equivalent electrons a', a", g' and g" can be placed before the summa-
tion, as they have the same value for each of the electrons inside any one sum.



Ke next can eliminate the two unknown sums between the three expressions
and obtain finally

g „g g

The values of g' and g" are the known g values for a single electron, the val-
ues of g to be used are those for the extreme (j,j) coupling of the configuration
which we consider. " For our standard example of the p' configuration the
results are again:

J 2l

g

g

g

g = 1'/is

g=13

g// 4

A = —;a'+ —,'-u"

A =a"
= a' upper level .

g// @/ lower level.

A/ = 15~a' ——',~" middle level.

The addition of a single s electron to a level of which A is known can al-
ways be done with the vector model, provided the coupling is of the ex-
treme (j, j) type. We denote with A+ and J+ the values for the state to
which we add the s electron. The s electron itself is characterized by b and s,
the resulting level finally by A and J. One obtains with the vector model

J+ S
A = A+—cos (J, J+) + b —cos (J, s).J ' J (28)

Substituting the Lande cosines this becomes

J'(J+ 1) + J+(J++ 1) —s(s+ 1)
A =A+-

2J(J+ 1)

J(J+ 1) + s(s+ 1) —J+(J++ 1)+ b 4

2J(J+ 1)

(29)

One can simplify this formula if one considers that s =-,' and that therefore J
can only be (J++-', ) or (J'+ ——,). One can also again express A in terms of the
g-values.

Table IV gives the results for a few configurations in extreme (j, j) coup-
IIng.

» For equivalent electrons the g values for extreme (j, j) coupling can be obtained in
general only with the help of the method of sums. This Section does therefore in reality not
avoid the use of the sum rule, but it gives a connection between the hyperfine structure con-
stants and the g values. The latter are considered to be better known and more easily derivable,
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TABLL IV. Hyperjine structure for (j,j) coup/img. *

Jk

p2s

11
2 2

1~2 1P 1-,'

11
2

1~2 1-,'

1-'
2

1
2

11

1
2

2-,'-

1 1

1

1 1
5

1"/is
3

11

1 1

1-3

17/1 5

2
1 1

1

2

6
3@/+ lg//

1-9 —-g/ 1 //
4 4

C
4@/+ l~//

1—8 —-g1 / 1 //
5 5

@//

a'

lg//+ 1$

1-'-a' —-'b

b
3g/+ lg//+ lg
%u'+ 3/&(e" —~sb

5 / 1 // l. 'L-8 —-6 —-o6 30
b

~ The values of jk are given for the p electrons only, the s electron has jk ———,'. Levels with
J=0 are omitted. The results for the configurations p', p', p's, p's, are similar to the following
ones in the same order p, p'-, ps, p2s.

H&PERFINE STRUcTURE FQR EZTREME RUssELL-SAUNDERs CoU pLyNG

%hen the interaction between the different electrons of a configuration is
very large compared to the interaction between the spins of the electrons and
their orbital motion, one speaks of Russell-Saunders coupling. The spin vec-
tors form together a resultant spin moment 5, the orbital moments ) form a
resultant I.and the total angular momentum vector J is the resultant of these
two. To this one the nuclear spin I is again added to form the resultant P.
This type of coupling yields the ordinary multiplet structure,

In the case of Russell-Saunders coupling one can imagine an applied mag
netic 6eld which is strong enough to overcome the coupling between the spins
and orbits; that is, between the resultant 5 and the resultant I., but not yet
strong enough to decouple the different electrons from each other. This situa
tion is represented at the right of Fig. 2. The left of Fig. 2 gives the levels
without magnetic field, whereas the middle shows them in an intermediate
field. The strong 6eld has caused a complete Paschen-Back effect for each of
the multiplets, but the splitting up which it causes is supposed to be still small
compared to the distances between the different multiplets. In this strong
field each state will be characterized by the projections Mq and 3fl. of P and
I on the 6eld direction. As these two are supposed to have a negligible inter-
action under these circumstances, they will be independent and will restrict
our sum rules. According to Slater's procedure the sums will now be invariant
over states which have the same value of the pair of quantum numbers 3fq,
~L,. Table V shows the states of the example P' arranged in this order. This
con6guration yields a '5, a 'D and 'I' state. %hen we increase the 6eld more
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and more until it breaks the electron coupling, the total projection M~ of the
resultant spin will remain invariant and can finally be interpreted as the sum

J

2

Fig. 2. Schematical representation of Paschen-Back effect for P in extreme Russell-Saun-
ders coupling. (a) without field, quantum numbers: I, S, J. (b) weak field, quantum numbers

L, S, J, Mz. (c) strong field, quantum numbers L, S, MI.„, 3IIg.

of the I, of the electrons. In the same way 2III, will be converted into the
sum of I& of the individual electrons. It is in this way that a certain pair
M&, MI. can be correlated to each of the states in Table V, simply

M$ = Qm„Mr. = Qsn«.

TxaLE V. Configuration p' in Russell-Saunders couphng.

(30)

m$
2 m$, mi PEi PrZi3

0 1

0
—1

M,q Mz,

1-.', 0

2 1

2,'-
Eq. (7)

2-; aNy

0 azVIg

a3Il
aMI

1
2

1
2 1 0 1

2 15 aMr

1 0
1 —1
0 —1

—1
0
1

2
5
4
5
Z

a~vII
aMr
aMr

0—1

1g airy
1,'- aMI

With this table we hope to get information about the interaction with
the nucleus for each multiplet if placed in a strong magnetic field. If we knew
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this we could again apply the sum rule to each multiplet separately and ob-
tain the interaction in a weak field or without field. Table V does not help
us much in this respect, however. The different states are labeled with 3IIq

and Ml only and we do not know the values of S and L to which they belong.
For instance the pair 3I~ = -.,'and ML = 0 occurs three times. AVe do not know
which one of these three belongs to the 4S, the 'D or the 'P, which can each
give this pair in a strong field. The answer to this question is that neither
of the three belongs to any one of the multiplets. In the language of Slater's
paper we should say that the energies entered in the last column of Table V
have been calculated with eigenfunctions which do not take into account the
interaction between the electrons. The correct eigenfunctions which can be
associated with each multiplet are certain linear combinations of the ones
which give the perturbation energies used here. The straightforward way to
get further results is to use these linear combinations, which can be found in

the literature, " and to use the quantum mechanics method for first order
energy perturbations. In the following section we will describe a method,
however, which does not involve the knowledge of the correct linear combina-
tions of unperturbed eigenfunctions but uses certain general properties of
mul tiplets. "

8. HYPERFINE STRUCTURE OF A MULTIPLET

The properties of a multiplet are in many respects a generalization of the
properties of a doublet arising from a single electron. Darwin" was very suc-
cessful in explaining every detail of the magnetic properties of a multiplet by
treating it as if it were a single electron with an orbital moment L and a spin
moment S. It is obvious that not all characteristics of a multiplet state can
be obtained in this way; for instance, one would find with Darwin's method
that the transition L—+L is forbidden, whereas in the correct theory it is not.
As we are interested here in the magnetic interaction with the nucleus, it is
possible that we may use again Darwin's simplification.

For the magnetic interaction with the nucleus we assume a generalization
of Eq. (7):

6M'' —2L(L + 1)
IVg + t't'g = XMIiUI. —0.2VZMg (31)

(2L —1)(2L+ 3)
Before using this expression two important remarks have to be made. This
formula does not apply to the interaction between the nucleus and an un-
balanced s-electron in the configuration, The interaction with an s-electron
is of the simple cosine form and gives therefore

5'g = PiVrM8. (32)

"J.A. Gaunt, Phil. Trans. A228) 184 (1929); J. H. Bartlett, Jr. , Phys. Rev. 34) 1247
(1929)."Table V, as it is now, does not give us much more information than we obtained with the
general sum rule data of Table I. The only additional information one gets is by considering the
state with Mp=1-,', Sf', 0. This pair can only arise from the S; the table gives an interaction
energy zero, thus the 'S will have A =0 in extreme Russell-Saunders coupling. So the sum of
the energies belongs to the 'D1~ and the 'I'1~„but further separation is not possible with this
method.

"C.G. Darwin, Proc. Roy. Soc. A115, 1 (1927).



If the configuration to which the multiplet belongs contains such an s-electron
one must add a term like Eq. (32) to Eq. (31). The second remark concerns
the factors X and 0. For the case of one single electron these were both equal
to a. For a more complicated configuration one should not expect the coeffi-
cient for the orbital part to be the same as for the spin part. As we shall see
later on it is possible to obtain a relation between ) and 0. in certain simple
cases.

In order to find the values of A (J) for each level of the multiplet we must
again consider the sums of the results of Eq. (31) for a fixed choice of
3f~ ——&8+&I.. One takes first Mg=S+I. , which occurs only once, next
Sf' ——5+I —1, occurring twice, and so on. The procedure is exactly the same
as that followed in Section 3, but of course much longer, depending upon the
values of 5 and I. It is possible to do it for general values of 8 and I. and one
obtains finally the general formula

61'(2 —g) —2(g —1)L(L + 1)
~(~) = &(2 —a) —~ + 8(g —1) . (33)

(2L —1)(2L + 3)

The last term occurs only when there is an unbalanced s-electron. In this
formula g is the ordinary Lande g value, and I' stands as usual for"

I' = SL cos (S; L) =
I J(J + 1) —L(L + 1) —S(S + 1) },'2. (34)

The derivation of this formula is elementary but too cumbersome and long to
bc given hei c, but I RlTl willing to give personal information about lt to Rny-

one who rea11y might need it.
In the preceding sections of this paper we have always taken together the

interaction S'~ with the spin and W~ with the orbital moment. It is quite
simple, however, to go back to Eq. (7) and keep these two separate. If we
then know these interactions for only one level of a multiplet, we can deter-
mine X and o and find A for all other levels of the same multiplet. The sum
rule of Table I or Table V will, in practically all cases, furnish us with suffi-

cient information to do this. Ke shall show this again with the P example.
For p' the sum rule gives that for 'D, cl =»/&5c. If we go back to Eq. (7)

via Table I we find that this is divided as follows between the interactions
with spins and orbits:

with spins: 'j»c, with orbits: —,'s,

Furthermore, we know that for 'D2. : I' = + 1, g = 1-,'and we find from Eq. (33)
(omitting the last term):

44 2'
~5~ / &5~

4 4 4/

21

from which

3 =u. 0= —isa.
'~ F is the deplaeement of the level from the center of gravity of the multiplet.
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With these values we find for the A of 'D, for which F= —1-,', g=&,
—104, + 2-',

A('DIt) = X1-,' —o = "/25a.
21

It is possible to find relations between X and cr for the diHerent multiplets
of a configuration, or for the multiplets which arise after the addition of an
s-electron. Lack of material to test such formulae make it useless to go into
more detail, also with respect to the remarks made in the following section.

For intermediate coupling one can apply to a great extent the same
method as used in a previous paper. '4

9. SERIOUS DISCREPANCIES

The hyperfine structure e is in many spectra caused by a deeply penetrating
s electron, the infiuence of other electrons being negligibly small. For such
cases the theory is simple, hyperfine structure separations can be expressed
in terms of Lande cosines and the experimental data have been shown to
agree with the theory. " For non-s electrons no such check has been obtained
until now.

The following enumeration of data shows that there are large discrepan-
cies between the theory and the observations for non-s electrons. Though the
experimental results are very scarce and often uncertain, the reality of these
discrepancies in the example of bismuth is beyond all doubt. The present
material is quite insufficient, however, to give quantitative information about
the deviations.

A part of the deviations will be due to higher order corrections. The
method used in this paper assumes that it is sufhcient to consider only first
order perturbations for the interaction between the electrons and the spin
orbit interactions. This means that our results are obtained by using only
zeroth order eigenfunctions in the correct stabilized linear combinations. For
heavy elements one must also consider the first order terms of the spin-orbit
perturbation in the eigenfunctions. This will cause the hyperfine structure
formulae to contain correction terms which are of exactly the same nature as
those derived by Fermi" for the anomalies in the alkali doublet intensities.
An estimate of the order of magnitude of these corrections shows that they
are probably not large enough to account for the deviations.

Bismuth I" (I=4-', )

6s'6p' D ~ -u'+ —'a" = 0.081 + 0.002

2Pg ~

Q ~
a" = 0.375

('D;, : 1-„',a' —-', a" = —0.040 + 0.002).
"S. Goudsmit, Phys. Rev. 35, 1325 (1930)."S. Goudsmit and R. F. Bacher, Phys. Rev. 34, 1501 (1929)."E. Fermi, Zeits. f. Physik 59' 680 (1930). This remark about the second order terms I

owe to Dr. H. Casimir, with whom I discussed the discrepancies during his stay here last sum-
mer. Phys. Rev. in preparation.

'7 P. Zeeman, E. Back and S. Goudsmit, Zeits. f. Physik 66, 1 (1930).
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The coupling is not of the extreme (j, j) type. This does not, however, affect
the validity of the formulae given for the first two levels, as they are the only
ones with J=2-', and -', in this configuration. The two first equations give

6PJ =-.' a" =0 375
1-'' a' = 0.007 + 0.'003.

The second order corrections for this case are uncertain, a study of the levels
of Bi III makes one believe that they should decrease a" and increase a' by
not more than about 5 percent. One sees that a' is much too small for the
theory predicts that a'=-,'a". Though the formula given for 'D, & is not
strictly valid here, the negative value of its separation factor corroborates our
conclusion that a' is much too small.

Bismuth II"
6s'6p~7s 21' -'a" + -'b = 0.391 + 0, 001

6P»-» 92'.- —,'a'+ —,'& = 0. ~0~ + 0.007.

One expects the values for a" and a' of the 6p electron in Bi II to be about
the same as in Bi I. The above equations are indeed in agreement with this
and give both for b about 0.38. If one assumed, however, that a' were really
—,'a" one would obtain an impossible negative value for b and a too large value
for a' and a".

Bi III
6s2 7p 'E'- a" = 0.102 + 0.003

'E ' v' = 0 021 + 0 004

The second order corrections for the 7p electron are expected to be somewhat
larger than for the 6p. They tend to increase a" by perhaps 10%%uo and to de-
crease a' by about 5%%uc. We have here a case where indeed the theoretical
ratio between a' and a" is close to the observed one, but one has to keep in

1Tiind that a 1s not knowil with accu1acy.
SSaegamese29 (I=2-,'). Most of the hyperfine structure in manganese is

caused by the 4s electron. For a few levels the hyperfine structure is due to
the 3d and 4P electrons, but for these levels the separations are not known
with sufhcient accuracy to check any formulae.

Indium. " The measurements on the principal doublet of the indium spec-
trum made by McLennan and Allin and by Jackson differ so entirely from
each other that they are useless. " This example would have been a very sig-
nificant check of the theory.

"New observations on Bi II and III made by R, A, Fisher and the present author, to be
published shortly. Classification and notation from J. C. MeLennan, A. B. MacLay and M. F.
Crawford, Proc. Roy. Soc. A. 129, 579 (1931}."H. E.White and R. Ritschl, Phys. Rev 35, 1146 (1930)."J.C. McLennan and E.J. Allin, Proc. Roy. Soc. A128, 508 (1930}.D. A. Jackson, Proc.
Roy. Soc. A129, 208 (1930}.

"The fa, ir agreement which Jackson seems to obtain between his measurements and the
theory is caused by an unfortunate error in a paper by Fermi. Fermi (ref. 2) gives formulae for
the hyperfine splitting of a 'P&~ level in ease I&1-,', He mentions in the text how these formu-
lae change for a case where I&1-', and just this sentence happens to be incorrect, Jackson's
results again give c' too small.
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Thallizizrz I. (I= ', ). -Only one of the two lines of the principal doublet of
thallium has been studied in detail. " The present data on the other line are
insufficient to draw any certain conclusions, though they also seem to indicate
for this case that a' is too small,

Tha/linm III."
i p 'I';: a" = 0.375

'I' ~ a' = 0.218.

The second order corrections are rather large in this case, namely about 15%%u~.

They would increase u" and decrease u'. For this example a' is much larger
than the theoretical value.

CONCLUSION

Though the experimental data are scarce we come to the conclusion that
the present theory of the hyperfine structure separations is incorrect or at
least incomplete. The method used in this paper is not the cause, For it has
been applied very successfully to many other problems, but the use of the
classical Eq. (3),

W~ + fV, = a II/ cos (I, /) —Is cos (I, s) + 3Is cos (I, r) cos (r, s) ].
The correct quantum mechanical expression for the spin-spin interaction will

perhaps contain different terms. The generalizations of the Dirac theory for
the two-body problem given by Gaunt'4 and Breit" contain indeed extra
terms for the spin-spin interaction. From a study of the helium triplet, with
which one can test a part of these extra terms, Breit" concluded that their
presence was in disagreement with the experimental data on the spin-spin
interaction of two electrons. Perhaps such terms do have a real significance
for the interaction between nuclear and electron spin".

This discussion shows the importance of the study of hyper6ne structure
as a guide for the further development of the quantum theory, especially for
the generalization of the Dirac equation. Let us, therefore, hope that experi-
mental physics will soon provide us with at least one doublet state for which
the hyperfine structure of both levels can be given with certainty and accu-
racy.

APPENDIX

Just before sending oR this paper I received a letter from Dr. John Wulff,
National Research Fellow at Tiibingen, in which he describes important new

measurements on the hyperhne structure as well as the Zeeman eBect of the
principal thallium doublet. The 6p. level has a"=0.708, whereas the 6p»
level is unresolvably small. The value for a' is probably of the order 0.015,
thus about ten times too small.

"E. Back and J.quiff, Zeits. f. Physik 66, 31 (1930)."J. C. McLennan and E.J. Allin, Proc. Roy. Soc. A129, 43 (1930).
34 J.A. Gaunt, Phil. Trans. 228, 151 (1929). Proc. Roy. Soc. A122, 153 (1929)."G, Breit, Phys. Rev. 34, 553 (1929)."G. Breit, Phys. Rev. 36, 383 (1930).
'7 This will be discussed in a paper by D. R, Inglis, to be published soon.


