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ABSTRACT

The change in internal energy of molecules upon collisions has been analysed.
Formulae, (26) to (27-C), for the effective cross section of inelastic collisions have been
obtained as functions of known properties of the molecules, subject to certain condi-
tions. These conditions are: the atoms which come into contact during collision must
belong to the first row of the periodic table; the vibrational quantum numbers which
suffer a change must be small.

Vibrational quantum numbers have a marked reluctance to change during col-
lisions at room temperature. The probability that a N, molecule in its first excited
vibrational state transfer its energy to He in a head on collision is 0.076. The prob-
ability that another N, molecule absorb this energy is 0.044. A lack of resonance of
0.01 volt can decrease the effective cross section by a factor of 0.02.

Rotational quantum numbers change readily except in unusual cases.

I. INTRODUCTION

N A gaseous system we often wish to know the effective cross section of a

collision between two systems in which one or both suffer a change of
quantum numbers. If this change involves electron jumps, as in the quench-
ing of resonance radiation, it is not limited to collisions in which the systems
would be said classically to come into contact. Such transitions have been
observed to take place when the closest distance of approach is many times
the classical diameter of the systems.! In this type of collision the changes in
the motion of the two systems as a whole may be relatively unimportant in
comparison to the change of quantum numbers.

In another interesting type of collision the electronic states remain un-
altered, and the vibratiornial and rotational states are changed. The experi-
mental data have been discussed by Oldenberg.? In many cases the proba-
bility of a transfer is very small even in head-on collisions. In such collisions
changes in the internal molecular quantum numbers are unimportant in
comparison to changes in the motion of the two systems as a whole. A study
of the latter change must thus precede a study of the former. Such a proce-
dure is adopfed in this pdper. The exact motion of the centers of gravity of
the two colliding systems is found when the internal coordinates are replaced

* National Research Fellow.
! Baxter, J.A.C.S. 52, 3920 (1930); Boeckner, Bureau Stand. 5, 13 (1930).

2 Oldenberg, Phys. Rev. 37, 194 (1931).
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by their averaged values. This motion corresponds to an elastic collision.
The internal motions of the systems are then treated as perturbations that
give rise to changes in the internal quantum numbers during collision.

The discussion of collision phenomena is preceded by an examination of
inter-molecular forces (II). The principles of energy interchange may be
most clearly analyzed in systems so idealized that all irrelevent difficulties are
absent. Thus the interchange of vibrational and translational energy is in-
vestigated in the simplified collision of an atom and a diatomic molecule
where all motion is confined to a line (III). Similarly the interchange of
rotational and translational energy is examined first for the collision of an
atom with a rigid symmetrical molecule, all motion being limited to a plane
(IV). The results of the investigation of these idealized collisions are then
combined in such a way as to give definite numerical information about colli-
sions in an actual gaseous system (V).

II. INTER-MOLECULAR FORCES

In ordinary collisions the inter-molecular forces need be known only for
those inter-molecular distances in which the overlapping of electrons is slight.
At these collision distances the mutual energy may be split to a good ap-
proximation into three parts: that due to van der Waal’s attraction, the
negative coulomb energy arising from interpenetration of electrons, and the
repulsive resonance energy. The mutual energy between two molecules is
approximately the sum of the mutual energies between the constituent atoms,
provided the resonance forces are taken to be repulsive.

London and Eisenschitz® have shown that the repulsive resonance energy
between two H atoms dominates the attractive energies. This may safely be
considered to be true for all atoms in the first row of the periodic table. How-
ever, this resonance energy becomes smaller both with an increase of the
total quantum number #* and of the azimuthal quantum number /. Hence
the following considerations will be confined to atoms in the first row.

In the outer region of an atom, i.e:, the region that overlaps in ordinary
thermal collisions, the electronic density varies approximately® as »** exp-
(—2as). Here s is the distance from the nucleus, and « is the square root of
the ionization potential.” The asymptotic expansion of the resonance energy?®
between two atoms will contain the factor exp-(a; +a2) R, where a; and «; refer

3 E. Eisenschitz and F. London, Zeits. f. Physik 60, 491 (1930).

¢ W. Heisenberg, Zeits. f. Physik 49, 619 (1928).

5 M. Delbruck, Proc. Roy. Soc. 129, 686 (1930).

8 D. R. Hartree, Proc. Camb. Phil. Soc. 24, 89 (1928).

7 Energy, length, mass will in this paper be expressed in the atomic units 13.53 volts,
0.528 X1078 cm, m,, unless otherwise specified.

8 This may be verified by examining the general type of integral that arises in calculating
the resonance energy. See Zener and Guillemin, Phys. 34, 999 (1929), Eqs. (28) and (29).
When the integral logarithms are replaced by their asymptotic expansions all terms will have
the factor exp-(a1+«as)r. This opportunity is taken for pointing out that 7 —v+1 should replace
m—vin Eq.(25), and m!/(m —v)! - v+1 should replace e=*4,(1, ) in (26) and (30) of this refer-
ence.
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to the two atoms, and R is their nuclear separation. The mutual potential
between atoms or symmetrical diatomic molecules, averaged over all internal
molecular coordinates, will contain the factor exp-(cu—+a)7, where 7 is the
distance between the centers of gravity of the two systems. An approxima-
tion to the actual potential may thus be written as

V(r) = Eetarta (rror) (1)

The constants E'’, ry:.» are to be experimentally determined. They have the
relation V(rg)=E’'. If E'' =E3y denotes the average energy of a gas mole-
cule at room temperature, then 730 will be the classical average closest dis-
tance of approach.

It is desirable to compare the theoretical formula (1) with experimental
data. The data on inter-molecular forces have been thoroughly reviewed by
Lennard-Jones.? If the constants ¢, o are determined to make ¢ exp(—ar)
join smoothly to the repulsive energy formulae of Lennard-Jones at 7300, then
a should be considered as the experimental value of oz +as. A comparison of
these constants is given in Table 1.

TABLE 1. Eunergy constants.

Lennard-Jones Spectroscopic
H., 2.08 2.12
He 3.50 2.68
Ne 2.2 2.5

III. VIBRATION-TRANSLATION

The interchange of vibrational and translational energy will be investi-
gated in the collision of atom 4 with the molecule B — C, the atoms 4, B, C
being confined to a line.

A B C

This interchange will be a function of the various physical parameters, such
as the force beinding B and C, the repulsive force begween 4 and B, the
initial translational and vibrational energies, and the relative masses.

If the atoms were sufficiently massive, and if the translational and vibra-
tional energies were sufficiently great, only an investigation by classical
mechanics would be necessary. But these conditions are not satisfied in the
interesting cases where only the first vibrational states are excited. Neverthe-
less, it is profitable to consider the classical picture, as in general the same
qualitative dependence upon the physical parameters will be present in the
mechanics of the classical and quantum theory.

The classical picture will now be used in finding the conditions of maxi-
mum transfer of energy from vibration to translation with the optimum
phase relation between the vibrational and translational motion. The system
is first simplified by assuming the impact between 4 and B to be instantane-

¢ R. H. Fowler, Statistical Mechanics, Chap. X (1929).
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ous. Then if the mean vibration velocity of B is comparable to the relative
velocity of 4 and the molecule B— C, with an optimum phase relation, the
impact between 4 and B will occur when the molecule has all its internal
energy in the form of kinetic energy. The energy transfer will then be a
maximum when the masses of 4 and B are nearly equal. However, the vibra-
tional energy of light molecules is much larger than the mean translational
energy at room temperatures. Hence in order that 4 strike B while the latter
has a maximum velocity, 4 must be lighter than B.

The effect of the finite time of impact between 4 and B is now examined.
If this time is small in comparison to the period of oscillation of the molecule
B-C, the impact may be regarded as instantaneous. As it becomes large in
comparison to the period of oscillation, the atom will tend to act only upon
the center of gravity of the molecule. The interchange of vibrational and
translational energy then becomes small. With a fixed initial translational
energy, a decrease in the mass of 4 will lessen this time of impact, and thus
increase this interchange irrespective of the mass of B.

It is of interest to compare this time of impact with the period of oscilla-
tion in collisions between actual molecules. If 7 is the distance between 4 and
B, their mutual energy may be taken to be

V(r) = E'eatr—rg") (1)

as was seen in II. If £’/ is set equal to the mutual energy E, then a reasonable
value for the time of impact is the time 7, during which » <#,. Here, 7o, to-
gether with F, is determined to make the parabola

U(r) = F(r — 1)? (2)

join smoothly to V(r) at r=75. Thus (1’) has been replaced by the potential
W(r) = ' 3
(") 0 ‘ 3)

The ratio of 7; to the period of vibration of B-C, 7,, is one half the ratio of the
frequency of vibration of the molecule to the frequency of vibration of a par-
ticle of mass

My(Mp + Mc)

= 4
"ML+ Myt M *)

in the potential (2). This ratio is

8 40 wo <,u >”2
"« 8106\E
where wg is the wave number of the molecule, u is expressed in units of atomic
hydrogen, and E is in units of the mean energy of a gas molecule at room
temperature, Ejq. A numerical example shows this ratio to be relatively

large. For instance, in the collision of He withN; at room temperature, a« =2.4,
wp=2345, u=3.5 Ex=1, giving =09.
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The above considerations lead to the following classical conclusions for
light molecules. Since the intra-molecular binding forces are large in compari-
son to the inter-molecular repulsive forces at collision distances, and since the
internal energy of these molecules is large in comparison to their temperature
equilibrium translational energy, the interchange of vibrational and transla-
tional energy will be small. Hywill absorb more readily than any other molecule
translational energy not only from a C-H bond but from any light molecule.

A precise quantitative theory for the one dimensional collision is de-
veloped by the following quantum mechanical analysis.

The coordinates will be taken to be: the center of gravity of the complete
system, X ; the nuclear separation of molecule B-C, x; and the distance be-
tween the atom 4 and the center of gravity of the molecule, #. This choice has
been made in order that the kinetic energy may be written as

r=7T,+7T.+ T,

The wave equation, after eliminating the center of gravity of the complete
system, then becomes’

{id—z—{—if«—V(x)—V(x,r)-I—E}\If=0 (5)
m dx? wo dr?
Here
MBMC
T My + Mo

and p is given by (4). The energy V(x) is the potential energy of the isolated
molecule B-C, and V(x, 7) is the mutual energy of atom 4 and the molecule.
The energy E has a continuous range of values. If E; is the energy of the iso-
lated molecule, then p;=pl?(E—E;)'? is proportional to the momentum
associated with the translational motion.

Let the normalized function ¥;(x) be a solution of the wave equation for
the isolated molecule, namely

1 2
j— —-= — V(%) + E; }\I/(x) = 0.
Lt

Corresponding to the physical requirement that before collision the mole-
cule be in the vibrational state vy, a solution of (5) is to be found of the form

— (e“’”o’ -+ 8"1171101‘) e ipr

F S Do o e(e) (©)
The summation is over all indices for which p, is real. The probability that
the molecule has changed its vibrational quantum number from v, to v will be
[ 7o) 2
In order to obtain the coefficients v,,?, ¥ is expanded as follows:

o= ZQv(f)‘va(x). ' (7
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The Q.'s are undetermined functions. Substitution of this expansion into (5)
gives

d2
Z{—*— — pV(x, ) + PuZ}Qv(r)\I'v(x) = 0.

> \dr?
Multiply by ¥,(x) and integrate with respect to x.
d2
{_d75 — V() + Z’vz}Qv(f) = 1 20uw(NV,(r) ®

v

where

Vo) = [W@Vi neix.

By neglecting the right member an equation for the zeroth approxima-
tion, Q,°(r), is obtained.

{% — WV0) + 22 }00) = 0.

Since V,?(%)—0, Q,°(r) becomes sinusoidal for large ». Denote that par-
ticular solution that vanishes at »=0 by U(p,/7). Let this solution be so
normalised that

roen sin (por + 0,)

Ulpo/n)'= o ©
Choose another particular solution by its asymptotic behavior
reo e‘—":(‘l’vr-i-ﬂv)
X(po/r) = —_— 9"

P””Z

The zeroth approximation to Q,(7) corresponds to an elastic collision in which
the molecule has the quantum number v. Hence

o Uo/7),0 =m0,
) = 0 , ¥ 9. (10)

The first approximation to Q,(r) is obtained by substituting this zeroth
approximation into the right member of (8).

@ U(poe/)V o10®, v 5=
{———uw<r)+pv2 }Q,u(r):g e/ Wornts w00

dr? , U= Ug.
The solution of these equations that satisfies the boundary condition (6) is
= 0i0) = X (p/r) [ Uou/ IV oV Ui
0

(12)
+ WU/ [ X U/

Ou,!(r) = C1X(puy/7). (12')
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The validity of (12) may be verified by direct substitution into (11). The left
member vaishes identically except for the term

— wU oo/ Vo { X' (po/ VU (po/7) — X(po/)U'(po/1)} .

Now the subtraction of

d2
X(5 = w7+ pa)U = 0

d7,2
from
d2
lfr('d_; - ﬂVvv + Pu2>X =0
’
gives
d
;l—(X’U — XU = 0.
v
Hence

X'U—- XU =C.

But from (9), (9), C=—1. Hence (12) satisfies (11) identically.
C) is to be determined from the equation of continuity,—

d * * d
f(\I/*\I/ — ¥— ¥ Jdx = 0.
N dr dr
Since the second integral in (12) vanishes as » becomes infinitely large, the

first two approximations to the coefficients in the expansion (7) gives a ¥ of
the form (6) with

Yag® = ,ufwdr fwde(pv/r)\y,,,(xBV(x, 7
0 e

(13)
‘ U(pvo/y)\lf‘vo(x); 9 Vo.

70000 = Cl .

The conditions under which this first approximation is valid will now be
investigated. In general the successive approximations of the Born collision
method do not converge. However, if the first terms become smaller, they
may form a semi-convergent series that has a physical meaning. The rela-
tive magnitude of successive approximations will depend upon the physical
parameters of the system. The application of (13) is thus limited to those
systems with parameters such that the first successive approximations to the
solutions of (8) which vanish at =0 become smaller. It will be found that
all systems examined in this study satisfy this condition.

An approximation to the probability is obtained by assuming a simplified
potential of the form

V(x, r) = E"e =" (1 4 ¢2)
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where z is the displacement of x from its equilibrium value. A reasonable

value for ¢ is the coefficient in the first term of the expansion of e=***, where
M
A= . (14)
Mp+ Mc

Neglecting the higher powers of z limits this analysis to molecules in which
the amplitudes of vibration are relatively small. With this potential v, may
be factored as

v - v o
Y% = Eug Mg

where
fo =g [ e, 0s (15)
and
v = W [ U(p /) U o) (15)
(1]
The U’s are solutions of
d2
(E‘ = wElee e + P2> U(p/r) = 0 (16)
's

and are normalised to satisfy (9).

0.6 volt —
£

V(r)

| r £
08 30 Yoy 38 Ulprr) 46
|

Fig. 1.

Since only a very rough approximation to 7,/? can be obtained without
great analytical difficulties, it is profitable to consider first the qualitative
dependence of 7,/? upon the physical parameters.

In Fig. 1 are drawn the potentials and pertinent wave functions. The
energy levels to V(r) are drawn for energy values whose U(p/r) have nodes at
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r=v,, where 7y is chosen arbitrarily at a point where V(r) first becomes ap-
preciable. Here E, E’ refer to the initial and final translational energies, with
E<E’, and p, p’ to the corresponding momenta.

An increase of the molecular binding force —dV(z)/ds relative to the
repulsive force —dV(r)/dr will increase the number of energy levels between
E’ and E, thus increasing the fluctuations in sign of the integrand of (17),
and thus decreasing 7,-?. An increase in the reduced mass p will have a simi-
lar effect.

An increase of E and E’ by similar amounts will increase 7,/? by lessening
the number of energy levels between E and E’.

An examination shows that in ordinary thermal collisions between mol-
ecules whose atoms belong to the first row of the periodic table, the first maxi-
mum of g(p/7) lies in the region » <7,, and that several “energy levels” always
lie between E and E’. The qualitative results of the classical and the quantum
mechanical treatment are thus similar in such collisions. In the language of
the former a decrease in the slope of V(7) or an increase of the reduced mass u
results in an increase of the time of collision. In the language of the latter,
similar changes result in an increased fluctuation of sign in the integrand of
(17).

An analytical approximation to 7} is obtained by replacing the exponen-
tial potential by a potential which renders Eq. (16) soluble in known func-
tions. Such a potential is

A
Ve = — y v > B
(r — B)?

Ve= o, r < B.

The constants 4, B are adjusted to make V, as similar as possible to the po-
tential (1’) in the important range of ». With the choice

Vpm —— 1% (17)
(1’ —re" + 2/0’,)2

the two potentials join smoothly at #=7z.. A reasonable value of E’ is
(E E")ve,
The differential equation (16) now becomes

a? 4uE" /o )
. L p?}U(p/x) =0

ldx"’ x2
where x=7—rp.+2/a. Its solution is the Bessel function
O\ 2
U/ = () e (18)

with
= (4,(LE”/(12 + 1/4)1/2 - 2(/~‘«E”)1/2/04.

This solution is normalized to satisfy (9).
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The expression (15’) for 47, now becomes

W“E” {” Jo(px)Jo(p'x)dx
vo

2

-,,ppr = 2

o X

The substitution of
fw Jv(lbx)]v(P,f)_d
0

X

x=(p/p)/2, p <P’

(Watson, Theory of Bessel Functions, p. 401) reduces this to

E// 1/2
N7y = W_(Mz ) (E/E")wE e, (19)
a

If the molecule is assumed to be vibrating as a linear oscillator, then (15)

reduces to
» o 2 1/2
fou = —(——————-) : (20)
2 Mm(Ev - Ev—l)

all the other integrals vanishing.

As a numerical example, consider the one dimensional collision at room
temperature of He with Ny, in which N is deactivated from the first excited
vibrational state to the normal state. Here a=2.14, E/E’'=1/8, uE'' =358,
Um(E1—Eo) =274. The probability for this deactivation is thus given by

(vo)? = (£o1)2(n?)? = 0.004 X 0.0415 = 0.076. (21)

IV. RoTATION-TRANSLATION

The principles involved in the interchange of rotational and translational
energy are most readily studied in the collision of a rigid diatomic molecule
and an atom, all motion being confined to a plane. This collision will first be
discussed from the classical standpoint.

The symmetry of the molecule limits the energy transfer in a single im-
pact. If an electron is excited to such a state that its time average distribu-
tion is nearly spherical, then the energy interchange in a collision will become
small. Hence the energy transferred during a collision will be very dependent
upon the electronic state of the molecule. This has been empirically ob-
served.’ Comparison of the time of collision with periods of rotation is not
important, since the latter is usually the larger.

In order to treat this collision problem by quantum mechanics, a suitable
mutual potential must be found. If the analysis is limited to symmetrical
diatomic molecules, a simple potential having the necessary properties is

Vir,e) = V() {1 + h(cos?e — 3 } (22)

Here 7 has the same meaning as in the previous section, and e is the angle
between the molecular axis and the line joining the atom with the center of
the molecule. The potential V(#) is taken to be (1’). A reasonable value for %

10 R, Rompe, Zeit. f. Physik 65, 428 (1930).
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is obtained by requiring that the ratio V(r, 0)/V(r, w/2) equal the ratio
Vr+txo/2)+ V(r—x0/2)/2V([r*+x4%/4]"2), where x, is the nuclear separation
in the molecule, and where 7 is set equal to 7300. This condition gives

2[exwol2 4 gmazil? — 2p—a ([r3002+x02/4]1/2—7300)]

h= ; : (23)
[eaa:,,/Z + e—axo/2+ 2e—a ([rs2+z, /4}1/2“7‘300)]

By considerations similar to those leading to (5), the following wave equa-
tion of our two dimension system of a rotator and an atom may be obtained:
{1 d2+1 tdd 11 v )+E}‘P .
— — — —r— 4 — — — = V(r,e = 0.
I do¢,® uor dr dr u 72 de? ’
Here ¢y, ¢ are the azimuthal angles associated with the molecule and the line
joining the atom to the center of the molecule.

A solution of this equation corresponding to the molecule being in a defi-
nite rotational state before collision, and having a probability of being in
several after the collision, is obtained by a method closely analogous to that
of the previous section. The zeroth approximation is of the form

e
¥ = eimldn Zewmei mé Um(?ml/r) .

The phase factor §,!! is arbitrary. The function U, (pn,/7) is the solution of
1 1 d d 1 m? m?)
{—— A N A V) + E — —I—}Um(pm,/r) =0
that vanishes!? at » =0 and is normalised to satisfy
sin (pm? + Bum
Um(?ml/y)r—)w = —1_._(?_17'—‘_.‘2 .
(pmﬁ')llz

The only allowable transitions are m = +2. The probability that the quan-
tum numbers change from m;, m tom;— 2, m+2 is

my — 2, m+ 2
Y

Il

>2 ﬁz{ j:)?]m(p’”h/")v(") Um+2(pm,—2/7’)1'd1’) }2

ma, m 16
or
m— 2, mA 2\ R [ _ 2
<v ) < -—{ [ Vstpmsrv) Uo<pml-z/r>rdr}. (24)
my m 16 0

However, these individual probabilities are not of primary interest, but
only the effective cross section of such a collision. If

my—2m+2 1, m<m
’Y =
my m 0, m > my

1 'W. Pauli, Probleme der Modernen Physik p. 42. (Hirzel, Leipzig, 1928.)

12 The formulation of this boundary condition is rather arbitrary, as an equally justifiable
condition would be to require that U(p/7) have a zero slope at »=0. However, as long as the
probability remains negligibly small that the atom pass through the molecule, both boundary
conditions will give the same result.
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this effective cross section would be equal to the kinetic theory cross section,
oxr. Here, m, is the largest m for which the molecule and atom would classi-
cally come into contact. An upper limit to the effective cross section g is
obtained by using the equality sign in (24) when m <, and setting the left
member equal to zero when m >m,. This gives
h2 2
Oetr < 1—6{ f Uo(p/r)V(r) Uo([;'/r)rdr} ok,

in which $m,, pm,—2 have been replaced by p, p'.

An approximation to this integral is obtained in a manner identical to
that used in the previous section. The only difference is that here the relation
v=2(uE’" )12/ is exact. An upper limit to the cross section is then

2
Tett < —lg(n’,’,f)%KT

in which 7,7 is given by (19).

As a numerical example, consider the probability that a N, molecule,
considered as non-vibrating, give two quanta of rotational energy to a He
atom in a two dimensional collision at room temperature. In this example
h=1.3, (n,?)?=11, resulting in

oett < 1.2 0gr.

V. GENERAL COLLISIONS

In the previous sections discussion has been restricted to a one-dimen-
sional collision of an atom and a vibrating molecule, and to a two-dimensional
collision of an atom and a rotating molecule. The analysis is now extended to
three-dimensional collisions between two molecules both of which vibrate and
rotate.

The quantum mechanical treatment of such a collision in three dimensions
is difficult, since the equation whose solution corresponds to an elastic colli-
sion is not in general separable in the mutual coordinates. However, in the
classical theory collisions of the second kind are most probable between an
atom and vibrator when all motion is confined to a line, and between an atom
and rotator when all motion is confined to a plane. We may expect a similar
relation in quantum mechanics, so the previous inequalities obtained for one
and two dimensional collisions may be taken to be valid for three-dimensional
collisions.

Provided the amplitude of vibrations are relatively small, the mutual
potential may be approximated by the product of functions of individual
coordinates. Thus when both molecules are diatomic, a simple potential is

V=TV + awz)(1 + asz:)(1 + f1le) (1 + faled)) (25)

where V(r) is taken to be (1’); 2z and 2, are the displacements of the internu-
clear separations of the two molecules from their equilibrium values; & and
e are the mutual angles between the line joining the centers of gravity of the
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two molecules and the axes of the two molecules; and fi, f; are arbitrary func-
tions.

When the mutual potential is so factorable, the probability of an inelastic
collision will also be expressible as a product. One factor of this product will
be a function of the constants of translational motion. Denote this factor by
P p. Each of the other factors will be associated with a change of one quan-
tum number. These factors will be independent of one another. For example,
in a collision in which the vibrational quantum number v changes tov—1, the
associated probability factor P,,,—; will not be influenced by changes of other
quantum numbers.

Hence if oxr is the kinetic theory cross section of a collision, the effective
cross section of a collision in which the quantum numbers vy, /i, - - - change
tov’, 4/, - - - will be

gert < 0xrPr g Py vy Loy - . (26)

In the following description of these factors, atomic units” are used.

When p refers to the reduced mass of the two systems, « to the sum of the
square roots of the ionization energies (in units of 13.53 volts) of the two
atoms which become adjacent during collision, E(E’) to the smaller (greater)
of the initial and final mutual energies of translation, and E’' = (E E’)'/2, ref-
erence to (19) shows that for sub-elastic collisions

T

(E/E'yxws . (27a)

PJ_E’ = .
“ 4o
In super-elastic collisions®® Pg, x is to be multiplied by the factor (E/E’)!2,
When the mutual potential contains only the first power of the displace-
ment of a vibrator from its equilibrium position, the vibrational quantum
number can change only by unity. Reference to (20) shows that the factor
P, ,; associated with a change of vibrational quantum number v—v—1 or
v—1—vis
A2y

e e e (27-b)
4’,Um(Ev - Ev—l)

Pv,v—l =

where the difference in energy between the two states is E,—E,_;, where A is
given by (14), and u is the reduced mass of the vibrator.

If one of the colliding systems is a symmetrical diatomic molecule, the
dependence of the interaction energy upon the mutual angle € is approxi-
mately expressed by the factor 1-+h(cos’e—3%), corresponding to (22). The
constant /%, determined from (23), varies from 1 to 1.5 for diatomic symmetri-
cal molecules whose electronic states are normal. If the electronic states are
highly excited, » may approach zero. Insofar as this approximation is valid,
the molecule can change its rotational quantum number ! by only +2. The
corresponding probability factor is

Pz,ziz = 1’l2/16. (27—(:)
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The statistical factor® relating the probability of the transition l—I+42 to
that of I4-2—1 is neglected.

A few general observations will be drawn from the above formulae.

The molecules to which this analysis applies change a few rotational quan-
tum numbers freely.

The transfer of vibrational energy may be difficult even in cases of exact
resonance,!* e.g. the cross section for the transfer of vibrational energy from a
N; molecule in its first excited state to a normal N, at room temperature is
0.0%4 X kinetic theory cross section. This resonance cross section increases
both with the reduced mass of the two molecules, and with temperature.
However, the effects of a lack of resonance are most marked in heavy mole-
cules. If the reduced mass is 30 my, the effective cross section is reduced by a
factor of 0.025 if the translational energy must change by 0.01 volt at room
temperature.

The efficiency of H, as contrasted to He in deactivating molecules® can-
not be explained as due to their difference in mass. It is to be ascribed to the
much greater facility with which H; can absorb a considerable amount of
energy by a change of a few rotational quantum numbers, than by a change
of translational energy.

The writer wishes to express his gratitude to Professor Kemble for fre-
quent discussions, and to Harvard University for enabling him to commence
this study in Bristol, England.
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