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THE DIFFRACTION OF AN ELECTRON-WAVE AT
A SINGLE LAYER OF ATOMS
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ABSTRACT

This paper undertakes to estimate the inBuence of the gradual transition be-
tween the field exterior to, and in the interior of a crystal, on the diffraction of elec-
trons. This gradual transition is required by electrostatics. The result is, that this
inlIuence may be neglected for electrons whose energy is two hundred volts or more.
One can then treat the transition as discontinuous. In the case of slower electrons
it seems doubtful, if such a treatment is permissible.

INTRoDUcTIoN

HE theory of the diff'raction of electrons by a space-lattice has been
discussed by Bethe and later, under simplifying assumptions by Morse. '

These authors integrate the Schrodinger-equation for the internal field in so
complete a manner, that little more is to be said. Their treatment of the
incidence and reflection at the surface cannot be considered as equally satis-
factory. They treat the triply periodic internal field as though it ceases
suddenly at a certain plane. This is in complete contradiction to electro-
statics, as one may not consider this plane a's charged without coming into
conflict with the atomistic foundations of the whole theory. The field cer-
tainly dies off asymptotically as one proceeds outward. This is doubtless
a lack in the theory which, as it seems to us,—might cast doubt on its ap-
plicability to the experiments. At least it should be examined to see if and
under what circumstances this approximation is justifiable. As a matter
of fact it will appear that this is not always the case.

Properly one should treat the atoms as having a finite extension but
then the calculations based on the Schrodinger-equation would encounter
a difficulty which is only too well known in optics, namely the reflection and
refraction at a plane plate with continuously variable refractive index. Of
necessity, then, we will treat the atoms as point charges. The order of magni-
tude of our results will probably not be influenced.

To obtain a comparison let us glance at the theory of Rontgen-inter-
ference which is similar to Bethe's in many points. In this treatment one
considers the space-lattice of diffracting centers to be bounded by a definite
lattice-plane; one can also object to this since the atoms in the boundary
planes actually do not occupy exactly the position which they would have if
the crystal were continued beyond the boundary. But since a single layer of
atoms contributes very little to the resultant intensity of Rontgen-rays this

* Translated from the German by C. Eckart.
' H. Bethe, Ann. d. Physik 8'7, 55 (1928); P. M. Morse, Phys. Rev. 35, 1910 (1930).
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assumption can have little influence. In the case of electron-diffraction
things are essentially different.

Let the primitive periods of the lattice-plane be the vectors ai and a2,
the reciprocal vectors b&., b2 which lie in the same plane are defined by the
equations

(a~b~) = 1, (a~b2) = 0, (agb~) = 0, (a2b2) = 1.

The surface-density of electricity in this plane will be

p
— Qp sion(s g)

1
(2)

where r is the vector drawn from an arbitrary origin in the lattice-plane to
the point of consideration, and

b = mgbi. + m2b2.

The coefficient po is zero, since the total charge must vanish. The other
coefficients are given by the equation

1
P~

—2ni(b g)d~
p J

in which F is the area of the parallelogram subtended by a&, a2, and the
integration is to be extended over such a parallelogram. If a positive pole
of charge Z lie at s+ ——Siai+S~a2 a negative. pole of the same strength at
r = —(5~a~+5~a~) then according to 1):

P
2Z6

f sin 2s (mq8q + m,8,) .
F

We assume that the lattice plane has the equation a=0. Then these
charges produce the potential

in which'

Pm
(6)

The coefficient $o vanishes. It would have to be—because of A$ =0—a
linear function of s and this must vanish because of the boundary conditions
at@ =+ ~.

It would be otherwise if we had, e.g. , two parallel planes of which the
one had a net positive charge, the other an equal negative: then $0 would
be different from zero between the two planes. Also if the atoms were not
taken to be point-charges there would be regions in which $0 did not vanish.

~ This series is naturally double. The index m represents the pair of indices m& and m&

which occur in (3) explicitly.
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The Schrodinger-equation of the free electron

8m'p
dP+ EP =0

h'

is integrated by the function

1f —S2~~(KOR) (~b) — (2' 1/2
h

(7)

in which R is the three-dimensional vector to the point under consideration
(Aufpunkt); r is the component of R parallel to the plane s=0, p the mass
of electron. We also resolve the vector Ko into a component ko parallel to
this plane and one parallel to the s axis—s the magnitude of the latter is
Ko=(KO' —ko')' '. Then Eq. (7) becomes

(s)e2xi(b&) P (s) &2mizpll

We assume that Kp is positive; the wave than proceeds from positive to
negative s-values.

The Schrodinger-equation of the electron as perturbed by the lattice-
plane

8m'p,
Af + (E —«P)ti' —= 0

r2

we attempt to resolve in the form

It then reads

(s) s2+i(ko+b„, , & )

deE —4 '(I + &-)V-) "'""'
ds2

from which we can cancel the factor t.' ' ".The remaining equation is then:

—+4 '(K, ' (I +b )')0 )ds'

8m'ep
(s)y s—2~}bq) [s'js'lmf(bq+b, )

h'

According to Eq. (3)

b„+b, = b„+,.

Since this equation must be true for every value of the vector z, the
separate terms on each side which have the same exponential factor must
be identical, i.e.



To solve this system of infinitely many diR'erential-equations with infinitely
many unknowns f (s) we use a method of approximation. As first approxi-
mation one will substitute for $0 the value (8) of the wave-function of the
unperturbed incident wave, and retain only the term in lt 0 on the right side
of (10). The weaker the intensity of the diffracted waves comes out, the
better will be this approximation. Since qbo=o we then obtain the equation:

of which the solution satisfies the condition that it must represent emergent
waves at a=+ Oo is

4m
(s) —2&j s'ixiesas

~t y (i )s 2rl4—sl lrls —2wismrdt
h' e

+~— '
J i(i) I

Ilail

+ kdfI"

The abbreviation

(13)

has been used. That this is a solution of Eq. (11)will be seen on substitution.
For s = +~ we obtain from (12):

cp $ P+
2xiems

~ f (l')s—rlb2mi lr is+i«&mardi'

k 6~

At s = —Oo correspondingly

ep, P P+
s+2+ism& I f (i)s 2&Ibrat lrls 2xiemrdg

k OO

These are the emergent waves required by the boundary conditions, at
least, if ~ is real and positive.

The latter may always be assumed to be the case, as the sign is not
defined by (13). The former is not always true according to (13). In ad-
dition to the diR'racted homogeneous waves there are also inhomogeneous
ones which are propagated along the lattice-plane and die oR' asymptotically
in a direction perpendicular to this plane. For every pair with indices m with
real e there are always two emergent waves on each side of the lattice-plane.

It will be remarked that Eq. (12) is still valid for such index pairs, m,
for which ~e is positive and real. ' If one draws the factor e+'~"~' under the
integral sign, than the bracket in (13) has the value

$0(i)s»I&ml lrlsn&i&m(s r)if( + )I po(i)s 2~tbmllrls 2&&em(& r)di'

~ Negative real values may be left out of account since the sign of the root in (j.3) is ar-

bitrary; they must be left out of account, because Eq. (12) is not longer valid when k„&o.
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in the first of these integrals s —g is negative, in the second positive. They
both exist therefore. Only Eqs. (14) and (15) must be changed for this
case; but our interest is only for the homogeneous waves, i.e. , real values
of& .

For the justification of this calculation it is essential that Eq. (11) applied
to the index pair 0,0 possesses the solution fp(z) as given in Eq. (8). This
would not be the case, if &0 did not vanish. In that case we would encounter
the problem of the plane parallel plate as remarked in the introduction and
would have to use its solution in evaluating the other P .

The integrals in (14) and (15) are to be evaluated for real values of p

and 1t p as in (8). They are

f

�+
00

fp2&& (&0+&m) I g
—&&I &mI I t I dg

00 p0
g2~&(~p+~ppz)lg 2&IbpnI+f + ! g2&&&"0+~ra)kg+2'IrI &ppzItdg

0

2 I cos (2pr(zp + p~)I ) z P~lb„, l rdi—
0 pr (zp+ p )'+b '

If we now use the value of it given by (6) and p given by (4), we obtain

4Zp'y sin 2pr(pipihi + ppipbp)

4-(z) =
~+2m. sepppz —for z = + m (16)

p„[(zp + p ) ' +b P j

in which the abbreviations

1
Kp = (Kp' —kp')'"=

I
Kp

~

cos 8, I Kp
~

= —(2pE)'"
h

p~ = (Kp' —(kp + b~)')'"=(Kp' cos'0 —2(kpb„) —b ')'i'

have been used. The angle 8 is the angle of incidence of the original electron
wave. Only the last of the three fractions in (16) depends on the energy of
the electrons, and it diminishes with increasing Z approximately as E. 'I'
For sufficiently fast electrons the amplitude of every lP -wave is so small,
that the d'iEracting-power of the single atomic layer is insignificant. The
neglect of the surface layers is then justified. To obtain an estimate of the
lower limit above which this is true we will later evaluate Eq. (16) numeri-
cally.

One can best estimate the strength of an inhomogeneous wave if one
determines its amplitude in the lattice-plane itself (z=0). We designate
the real positive quantity fp by pl From (12), (.6) and (4) it then follows
without difficulty that:



4''p
I ~-I+.-

/„(0) = z sin 2zr(zzzz5, + zzzz5z)

~

f
~
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One notices the diminution of the amplitude with increasing indices m~, m~.

For numerical purposes we suppose the vectors a~, a~ perpendicular the
one to another and both of length 4X 10 'cm. Then the reciprocal vectors
b~, b~ will also be per pendicular and of the magnitude 2. 5 X 10' cm '. In each
square formed by a&, a& we suppose one positive and one negative charg-
each of Z=1, but we do not determine their positions more definitely, i.e. ,

the numbers 5z, 5z are thus undetermined. Then the first factor in (16) is

We suppose an electron beam of 150 volts energy to be incident normally
on this lattice plane. The de Broglie wave-length is 10 ' cm, also Kp = ~kz

~

=10' cm '. Then only those homogeneous waves can appear, for which the
indices rn&, m& are any combination of the numbers + 1 and 0. This results
in 8 emergent beams from each side of the lattice plane. If one index is 0,
the other +1 Eq. (16) gives

—=10', = 4X10 '
sin'(2zr(zzz&5z + zzzz8z)) sin'(2zr(zzzz5& + zzzz82))

If both indices are + 1, then one finds

=1.5X10 ', . =3X10 '
sin'(2zr(zzzz8z + zzzz5z)) sin'(2zr(zzzz8z + zzzz5z))

sin'( ) is the structure factor and obviously depends on the position
of the two pointcharges in the elementary parallelogram. Since we set the
intensity of the incident wave equal to 1, the foregoing numbers represent
the relative intensity of the diffracted rays. As they are small compared
with 1, one will conclude firstly, that the present approximation is sufhcient,
and secondly, that the diffracting-power of the single plane is so small that
it is justified to neglect the surface fields as Bethe and Morse have done.

The result is quite different if we consider electrons of energy 37.5 volts,
other things remaining the same (wave-length X=2&&10 cm). Then the
only possible homogeneous waves are those for which one index is 0, the
other +1. At s=+~ the fraction ~P ~z/sin' ( ) has a sufficiently small
value, namely 10 '; but for s= —~ it becomes even greater than 1, which
naturally means that the present approximation is useless. In this case it
seems that space lattice theories of Bethe and Morse require extension by
considerations regarding the surface layers.

In summary we may safely say, despite the fact that the case here con-
sidered is far from the real one, that for electrons of 200 or more volts energy



the neglect of the surface action in the space lattice theory of electron dif-
fraction is justified, but that this is not obviously true at smaller velocities.

In the experiments of Stern and his collaboraters on the diSraction of
atoms and molecules by crystals, the plane-grating-action of the surface
is the only thing'observed, no space-lattice effects. The theory of these
phenomena one must probably attempt to carry through in a similar manner
to the above. The essential difference will be in a different value of the
coeScients 4 of the Fourier-series for the potential energy. The form (9)
for the wave-function and the approximation introduced in (11) may prob-
ably be retained.


