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ABsrRAcT

A statistical calculation of the average internal field in a dielectric is carried out.
The following relation is obtained between the dielectric constant, c, and the molecular
polarizability, pp.

e —1 4~NPp 1V=
a+2 3 1 —)pp

where V is the molal volume, p is the density and

458 3 BRT

Here A and 8 are the constants of a van der Waal type equation of state. This expres-
sion becomes identical with the familiar Clausius-Mosotti relation in the limit of zero
density. The formula is applied to dielectric constant measurements on several gases.

INTRQDUcTIQN

HE concept of the dielectric constant rests upon a simple empirical basis.
Faraday's experiments suggested that the intensity of the field arising

from a given distribution of charge was less in a material substance than in free
space. There was, moreover, evidence that the field intensity in a non-conduc-
ting substance was proportional to the original field intensity in free space.
These facts were formulated in the following equation:

D = eB

where D, the dielectric displacement, is most simply interpreted as the field
intensity existing in free space for the given charge distribution and E is the
field intensity arising from the same distribution in a substance of dielectric
constant e. In view of the molecular character of the dielectric, it is clear that
the measured field B is an average value, for macroscopic measuring systems
are incapable of detecting the Huctuations in E occurring in the intervals of
space and time associated with the thermal motion of the molecules. The
Huctuations in the molecular configuration must, nevertheless, play an im-

portant part in determining the average polarization of the moving molecules
constituting the dielectric.

Before it is possible to correlate the dielectric constant with the polariza-
bility of the molecules, it is necessary to calculate the average value of the
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field effective in polarizing a molecule. Moreover, it is evident that the aver-
age internal field, referred to the moving molecule will not be identical with
the field B referred to a point fixed relative to the external measuring system.

The Clausius-Mosotti relation is usually accepted as giving the relation
between the dielectric constant of a substance and the polarizability of its
constituent molecules. The computation of the internal field which leads to
this formula purports to be based upon molecular considerations, but in the
analysis, use is made of the device of a spherical cavity excised about the
molecule. This seems justifiable only when the dielectric material is con-
sidered to be a continuum. The empirical success of the resulting formula in
no way answers the logical objections to this analysis. For this reason, the
use of the Clausius-Mosotti relation except in the case of gases at low density,
where it has received adequate empirical confirmation, has been attended by
great uncertainty.

There is here presented a statistical calculation of the average internal
field leading to a formula which becomes identical with the Clausius-Mosotti
relation in the limit of zero density, but which deviates somewhat from it at
higher densities.

LIMITATIONS Oi' THE CASE CONSIDERED AND DERIVATION

OF DIELECTRIC CONSTANT FORMULA

The considerations to follow will be restricted to the relatively simple
case of a gas of sufficiently low density so that the probability of molecular
encounters involving more than two molecules is insignificantly small; and to
temperatures sufficiently high so that an inappreciable fraction of the mole-
cules are in quantized collision states such as may occur in molecular aggrega-
tion. Under these conditions the molecules may be regarded as continuously
distributed in configuration, and moreover, the potential energy may be ex-
pressed as a sum of terms involving the relative coordinates of only two mole-
cules.

It is desired to investigate the effect on the molecules constituting the fluid
of an homogeneous external electric field. Take for consideration the region
between the parallel plates of a condenser assumed to be filled with a fluid in
equilibrium consisting of n+1 molecules of identical polarizability. Select for
observation a molecule j not in the immediate neighborhood of the bounda-
ries. The instantaneous and total field F; acting on j may be written,

F; = D+F
where, as before, D, the dielectric displacement, is the field arising from the
external charge distribution on the condenser plates and F is the field arising
from the other molecules of the dielectric. If, however, F;~ is the field arising
from an arbitrary molecule k we may write,

n

p,. = gp, .„
1
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The average value of any F;I,' term may be written:

jf F o'e *"~dry dr
g 1 n

~ ~ ~ ~f e *~ordraw dr„

(4)

where u* is the total potential energy of the system and dr& is an element of
the complete configuration space of a single molecule. The integration is to be
extended over all of configuration space available to the molecules.

It will occasionally be convenient to consider F;I,' as averaged only over
the orientations of the molecules, designated by F;&', while the final average
ofF';~' over all configurations of the centers of gravity of the molecule will be
denoted by F;&'. 1117

Q +Z~
j IL

~F1g. t.

We proceed to calculate F;I,', the molecular field acting on the molecule j
originating in an arbitrary molecule k. Choose a system of rectangular co-
ordinates (x, y, z) whose origin is at the center of gravity ofj and z axis parallel
to the vector D. Similarly choose a second system (oo', y', z'), with origin at
the center of gravity of k with axes parallel to (oo, y, z) see Fig. 1.

Suppose molecule k to consist of an assembly of charges ei . e; whose
average positions in the isolated molecule are given by the coordinates x&, ,

y&. ', z&,
' x;,', y;, ', z, ,'. When a field is present it will be assumed that the

perturbed positions, x, y, z are given by

o:L = &~o + fa&z

y'' = y'o'+ f'&a

z'' = z'II'+ fZo
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where the f s are constants and Xq, Y~, Zs are the components of the field
acting on k. By expanding the potential at the center of j due to all the
charges constituting k in a series of powers of x, y, s there results for the
potential Q;q'.

y, ,' = P—' ———ge;x + —Pe;y y —ge;s
r r' r r r

382
+ —1 ge;s;"+ 6—ge, x,'y,'+ 6—ge~x s

r2 f k r'

(6)

ys+6—gey s +r'

of which the erst term is zero for a neutral molecule. Here x, y, and s represent
the coordinates of the center of gravity of k relative toj and r is the separation
of the centers. Ke assume that the Beld, I";&', de6ned by this potential may
be regarded as homogeneous over the small region occupied by a molecule.
For its s component we may write

Z1Is
3xs

. .
3yg

eP + — ex + — ey

y"+ 15——3—ge;y, "+ 3Q——6—
rs r r3 r

ys' y

zygo

+ 30——6—Qe;y s —3Q—Qe~x y +
r8 r r3

8$'p 1 3s

8(—s) r' r'

1 s' g2s z

2" 15——9—Qe;s;" + 15——3—Qe;x, 's
rs r

Using this expression for Z a in Eq. (4) and integrating over all possihie
molecular orientations' we obtain

)I Z;p'e ""dxgdygds) dx„dy ds„

ZjJs
0

)I e " dxgdygdsg . dx„dy„ds„
4

where u is that part of the potential energy dependent upon the con6guration
of the centers of gravity of the molecules, x& s„. With the aid of Eq. (4)
we may express Z;~', the value of Z;I, ' averaged over all orientations of the
molecules with respect to their centers of gravity as

' P. Debye, Polar Molecules, 27 (1929).
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(9)

Pg ——Po [(3s'/r' —1)Zg + 3xs Xp/r' + 3ysYp/r']

t4 = ~~A 0[(1 5s/sr s—9s/r)ZI2 + (15x~ /sr s—3s/r)Xq~

+ (15y's/r' —3s/r) Y&' + (30xs'/r' —6x/r) XIZ):

+ (30ys'/r' —6y/r) YgZI, —30xysXgYI, /r']

and po n+——p'/3kT

2p p
k, - ge;/;2+ — ge;r;,/;+ ge;r;, '

3kT 15k2T2

Here n is the sum of the electronic and atomic polarizabi1ities, Pe;f;, p is the
permanent electric moment of the molecule, r;0 the distance of the charge e;
from the center of gravity of the molecule k, k is Boltzmann's constant and 1'

the abso1ute temperature. XI„YI„ZJ„eItc., are the components of the field
acting on k, averaged over all molecular orientations.

We shall write Eq. (9) in a shghtly different manner:

~ = '. +', + + '. +'. + (10)

where P~', Ps' . are formed by replacing Zq, XI„Ys etc. in P~, P, , by their
average values Zs, X~, Y~. Likewise, P~", Ps", are formed by replacing these
quantities in P&, Ps by the fluctuations from their average values, Z&
—ZI„XI,—XI„V~—PJ„etc. It is apparent that the first series on the right
hand side of Eq. (10) gives the magnitude which Z;s' would have if the mole-
cule k remained rigidly polarized by the average 6eld FI, throughout all con-
6gurations of the centers of gravity of the molecules. The second series gives
the contribution to Z;~' resulting from the fluctuation of FI, from its average
value FI,.

From Eqs. (2) and (3) we have

n

Z = QZ;, '

k=i

Moreover, it is evident that all of the g;g„. must be identical, since the mole-
cule k was selected at random from the n molecules surrounding j. Therefore

(11a)



From Eqs. (8), (10) and (11) we obtain

Il+ h
where

&. m+2 —tt j O'I'd+~ ~ ~ ~Qm j l ' '
n

m=1

dsl ' ' ds

The potential energy of the system may be written

n n

I = s g P(N&s + Q&s)
A'= I

where I;I,' is the normal potential energy of two rnolecules j and k which has
been assumed to depend only upon the relative coordinates of the two, and
I';I, is the additional energy when there is an external 6eld present.

It is easily shown that for weak 6elds, u;~' is always so small relative to
k "1, that it may be neglected in the evaluation of the integrals of Eq. (10). It
will therefore suKce to consider I as given by the normal potential energy
u I,

' I

Note I. If 1N; and

misdesignate

the electric moments of j and k along the s axis, averaged
over all molecular orientations, then there may be written approximately, neglecting a term
which is constant throughout the region considered.

151W jt 2S 0! 3~—+ ——+1r' r3 r3

where

1~x; = pii(D+ Fj'} 111„- = p0(D+ Ff,').
We may anticipate the result of the calculation of P; by assigning to it the approximation

—(8m j3}pNp0D, where p is the density. Also approximately

Sm. 3p
lip ' —f' ')']" - 't'P.D—-

3 47rXo."

where o is the distance of nearest approach of two molecules. It may therefore be safely assumed
that m; and mJ, are in general of the order of magnitude of p0D. Thus from Eq. (a), the maxi-
mum value assignahie to ~n;s'

~
is the order of magnitude of

J
N, 1„-

~

= (2p0 D /as) (2 + a/cr ) .

For hydrogen at 300'K we have

J:T = 4.11 X 10 '4 ergs

po = 0. = 8 X 10 "cc

0 = 2.3 X 10 'cm.
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For a value of D of 900 volts/cm, there results:

17''
)
/kT ~ 4 )( 10

Since the series

Pi'j~' + P2'l~' +
depends only upon the relative coordinates of j and k, the first integral I&

becomes

Ig ——m

In evaluating the latter integral it will be sufficient to employ the van der
Waal's or rigid-sphere molecular model. It is assumed then, that the mole-
cules have spherical symmetry relative to the coordinate system fixed in space
by the vector D. Lack of spherical symmetry resulting from the orientation
of a permanent dipole in the molecule, as well as from the induced deforma-
tion of the average configuration of the charges constituting the molecule,
will be negligible unless the external field is very large. It will be further
assumed that a distance of nearest approach, o, exists such that

u;pp ——~ for r).(, ~ 0-

When r;~, )o, e "" is to be expanded as

The evaluation of I~ leads to the result

Sm PpI] — s Z/„- e

3 V

If I2 =)Z~, there results,

Z = —Z), ——Pp
—X

There is no physical distinction between molecules j and k and accordingly
Z; and Z~ must be equal. "

Note II. First make the approximation

e;g~'"'dx dy dz

where V is the total volume between the plates of the condenser. It will differ from the above
integral only by a quantity of the order of magnitude of the volume of a single molecule. After
transforming to polar coordinates we obtain:
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nP0 2~ — ~/2 z1sec ~ zzsec~-

o o x/2 c

1+ — —— dr sin 0d0d@

+ + ~ ~ ~

r r2

where s1 and s2 are the distances of the molecule jfrom the two plates of the condenser.
It is possible to expand n;/, ' in powers of 1./r of which the dominant term is c/r'. '

It is therefore obvious that when the multiplication indicated in the integrand is carried out, all
terms except p1 /r will contain 1/r to the second or higher powers. The contribution of these
terms to the integral will decrease so rapidly with r that we may safely take the upper limit in

the integration over r as ~. We then may write

+ —sin 0d8drdy +—
+.k0 s

+ —+ 1+ p— —— sin sdsdddr.
r , 1St kT

It is to be remembered that u;/, is independent of 0 and @,since it has spherical symmetry around

j because of the averaging over all mutual orientations of j and k. Moreover, each of the coeffi-
cients p1', p2', ~ ~ ~ satisfies the relation

f
2' 7r

P
' sin 0d0d@ = 0.

0 0

It follows that through integration over the angles the second integral vanishes term by term
and there remains when we insert the value of p1'

Np
2~ — ~/2 z1eec~ zzsecg-

+ Z/, (3 cos'0 —1) + 3X/, sin 0 cos p
0 — 0 a s'/2 z

dr+ 3F/, sin 0 sin p sin 0d0 —dp
r

Integration over r and @ yields

27m 1r m'/2 0'

P0Zq — (3 cos'0 —1) log cos 0 sin 0d0+ (3 cos'0 —1) log —sin 0d0
V 0 0 ~1

0. SX nPp=+ (3 cos'8 —1) log —sin 0d0 = ———Zq.
m'/2 Z2 3 V

It is to be noted that this quantity is independent both of s1 and z2 as well as of o.

The subscripts may therefore be neglected and the average value of the Z-
component of the internal field becomes, if it is remembered that Z =Z'+D
(Eq. 4).

Z ——
8m e1+——Pp —)
3 V

A similar calculation shows that Y; and X; vanish, and the average value of
the resultant internal field F is merely,

D

Sm e1+——
Pp

—X
3 V

(14)

' Eisenschitz and I.ondon, Zeits. f. Physik, 60, 491 (1930).
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This equation when combined with the usual classical relations,

D = eE

D= Ji+4mP

P = —ppF
V

gives;
e —1 4x 1

V = —Epo——
s+2 3 1 —)

where v is the molal volume and s is the dielectric constant. Equation (15)
reduces to the familiar Clausius-Mosotti relation

e —1 4z
e = —&Po4+2 3

(16)

only if X is identically zero for all temperatures and pressures. This is not in
general true. The quantity ) is a measure of the contribution of the Auctua-
tions in F. It will be shown that ) is proportional to the density as long as only
binary molecular encounters need be considered. For very dense gases, on the
other hand, the eRect of the Huctuations is less important and t will be smaller
than the formula indicates.

In evaluating the quantity 'A it will be sufficient to retain only the dipole
term in the Z;I, series. It will be conveneint to make use of the identity

Z,. —Z). —— P(Z»(' —Z»(') + Z»)' —Z»,
'

) may then be written

l ~ fe "(""dx» d»-„

Qxy' ' 'ds„

where

3xs
+ r'

1

N—1

Q(Z»»' —Z»(') + (Z»,. ' —Z»", ')
l—-1

n,—I

(X)) X»») + (X»j X»j)
l=l

n —1

Q(7»(' —&»»')
l——1

If the integration over the coordinates of all the l molecules is carried out
under the assumption that each of the Z'J,

~ terms is independent of the relative
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positions of j and k, there results (consistent with the original postulate of
binary encounters)

3xs
+ ——

r2

3$z
X jI;

—F Ic
' e " 'g j ~d XdgdS

r

where X&, 7»', Zi„. now denote the values of these quantities when the
average field from the other molecules is acting on both j and k. It is obvious
that

Zlc7 = Z7'A: ~

Transformation to polar coordinates and integration over the azimuthal angle

P yields, since X»' and 7».' are obviously independent of P.

2xs f'
X = = II I «[Z(, —Z~ je ((0('rr' sin Mrdg

ZV~

and

Pp
« = —(3 cos'0 —1).

r3

It will be seen immediately that the contribution arising from Z&; may be
ignored since it amounts to

8xepp Z g 7.

V Z

a quantity of the order of magnitude of 1/n since Z' = nZ'(„;. Moreover, it is
obvious that after the integration over P

n —1

e., =.z, =. gz„+z„,)l=l

gZ;(, differs from Z by a quantity of the order of magnitude of 1/n. Since
l-1

Z jQ Z Ic 7 the expression for X becomes, after solving for Z &7

2' G K——e ~1k'II' r' sin Odr.
V'~p p1 —K

When 2pe/o' is small relative to unity and only the first two terms are retained
in the expansion of e " &'"j"r, the above expression is closely approximated by

32vr2 E2P02 11+—
458V 3 BR T
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where A and 8 are the constants of the van der baal type of equation of
state and v is the molal volume. The condition that 2po/0' be small relative to
unity is in general fulfilled by non-polar substances. (hydrogen; 2PO/0' =0.12).
For polar substances where 2po/0' often exceeds unity (ammonia; 2PO/0'=
1.6), it is probable that the above expression is still a fair representation of X.

Note III. If ~ /1 —~ is expanded and only the first term of the resulting series retained, the
expression for X becomes

21l n pp 0—(3 cos'0 —1)e ";yJ~ sin 8d8dr.
V p, r'

0
If e"~'&' is expanded and only the first two terms

1 ——'
kT

are retained, and further if it is assumed that

a
u10 + ~ ~ ~j

r6

one obtains

16' pp' n Sa1+
15o' V 3R To'

Since the van der Waal's cohesive pressure constant, A, is given by

~Ã2 "
p &Bug, 2mÃ'a

e~ f,
~'~ ' r'dr = +

3 0 Bf 30

and the volume constant is

2'
I3 = —No-'.

3

It is found approximately that

If the aggregation effect is ignored and one sets e"i& '~ equal to unity, one has

2mn ~ " pp'(3 cos' 0 —1) . dr
X' =— sin ed0—~

V 0, r' —pp(3 cos' 8 —1) r

This integral may be exactly evaluated as

2mpp n 8 x+1
4x' ——+ (2x —2x') ln

3 V 3 x —1

where

1 +. p /o3 1/2

x—
3pp/o'

The quantity remains finite as long as 2Pp/~r'(1. When the logarithm is expanded the first
term is

167rpp' n

15o' V

which agrees with the previous result. Moreover when Pp/o-' is in the neighborhood of 0.1, the
error introduced by neglecting the remaining terms is found to be less than 3 percent represen-
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tation of X. Even in this case 2p0/r remains small until very small values of r are reached. Thus
for ammonia 2p0/r'(0. 2 when r) 20-. For smaller values of r, the formulation of the integral
ceases to be exact. Here the intensity of the mutual field of j and k becomes so great that an
electrical saturation sets in and the electric moments of the two molecules are no longer p:opor-
tional to the field intensity. If in a very rough manner one replaces po by

ZI, kT 3kT

where L(x) is the Langevin function, it is seen that while 1 —~ may differ appreciably from
unity, it never becomes extremely small. Moreover, the e&ect will produce a corresponding
diminution in ~' so that it should not strongly affect the magnitude of the factor ~'/(1 —«) in
the integrand.

If one sets X = ) p p where p is the density in moles per cc and designates
4s XPO/3 by P„Eq. (15) becomes

where

47rNP p

t + 2 3 1 —Xpp
(18)

Equation (18) becomes identical with the Clausius-Mosotti formula only in

the limit of zero density. When p is small, they may, however, approximate
each other very closely over a considerable range of density. A calculation of
Xo for air, nitrogen and hydrogen indicates that the factor 1/1 —Lop gives rise
to a deviation of less than .05 percent from the Equation (16) at 100 atm. and
20'C. This is in accord with the experimental results of Tangl' who found no
measureable deviation from the Clausius-Mosotti law for these substances.
Measurements of the dielectric constant of carbon dioxide' at high densities
indicate that the Clausius-Mosotti function, (s —1/s+2)s, increases with in-
creasing density as Eq. (18) demands. However, the rate of increase is about
twenty times that to be expected from the value of ) p calculated from the
equation of state constants. It is probable that this gas may not be treated as
an assembly of molecules of identical polarizability at the temperatures of the
dielectric constant measurements.

Note IV, [Suppose a mixture of several molecular types corresponding to various vibrational
states of the molecule. It is easy to see that if these various states differed in polarizability, a
shift in the distribution among them due to a change in density, might well increase the mean
molecular polarizability in such a manner as to give rise to the observed effect. ]

Measurements of the dielectric constant of ammonia' yield values of (s —1)
s/(c+2) which to 30 to 40 atm. follow Eq. (14), with a value of Xo calculated
from the equation of state constants. In the higher pressure region the slope
of the experimental curve decreases rapidly and a negative deviation from

3 K. Tangl, Ann. d. Physik 29, 59 (1908).
4 F. G. Keyes and J.G. Kirkwood, Phys. Rev. 30, 754 (1930).
" F.G. Keyes and J.G. Kirkwood, Phys. Rev. 35 (1930).
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Eq. (14) occurs. This is not surprising since the assumptions underlying the
whole of the present analysis are highly simplified.

In the present discussion it has been assumed that the boundaries of the
dielectric material consist of two planes perpendicular to the direction of an
homogeneous external field. It seems probable that if the boundary surface of
the dielectric is of an irregular character, inhomogenity in the average internal
field will arise and Eq. (18) will no longer be strictly valid. Such considera-
tions would of course not be of importance at low densities where F is small
compared to D. Under the latter conditions the simple relation

4~
v = —SPp

3 3

is valid regardless of the character of the boundary surface.
It is a matter of great interest that the observed deviations from the

Clausius-Mosotti relation at high densities are much lower than Eq. (18) pre-
dicts. This is not dificult to understand when it is observed that collisions
involving more than two molecules will decrease the value of ), the measure
of the contributions of the fluctuations to the average molecular field. In fact,
barring eHects due to quantized vibrations or rotations, the Clausius-Mosotti
function would be expected, on the basis of the present theory, to approach
absolute constancy when the molecules were at all instants continuously
under one another's mutual influence. The dielectric constant data for liquid
carbon dioxide under various pressures proves the supposition tentatively,
for the computed Clausius-Mosotti function shows no variation.

D
n

F;

F, '

F)r '

F
F)'

dT

[x, y, z]

[x', y', z'j
~ ~ ~

I I, I
xylo yio zio

4 gI
'

r
X;, Y;, Z;
X, F, ', Z

SY31BOLS

Mean field intensity.
Dielectric displacement.
Number of molecules,
Dielectric constant.
Total field (sum of molecular and external fields) acting on a molecule j in a dielec-
tric.
Molecular field acting on j.
The component of F arising from a single molecule k.
Average value of F, ' over all molecular orientations.
Average value of F over all configurations of the centers of gravity of the
molecules.
Element of configuration space of a single molecule k,
Rectangular coordinate system with origin at center of gravity of the lnolecule j
and with z axis parallel to D.
Rectangular coordinate system with origin at center of molecule k.
The charges constituting the molecule k.
Average coordinates of the charge e; when there is a perturbing field.
Elastic constant for linear displacements of e, from its average position in the
molecule.
Potential in the interior of the molecule jdue to the molecule k.
Separation of the centers of gravity ofj and k.
Components of F; along the axes of the coordinate system [x, y, zj.
Components of F, ' along the axes of the coordinate system [x, y, zj.
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Total potential energy of the ensemble of molecules.
Mutual potential energy of the two molecules jand k.
That part of U,, dependent only upon the configuration of the centers of gravity
of jand k.
The value of U;q when there is no external field,
Polarizability of a molecule.
Sum of electronic and atomic polarizabilities.
Fixed dipole moment of a molecule.
Distance of closest approach of two molecules.
Volume of the system.
Molal volume.
Molal density.


