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ABSTRACT

Starting from the analogy between a crystal and molecule, it is shown that the
electronic excitation, forming the first step in the process of light absorption, is not
confined to a particular atom, but is diluted between all of them in the form of “excita-
tion waves,” similar to sound waves which are used to describe the heat motion in the
same crystal. Owing to the interaction between the atoms the excitation state is split
up into substates whose number is equal to the number of atoms n (excitation multi-
plet). By superposing several excitation waves “excitation packets” can be con-
structed representing the travelling of the excitation state from one atom to another.
To each excitation sub-state there corresponds a definite crystal structure (lattice
constant, vibration frequencies) slightly different from that of the normal, and giving
rise to slightly different vibrational states. This influence of the excitation on the
vibrational states provides an indirect coupling between them, which allows the excita-
tion energy to be shared between a few hundred heat-oscillators with practically no
direct coupling nor anharmonicity in a radiationless transition which forms the
second state of the process of light absorption.

1. INTRODUCTION

N A monatomic gas the transformation of the light energy absorbed by
an individual atom into heat, that is into the kinetic energy of the trans-
latory motion, is effected, on the quantum theory, through a collision of the
second kind of the excited atom with some other (usually unexcited) one. If
we now look for the corresponding process in a monatomic solid body, where
the heat motion is represented by the vibration of a set of “elastic oscillators”
(Debye’s waves), we at once meet a grave difficulty. This difficulty consists
in the apparent inability of the elastic or heat oscillators, so far as they are
assumed to be harmonic and uncoupled with each other, to take up the big
quantum of energy stored by the excited atom. This quantum is in fact
about 100 times larger than the largest energy quantum of the heat oscil-
lators, corresponding to the ratio between the frequency of the absorbed
light and the highest frequency of the heat vibrations. In a radiationless
discharge of the excitation energy the latter must therefore be either shared
between a great many oscillators, which is impossible if they are uncoupled,
or be absorbed by a single oscillator jumping at one time over at least 100
energy levels, which is also impossible if the oscillator is harmonic.
The solution of this difficulty seems at first sight to consist simply in
taking account of the actually existing coupling between the different oscil-

1 This paper is an extension of two previous ones on the absorption of light in gases: see
J. Frenkel, Zeits. f. Physik 58, 798 (1929) and 59, 198 (1930).
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18 J. FRENKEL

lators and their nonharmonic character. It must, however, be rejected for
it leads to extremely small probabilities for transitions of the type con-
sidered. In fact in order to get a non-vanishing probability for a transition
involving N elementary jumps, either by N oscillators making each an
elementary jump, or by a single oscillator making an N-fold jump, one must
carry out the expansion of the potential energy of the oscillators as a function
of their coordinates (or of the displacements of the atoms from their equi-
librium positions) up to terms of the N-th order at least.2 The terms one
would get for N 2100, even if this was practicable, would be hardly large
enough to account for the effect we are considering. '

There seems to be a less trivial and more successful solution of the above
difficulty, which is suggested by the analogy between a crystal (representing a
solid body) and a molecule. The usual selection rule for the vibrational quan-
tum number of a molecule (a diatomic molecule, say), restricting its change
to unity, holds for such transitions only, for which the electronic state of
the molecule remains unaltered. In case however of a combined transition,
for instance of a spontaneous transition from an excited state to the normal
one with emission of light, the vibrational quantum number can change
by any amount (integral, of course) whatever. It may be noted that this
“breach” of the selection rule has nothing to do with the possible presence
of nonharmonicity, but depends upon the fact that the character of the
vibrations in the normal and excited molecule is quite different.

In applying this consideration to a crystal we have only to develop the
analogy between an excited crystal and an excited molecule. At the outset
we have pictured an excited crystal as differing from the normal one by the
presence of one definite excited atom. Now in case of a molecule consisting
of two identical atoms the excitation cannot be traced to one of them, but
has to be considered as a characteristic of the molecule as a whole. The same
must be true with respect to a crystal consisting of any number of identical
atoms. We thus see that we must first of all revise our conception of an
excited crystal by allowing for the identity of all the atoms, and thereafter
investigate the influence of the “electronic state” of a crystal on its vibra-
tional states.

2. EXCITED STATES OF A CRYSTAL; “EXCITATION-WAVES”

We shall assume that the coupling between different—even neighboring—
atoms is small compared with the forces holding the electrons within the
separate atoms (thus excluding the case of metallic bodies). We shall further
suppose that the atoms—or rather the nuclei—are fixed, that is, we shall
neglect their vibratory motion, and shall consider only their inner state,
characterized by a function of the coordinates of the electrons with respect
to the nucleus. Lastly we shall leave out of account the possibility of inter-
changing the electrons between different atoms and shall consequently assign
to a definite atom a definite group of electrons whose coordinates (relative

2 See below, Section 4.
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to the nucleus) will be represented for the sake of brevity by the number of
the respective atom (1, 2, - - - , n).

Then if Y1 and Y are the wave functions representing the normal and
the excited state of an ¢solated atom, the stationary states of a system of #
atoms, of which one is excited and the rest normal, will be represented to a
first approximation by a linear aggregate of # factorial functions,

1 = Yr(Y1(2)¢1(3) - - - Y1(n)

.¢2. =. llf-l(l)xlfu'(z)\bl(:;) - Yr(n) (1)

¢n = Y1(Y1(2)Y1(3) - - - Yar(n)

with properly chosen coefficients ¢i, ¢, - + -, ¢,. We have here a particular
case of an “exchange degeneracy,” which I have already considered previ-
ously® and which is somewhat similar to the exchange degeneracy met with
in the problem of a single electron with # fixed identical nuclei.4

There are, as is well known, just # sefs of coefficients (ci, ¢s, - -+ + , €n),
corresponding to the splitting up of the undisturbed state of # isolated atoms
with the total energy Wi+ (z—1)W; into # different states, whose energies
differ from the preceding value by small amounts W’. These # states will
be denoted as the “excitation multiplet” of the crystal. The values of W’
for the different components of such a multiplet “W’=W,’) and the cor-
responding values of the coefficients ¢;(=c¢,;) are determined by the equations

ZUMGJ = Wey (2)
l=1
where Uy, are the matrix elements of the mutual potential energy of all the
atoms U with respect to the functions (1).
Now U must reduce to the form
U= 2.U(a,B; Rap) (3
alB
where U(e, B; Ras) is the mutual potential energy of the atoms « and 8
and R.s=Rg, their distance apart (or rather the distance between the re-
spective nuclei). One has obviously U(e, B8; Rss) = U(B, a; R.s). One must
not conclude however from this symmetry relation that U(1, 2, ---, n) is
a symmetrical function of the respective arguments. Interchanging two
arguments say 1 and 2—which corresponds eventually to an interchange
of the excitation state between the atoms 1 and 2—we must keep the dis-
tances Rug fixed, so that the new energy function obtained by such an inter-
change is substantially different from the original one.?

3 Zur Theorie der Resonanzverbreiterung von Spektrallinien, Zeits. f. Physik 59, 198
(1930).

4 This problem is treated in Bloch’s theory of metallic conductivity.

8 The theory can be easily extended to account for the interchanging of the electrons be-
tween different atoms. In the simplest case of one electron per atom we have but to replace
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Taking into account the orthogonality and normality conditions for
the functions ¢5 and ¥,

[ i@y @r. = 0, [ort@yr@ir, = [vrt@vu*@in = 1,
we easily obtain from (3) if k#1:
U = f . fU¢k*¢‘l dri- - dry = Vi 4)
where Vi is a function of the distance Ry alone given by
V= [ [ U5 Ry Oaow e Ovn@indr, ()
It may be remarked that it is in general complex and therefore different

from V1k= sz*.
For k=1we get

Uk = Vi = Z_V:u ©)
U=k
where
Vi = ff Uk, l; Ry l Yr1r(k) i 2l 2L0)) ‘ 2drpdr, (5a)

may be defined as the average value of the mutual energy of the atoms %
and / when one of them is in the normal and the other in the excited state.
This is also of course a function of the distance Ry; only; it is moreover sym-
metrical with respect to 2 and /.

The equations (2) are very similar to those which determine the normal
modes of vibration of a system of coupled classical oscillators with one degree
of freedom each; in fact we have but to consider the coefficients ¢, as the
amplitudes of these oscillators and to replace the energies W’ by the square
of the classical frequencies (multiplied by a properly chosen proportionality
factor). The matrix elements Uy (kl) can be then interpreted as the
coupling coefficients (since they actually depend upon the distance of the

the functions (1) by the following ones which are antisymmetrical with respect to all the elec-

trons.
" v, 1), (1, 2), - - - gurll, %) w0, U2 -,
12,1, ¥(2,2), - (2, n) _ 1 1 ym(2, 1), vu(2,2) - - - yn(2, %)
oo=—l T T ] -
‘l’l(n: 1)7 1A&I(ny 2) fo ‘Pl(n: n) \bl(ﬂ, 1): ‘l/l(n) 2) M \[/1(”, n)

etc. where ¥1(k, ) and y11(%, I) denote the wave functions of the atom formed by the association
of the I-th electron to the k-th nucleus, in the normal and excited state respectively. Similar,
though somewhat more complicated, results are obtained in the general case of several electrons
per atom.

The case of two electrons with all the atoms being in the normal state has been recently
treated by E. Hylleraas, Zeits. f. Physik 63, 771 (1930) in connection with the theory of the
cohesive forces in a (non-excited) crystal of sodium hydride .
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respective oscillators only), and the Uy as the coefficients of the quasi-elastic
forces for the uncoupled oscillators.

Until now the positions of the atoms have remained unspecified. We
shall now assume that the nuclei are fixed at the lattice points of the crystal,
neglecting the displacements due to the vibratory motion. We shall further
assume that the crystal has a rectangular form (or the form of a parallelepiped
whose edges are parallel to the crystalline axes). The normal modes of
vibration for this case are well known. They do not depend upon the shape
of the functions V;;(Ri;) nor upon the value of the constant Vo= Vy;, thus
coinciding with respect to the position of the nodal planes with the acoustic
or elastic vibrations (for which V,=0). These vibrations can be described as
standing waves with the wave-number components®

g1 = t ri/2a1, g2 = F r3/2as, gz = + 73/2a3 (6)

where a1, @, az are the edges of the crystal and 7y, 73, 73 numbers specifying the
mode of normal vibrations and taking all integral values between 0 and #; —1,
ny—1, ng—1, respectively, #; being the number of atoms along the 7-th edged
(% = %1112113).

The triplet (r17.73) replaces the number » which was introduced to specify
the various solutions of the equations (2). The single numbers £ and / must
be replaced accordingly by triplets (kiksks), (Lilol;) which may be associated
with definite “oscillators,” that is definite atoms of the lattice. It may be
remarked that the coefficient ¢, in (2) refers to that function ¢ in (1) which
ascribes the excited state to the atom k. The solutions of the equations (2)
can now be put in the form

wd w0 w0
Cryrargiky kg ky = Arpyry COS —R1¥1 COS —Rgry COS —kary @)
ay (12 as
where 6 is the lattice constant (for the sake of simplicity the lattice will be
pictured as cubical), and k10 = x,, k20 = x3, k30 = x5 the rectangular coordinates
of the atom to which the excited state is assigned by the function éx s ,,.
A, is @ normalization coefficient determined by the condition that the
integral of the square of the function
Xrpars(1, 2, - - - 1) = Zcrl,r.,,rs:k,,k?,k3¢k1k2h<1, 2, - m) (7a)
Joykoksg
representing the 7-th'stationary state of the excited crystal (the 71, 7,, 73 com-
ponent of the “excitation multiplet”) over the configuration space of all the
electrons should be equal to 1.

The energies W', ,,», of the different states (with respect to the unper-
turbed energy Wi (n—1) W) are given directly by substituting in the equa-
tions (2) the values (7) of the coefficients ¢. Since the matrix elements Uy,
depend only upon the differences ki —1i, ko —1y, k3 —1I3 one can put by =k, =Fk;

=0 which gives
ATI/I/TI = leﬂlcrl
1

6 The wave number is the reciproal of the wave-length; it is a vector parallel to the direc-
tion of the propagation of the waves.
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or more fully written

Wpee = 20 2 2 Usoo.1,1,1, COS W—allrl cos ﬁlz?’g cos T—algra (8)
121 123 I ay asz as
With increasing values of lill;, that is with increassing distance Ro;=8(l,2
+1,24-132)12, the values of H'go1,1,1, must in general decrease very rapidy.
The summation in (8) can be therefore extended practically over all values of
the /; from — o to 4. If the mutual action of neighboring atoms only
(with smallest distance apart R=34) is taken into account, (8) reduces to

w0 w0 wo
Wepwre = Vo + 2V1(cos —7ry + cos —ry + cos — rs> (8a)
ai a2 as
where V1 is the value of (4a) for neighboring atoms and V) six times the value
of (5a) for the same atoms. The latter value is the average of the mutual
potential energy between an excited and an unexcited atom, whereas V; has
the character of an “exchange energy” which has no classical analogue.
Each stationary state of an excited crystal can be described as a “standing
excitation wave” defined by (7) or by

c(®1%9%3) = A cOs 2wg1%1 COS 27gas COS 2mgaxze 2™

where v’ =W',/h, x;=06l;. Such a standing wave can be obtained by superpos-
ing eight “progressive excitation waves” of the type

(A /8) 27 (it gazrt gazs—v! ¢)

which represent the propagation of the probability for finding the excitation
localized in a certain plane of the crystal. By superposing a number of such
waves with slightly different values of g1, gs, g3 (that is with slightly different
directions of propagation and frequencies »' =w'/k) it is always possible to
construct a wave-packet which will represent the excitation being concen-
trated in a definite atom or its neighborhood (according to the usual picture).
The group velocity of such an “excitation-packet” may be determined by
the relations

U = av’/agi(i = 1, 2, 3). (9)
Putting

h' = Vo + 2Vi(cos 2wgid + cos 2wged + cos 2mgsd)

according to (8a) and (6), we get
47V,

sin 2wg.s. (9a)

v" = —
For small values of g; that is for long “excitation waves” this expression
reduces to
8x25%V,

ve—— ¢ (9b)
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that is the group velocity is approximately proportional to the wave number.
It has in general the same direction so long as the “exchange energy” Vi is
negative. It reaches its maximum value v =473 | V1 |/% for wave-lengths equal
approximately to four times the interatomic distance 8. For A =223 it falls
down to zero and for still shorter wave-lengths becomes opposite to the
direction of the wave propagation.”

To get a better understanding of the nature of the “excitation waves”
it will be well to consider the process corresponding to them in the older
quantum theory and in the classical theory. According to the former the
exitation energy of an atom can and in fact must be transmitted to one of the
other atoms of the same sort either by emission and (resonance) reabsorption,
of light or directly in a non-radiative process. The closer the atoms are to-
gether, the larger must be the probability of such a non-radiative trans-
mission, that is, the larger the velocity with which the “excited state” will
travel from one place to the other. This is expressed by the fact that the
group velocity, according to (9a), is proportional to the exchange energy V.
The ratio 8/vmax which is of the order of magnitude of 2/V; can be considered
as the shortest time that the excitation remains confined to one definite
atom.?

From the point of view of the classical theory an atom has.to be con-
sidered as a harmonic oscillator, whose normal state is that of rest. The
energy of the free oscillations, replacing the excitation energy, instead of
being concentrated in one single atom (or a small number of them in the
general case) has to be distributed here in a more or less uniform manner over
all the atoms, each of them possessing accordingly but a very small energy.
The excitation waves can be represented in this case by the familiar waves of
the electric polarization with exactly the same wave-numbers as has been
actually done above in the discussion of the equation (2).° It should be no-
ticed however that in the classical theory of the propagation of such waves
the interaction between the atoms is considered to be a radiative one, that is
proportional to their dipole moment and inversely proportional to the dis-
tance, whereas in the wave mechanical theory we are developing this
interaction considered as a much more powerful non-radiative (electrosta-
tic) one.!?

7 These results are wholly analogous to those implied in Bloch’s theory of the electrical
conductivity of metals and discussed by R. Peierls.

8 In case of two atoms %/ V; is just equal to the time in which the excited state oscillates
from one atom to the other. »

9 The situation becomes more complicated if instead of one excited atom we consider the
case of two or more excited atoms. cf. J. Frenkel, Zeits. f. Physik 59, 198 (1930) in particular
footnote on p. 203.

10 Cf. G. Breit and E. O. Salant, Phys. Rev. 36, 871 (1930). This paper dealing with the
propagation of light in solids contains some results of the present section.
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3. THE INFLUENCE OF EXCITATION ON THE GEOMETRIC
AND ErAsTIC PROPERTIES OF A CRYSTAL AND
ITS VIBRATORY MOTION

We can now turn to the examination of the influence which an excited
state of a crystal (that is a definite component of an excitation multiplet)
exerts upon the heretofore neglected vibratory motion of the atoms. The
exact way to deal with this question would be to consider simultaneously
the “inner” and the “outer” (that is, vibratory) motion of the atoms. But
this way is hardly practicable even in the simplest case of a diatomic molecule,
and we shall therefore use an approximate method of the same sort which is
applied in Debye’s theory of specific heats to the determination of the normal
vibrations corresponding to the unexcited state.

A normal vibration is described here by a system of standing sound waves
of just the same geometrical type as that used in the preceding paragraph to
describe the excitation states. It can be thus characterized by specifying
the components of the wave-number according to the equations (6) which we
shall rewrite in the form

¢/ = L7/ 2ay, g = £ 1r//2a, g/ = % ri'/2as (10)

the primes serving to distinguish the sound waves from the excitation waves.!
The frequency of the vibrations v’ can be determined from the equation

v = g'u (11)

where « denotes the velocity of sound, which is considered as independent of g’.
The velocity of sound can be calculated by means of the formula

u = (k/p)'"*

where p is the density of the crystal, and « its elastic modulus, which has dif-
ferent values for the longitudinal and the transverse vibrations.

Now in order to determine x from atomic data we must consider the vi-
brationless state of the crystal and compare its energy in the equilibrium
state with the energy corresponding to a slightly compressed (or expanded)
state in the case of kiong OF to a slightly distorted state in the case of Kians.

Denoting the volume of the crystal with v and its energy—that is the
mutual potential energy of all its atoms—in the normal (non-excited) state
with W, we have, expanding W, in a power series with respect to the inere-
ment of volume v —° (v’ =v in the equilibrium state)

W W+ 1 (62Wo>°( o2
Vo = —| ——) (» — v9)2.
’ ’ 2\ 9®

The second term represents the elastic energy

L ko(v—2%2 . 90

11 'We shall drop the primes later on when there will be no danger of confusing the sound
waves with the excitation waves.
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W,
Ko = 7)00
dv?

b2 1MW\ 1 (9o
Ky = — — = . (13)
9 2\ 962 0n8,\ 952

This formula determines the modulus of compressibility for the normal
(unexcited) state of the crystal—as denoted by the subscript zero—and hence
according to (12) and (11)'2 the frequency of the vibrations associated with
this state. It may be remarked that the corresponding equilibrium value of
8 =080"=§, is given by the equation (d W,/9v)° =0 or

whence it follows

or putting v =n8°

(0W/36)° = 0 (13a)
and that 8, is related to the density p =p, by means of
po = m/503 (131))

m being the mass of an atom.

The above method can now obviously be applied to the determination of
the vibrations associated with an excited state of the crystal. To do thiswe
have but to replace in the preceding formulae the energy W, by the energy
W,.= W+ W', of one of the components of the excitation multiplet. In this
way we shall get for the lattice constant of the crystal §, its density p, and
its elastic modulus «, values depending upon the character of the excitation
substate and slightly different from those corresponding to the normal one.

Since the difference 6,— 3, =A4, is very smalil, we have to a first approxi-

mation
AW\ oW, W, aw,’
— ) =\ + (‘** Ad, + | —— =0,
35, 35 /5=, 98% / 55, 98/ 5ms

whence since the first term vanishes (according to 13a)

Ad oW, /W (6 = 8) (14)
T s /e
The energy Wy is proportional to the number of atoms #, whereas W', ac-
cording to (8) or (8a) depends upon it in a practically unimportant way.
Putting in (8a)
a; = 7l16, Ay = 77/25, ag = 7235

(where nimen; =n) we have

Ty Ve w3
W, =V,+ 2V1( cos —— =+ cos —— -+ cos —--) (15)
mny V2 3
and consequently
aVu 62W0 ' 1 T¥e ’7|‘1’3 6V1 62”/0
NS, = — —— ) —— — 2( cos — 4 cos—— + cos — }— / ——  (135a)
ad 962 ny 2 a6 96?2

which is of the order of magnitude of 1/%, since V; does not depend upon #.

2 In the case of longitudinal vibrations.
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In the same way we get from (13)

2 62V0 "1 wre mw™r3 32V1
Akr = Ky — Ko = —— + 2| cos— 4+ cos — + cos— - (15b)
96nL 962 1 Ny n3 652

The relative change of Ak, being again of the order of magnitude of 1/%.

These results seem very natural indeed. We should expect that the change
of the geometric and dynamic properties of the crystal lattice, due to the
excitation of a few atoms #’ depends upon their relative number, that is upon
the ratio #’/n, which in our case is equal to 1/%#. So long as 7’ is small com-
pared with =z the effects due to the excitation of the separate atoms must
obviously behave additively (which would no longer be the case if »’ were
comparable with %), so that to get the total change of d or k we would have
but to add the expressions (15a) or (15b) for all the n’ excited atoms. It
seems however that even with the largest values of #’ that can be obtained by
illuminating the crystal with intense light of the resonance frequency, the
change in the elastic properties will be too minute to be detected by direct
measurement.

This change must however manifest itself in an indirect manner by mak-
ing possible the radiationless transitions of the crystal from an excited
state into the normal one with conversion of the excitation energy into that
of the vibrational motion, and also of course transitions of the inverse
direction, leading to “thermal excitation” of the crystal and corresponding
to “inelastic collisions of the first kind” or “activating collisions” in the case
of a gas.

4. THE RELATION BETWEEN THE VARIABLES AND FUNC-
TIONS DESCRIBING THE HEAT OSCILLATORS IN THE
NorMAL AND THE EXCITED CRYSTAL

In order to determine the probability of such transitions we must intro-
duce first of all the “normal coordinates” characterizing the individual
heat oscillators, which represent the different modes of vibration (standing
elastic waves) of the crystal. Let these coordinates for the unexcited state be
denoted by &, &, - - - &, - - - £, (their number being equal to the number
of degrees of freedom); we shall think of the first # as referring to the longitu-
dinal vibrations and the rest to transverse ones.

We have to introduce in the second place the relations between these
coordinates and the normal coordinates £, £2, - - -which correspond to the
r-th excited state. These relations must be derived from the condition that
the equilibrium positions of the atoms in the excited state are specified by
zero values of the new coordinates (£,=0) on the one hand and by definite
non-vanishing values & = £, of the old ones on the other.

For the sake of simplicity we shall limit ourselves to the consideration of
a unidimensional case, that is of a set of # atoms situated on a straight line
and capable of moving along this line (that is to perform longitudinal oscilla-
tions). Such a set can be conveniently treated as a “bar.” In order to allow
for the change of length L=z of the bar, due to the excitation of one of its
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atoms we shall imagine one of its ends to be fixed and the other free.’® The
normal modes of vibration of such a bar correspond to wave-lengths A =X\,
determined by the equation

214+ 1
4
where /=0, 1, 2, - - - —1. The displacement Ax; of an atom whose equili-
brium distance from the fixed end is x;,=£%8 can be represented by the sum
n—1
Az = D cuby 17
=0
where
. 2w .o 1
Cry = 7y sin = « sin —(l + — )k (17a)
)\l n 2
v being determined by the “normality condition”
n—1 9
chl =1 (17b)
k=0

and £; denoting the normal coordinate, which characterizes the /-th mode of
vibration.
Using the formula

1 — euxn
Ze“’"‘ = Z cos ak + 1 Z sin ak =
=0 1 — eie
which is equivalent to

g 14 cosa(n — 1) — csan — cs 1 sn an sn
> csak = ( ) a a=—(1—csom) +__a—g_
=0 2(1 — cs o) 2 2(1 — cs @)
nzl sina(n — 1) — sinan + sin 1 sna(l — csan
anak= o ) z 2 —sman—i——a(———a)
¥—0 2(1 — cs @) 2 2(1 — cs )

we get with the abbreviations (I+3)r/n=8, '+1)n/n=

n—1 n—1 1
S ericrr = 4% Y sin Bk sin Bk = —2—72[ ch B—B8NE— Ecs B+BNE ]

k=0 k=0 k=0
=n—1if I =1and (— 1)U+ if ! = |,

We thus see that
y=(n— 1712

and morever that the coordinates &; are not exactly orthogonal as they would
be in the limiting case #—, #d = L =const.

13 Similar results would be obtained by fixing the middle point of the bar and leaving both
ends free and in the opposite phase.
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Squaring (17) and summing up with respect to £ we have in fact:

n—1 n—1

2
D (Aay)? Zzz — T (DU
k=0

n—1 <l

The mutual potential energy of the atoms which in the simplest case is repre-

sented by the sum
n—2

Z(Aka — Ax,c)2

k=0

also will not be reduced exactly to a sum of squares of the type
n—1
D2 EVLZ'EZZ
=0

v, being the vibration frequencies, but will contain cross terms vanishing in
the limiting case of a continuous bar. The problem of finding the exact
normal coordinates that is the exact transformation coefficients c¢; in the
equations (17) for a given finite value of % is rather complicated and we shall
therefore use the “nearly-normal” coordinates defined above.

Since the coefficients ¢;; do not depend upon the equilibrium spacing be-
tween the atoms 6, the same formulae (17) could be used both for the “nor-
mal” and for the “excited” bar; it should be remembered however that Ax,
has in both cases a different meaning, the equilibrium position of the k-th
atom in the excited state being displaced by Ad,k with respect to that corre-
sponding to the normal state. The same position of the atoms which in the
normal state is specified by the displacements (17) will be specified from the
point of view of the excited state by the displacements

Axyy = Axyp — kAS, = D Cribn
whence

n—1

ZCU(EI — &) = — kAS,.

If ¢k, were the correct transformation coefficients then these equations would
be immediately solved by

Ey— &= Aby = — ZCukA5

k=0

Introducing here the approximate values

1
it (e )
o (n — 1)1 n
we have
: 2 "ik b
= — ————— sin
! (’L - 1)]/2 Jo== “

or

n—1
AEy = ( > cos ak)
n'2\da  r—o a=n/n(l+1/2)
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that is according to the summation formula given above, with cos an =0,

sin an=(—1)¢,
AL (— 1) Aé,.l" 1 :‘
AE, = (— n— .
: 2%1/2|__ 1 —csa

The second term in the brackets represents probably the error due to the fact
that we have been using inexact values for the coefficients cx;. It would have
an important influence only in the case of very small values of « correspond-
ing to very long waves.!

Dropping it we get finally

1 1 AL,
A‘Erl = (_ 1)17A5,~7l1/2 = (_ 1)l7

(18)

nt/2

where AL, =#nAd, denotes the change of length of the whole bar in the 7 ex-
cited state. Since this change is actually due to the presence of one single
excited atom, it must be practically independent of the total number of atoms,
whence it follows that A8, must be inversely proportional to %, a result which
we have derived above from somewhat different considerations for the case
of the real three-dimensional crystal. The preceding formula which we can
safely extend to this case® thus means that the change of the normal coor-
dinates, produced by the excitation of one atom out of # is inversely propor-
tional to the square root of n. The coefficient of proportionality $Ad.# is
determined by (15a) and can be shown to be of the order of magnitude of
atomic dimensions.

Having established the relation between the normal coordinates of the
nonexcited and those of the excited crystal we must now turn to the considera-
tion of the Schréodinger wave functions of the corresponding “heat oscilla-
tors.” These functions will be denoted by fs,~,%(&s) for the N, quantum state
of the s-th oscillator in the case of the unexcited crystal and by fs,»,"(Ers)
in the case of a crystal in the 7-th state of an excitation multiplet. The gen-
eral form of the functions fy(£) is given by the formula

In(§) = [2VNl(ma) V2|12 H y (a1 2) e 1128 = fy*(8) (19)

where Hy is Hermite’s polynomial of the N-th degree and « is a constant
proportional to the natural frequency of the oscillator ». If the coordinate &
is normalized in such a way that the energy of the oscillator is represented by

m[ [dE\?
]
2L\d¢

1 —cosanja?= (I+3)2n/2n?

4 In this case we should have

and
Ady n?

nV/2 w2(] 4 4)2

w2 (— 1t

18 Replacing ! by the sum J +/2+1s.
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then!*

a = 4nmy/h. (19a)
The absolute value of @ does not play any role since we can always replace the
coordinate & by n=a'/2£. If however we have to compare the behavior of the
same oscillator for two different values of the frequency parameter v =», and
v=v, then we must take into account the relative value of @ which gives us
two different wave functions of the form

Vrs 1/2
&) = fy(&) and fy(E) = fN[(V_‘) Eu]. (20)
0s
The function fx(£) can be defined here and in the sequel by formula (5) with
a=1.

5. DETERMINATION OF THE PROBABILITY OF THE INDIVIDUAL TRAN-
SITIONS OF A CRYSTAL FROM THE EXCITED TO THE
NorMmAL STATE (or vice versa).

The stationary states of the crystal, including the vibratory motion of the
atoms can be described to a first approximation by a wave function ¥ equal
to the product of an electronic function x(1, 2 - - - n) specifying the inner
states of the atoms and of the functions (20) for all the 3» oscillators. We
thus get for the 7-th excited substate

3n Vs 1/2
Y, =x(1,2,--n) HfN,s[<_> En] (21)
s=1 Vos.
and for the normal state
Yo = xo(1,2,- -+ %) HfN03($s> (22)
with
xo = Y1(1Ya(2) - - - u(m) (22a)

which is obviously the same approximation to the electronic function of a
number of atoms in the same state, as the functions x, defined by (8), are for
the case when one of them is excited.

It must be remarked that whereas the factorization of the oscillator
functions corresponds to the assumed absence of any direct coupling between
them, the multiplication of these functions with the electronic function x
does not mean that there is no coupling between the vibratory and inner
motion of the atoms, this coupling being in fact expressed (in an approximate
manner of course) by the dependence of the vibration frequencies »,, upon
the electronic state. Through this interaction of the electronic (inner) and
the vibratory (outer) motion the different oscillators are actually coupled
with each other—in a rather indirect way—and it is just this indirect coup-
ling that enables the simultaneous transition of any number of oscillators

18 Cf. A. Sommerfeld, Wellenmechanisches Erginzungsband, p. 18. This normalization
corresponds to the condition Z£2=Z(Ax)s or Zicri? =1 used above.
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from one state, specified by the quantum numbers N, Ng - - - Nogn to
another N, Ny - - + Nys3a, if this transition is combined with an electronic
one, that is with a transition of the crystal from the normal state to an ex-
cited one or vice versa.

The probability of such a combined transition is determined by the ma-
trix element of the perturbation energy with respect to the functions (21)
and (21a). This perturbation energy seems at first sight to be identical with
the mutual potential energy of all the atoms U, which has been considered
above in connection with its influence on the electronic motion. It will be
remembered however, that this influence has been examined on the assump-
tion that the atoms were at rest at the lattice points of the crystal, which
corresponds to definite equilibrium values R,g° of the interatomic distances
R.s entering as parameters in the expression (3) for U.

Since we are now concerned with transitions due to the interaction of
the electronic and vibratory motion it is necessary to take account of the
change of the R,s's and consequently of U which are due to the displacements
of the atom from their equilibrium positions. This could be done by expand-
ing U in a power series with respect to the differences R.,s— R,3° and express-
ing the latter through the normal coordinates &, & - - - &,.

The series so obtained would contain next to the equilibrium value of U
a sum of squares of the coordinates £ which must be dropped out, since it
represents nothing else but the potential energy of the oscillators (accounted
for separately) and further higher powers of the £'s which should represent
a certain degree of anharmonicity and of direct coupling between the oscilla-
tors and at the same time a certain alteration of the electronic states as a
result of the vibrational motion.

If we did not take into account the indirect coupling (and anharmonicity)
expressed by the dependence of the vibration frequencies on the excitation
state, we should have to carry out the expansion of U up to terms of the
100-th (or even higher) degree in the &'s in order to get a nonvanishing prob-
ability for transitions involving a 100-fold jump of the oscillators (cf. Intro-
duction). Asa matter of fact, however, this is not necessary and we can safely
stop at terms of the third order (as is done in the theory of the thermal
expansion and thermal conductivity of solids) thus putting

U= U+ U" (23)
where
U = ZAkzmékEzEm (23a)
k,l,m

the coefficients 4 ;. being certain functions of the electronic (inner) coordi-
nates 1,2, : - - n.

The probability of radiationless transitions from the 7-th excited state
to the normal one (or vice versa) is determined by the matrix element of U
with respect to the wave functions (21) and (22)
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M, EfUtl/o*ll/r= [ j fog*x,dn--~d1-n

3n Vrs 1/2
: HfNoa(Es)fN,3[<_') Eﬂ]dfs-

5= Vos

Of course only such states have to be considered which have the same
or nearly the same energy (the corresponding transitions are usually denoted
as “resonance” ones). The energy of the crystal in the normal state is equal
to the sum of the energies of the separate atoms #Wj plus the equilibrium
value of their mutual potential energy

W, = f C fU(Xo)"’dn e dr,

(25)
= 2 [ v 85 R [r@) | 2| 9a(B) | 2dradra
a<p
plus the vibrational energy
3n
Eo= > hwe(No + 1. (25a)
s=1

The energy of the same crystal in the excited state 7 is represented simi-
larly by the sum

Wi+ (n— DW:+ W, + E,
where W,’ is given by (8) and

3n
E, = Y hwe(Ny + 3. (25b)

§=1

The condition for the radiationless transition to be a resonance one is thus
expressed by the equation

3n
Wit — Wi+ W, = W¢ + 2N+ 3) — we(Nos + 2)]=0.  (26)

s=1

This equation can be approximately satisfied for a given 7 in a number of
different ways corresponding to different jumps of the vibrational quantum
numbers n,. The total probability for the crystal to pass from the excited
state into the normal one will be proportional to the sum of the squares of
the matrix elements (24) (or rather their moduli) for all such “nearly reso-
nance” transitions (see next paragraph).

In computing the matrix elements (24) we must express the normal coor-
dinates of the excited crystal through those of the unexcited one by means of
the relation (18). It is however to be kept in mind that these relations hold
for the case when the £,'s are so normalized that Z,£.2=ZAx,?, which corre-
sponds to the value (19a) of the parameter « in the functions (19). If we put
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a=1 in (19), that is replace &, by «'/2, then in using the relations (18) we
must multiply the right hand side by a!/2. Putting further »,/vo=14Ar,/v,
and noticing that Av,/v, is a small quantity of the order of 1/% we can expand
I/ vo) 28, =fx [ (ve/v0) 12 (£, +AE,,) ] in a series of powers of 1/7!/2

T lr/v0) 1 2E] = f(Es) + Abnfn' () + O(1/n) (27

O(1/n) denoting the sum of terms of the order of magnitude 1/%, 1/%%2, etc.
We shall presently see that all these terms can be dropped, their contribution
to the total value of the transition probability (for all the possible individual
transitions) decreasing with increase of # (as 1/n at least), whereas the
contribution of the terms proportional to A&,, that is to 1/#/2 turns out to be
independent of # (see below).

The change of the vibration frequencies connected with the excitation of
the crystal is thus immaterial for the transitions we are considering, these
transitions being due practically solely to the minute change of the equili-
brium distance between the atoms.”

We shall first consider that part of M, which corresponds to U° that is

3n
Mro = f ce f UOXO*erTI cee d'rn H fNOS(Es)an[(Vrs/VOa)llzgra]dEs- (28)
=1

The contribution of each oscillator to M,° is given according to (27) by the
factor

I, = ffNo(E)fN,(E)dE + A, ffND(E)fJ(r,(E)dE + 0(1/n). (29)

If N,=N,, this factor reduces practically to 1. If N,=N,+1 the first term
on the right side vanishes but the second is different from zero, so that
I,=0(1/n?). If |N,—No|>1 the second term vanishes too and I, turns out
to be of the order of 1/#% or still smaller.

We thus see that only such transitions have to be taken into account, for which
each oscillator either remains in the same state or jumps to the next one.

From the well-known relation for Hermitian polynomials

d
—H = 2NHy_
% ~ (&) ~n—1(%)

it follows, according to (19) (with a=1):
fo'(§) = VN2 V2 NHy_1(He ¥ — £fn(®) = (2N)2fy-1(8) — &fn(®)

whence for N,=N,y+1
I. = — A f IneOfn(H)EdE = — ALkw, v,

17 This result applies to some extent to the case of diatomic molecules, where however the
frequency shift also plays a marked réle.
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(v, v, being the matrix element of £. This matrix element is equal to
(N/2)Y2 where N is the larger of the two numbers N, and N,. We thus get for
the s-th oscillator (A£, being independent of s)

Iy = — AE(No/)'V? (Ny = Nos, Ny if Noy = Npw = £ 1), (292)

(The same result can be derived directly from the well-known formula for
the matrix element of the momentum, that is of the operator (%/2x7) /9%).
Hence it follows that in case of a transition in which ¢ of the 3% oscillators
jump simultaneously (to one of the next states), while the rest remain in the

same state,
M0 = [ = A&(N/2)12]2U,0 (30)

where N is the geometrical mean of the p numbers N, and

U’ = f . e fUOXOerTl <o dry.

We shall now briefly examine the second part of M,, corresponding to U’’’
(23a)

M, = Z f RN fAklerXO*dTl oAb kIl kim (31)

klm

where ¢".1. denotes the integral with respect to the coordinates &, &, £, con-
taining their product as a factor. This integral is a product of three simple
ones with respect to the separate coordinates if the latter are all different, or
of two simple ones if k=I#m; if k=1l=m, it reduces to an integral with re-
spect to one variable &, containing its cube as a factor. II’;, denotes the
product of factors (29) for all the other normal coordinates &. ¢y is different
from zero in that case only if the corresponding oscillators make together
three elementary jumps (| N+ Nv+Npm—Nop— Noy— Ny | =3), one jump
each if they are all different, or a double jump and a simple one if k=1%m,
or a single triple-jump if 2 =l=m.

If the total number of jumps performed by all the oscillators in the transi-
tion considered is to be equal to p, then in the product II'4;» only p—3 factors
of the type (29a) must appear, so that M.’’’ may be written in the form

M) = T Agmbiim|— A&(N/2)12]73 (31a)
klm
A™iim being the matrix element of Aum (1, 2, - - - ) with respect to xo and

xr. One can say that in the product ¢"xim II’z1. the first factor refers to jumps
which are due to the direct coupling between three or two oscillators (or their
anharmonicity) and the second one to the indirect coupling provided by the
dependence of the vibrations on the excitation state.

The coefficients 4;» can be obviously defined by the formula

U %, dxg Ox
b= B2 0 05 0

afa axaaxpax., ank afm agn
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where x,,%5,%, denote the x,y, z coordinates of theatoms (o, 8,v=1,2 - - - 3n),
and the differential coefficients dx,/d&, etc., are the transformation coeffi-
cients which in the unidimensional case considered above were denoted by
¢k, equation (17). Since these coefficients are of the order of magnitude of
1/n'2, we see that M,”"’, so far as its dependence upon 7 is concerned, is of
the order of magnitude (1/#'2)3(1/nV2)»=3=(1/n'/2)?, that is, of the same
order of magnitude as M,° given by (30).

Now M,° contains as factor the matrix element U,° of the mutual poten-
tial energy of all the atoms in their normal equilibrium positions with respect
to the functions xo and x,, and this factor can be easily shown practically to
vanish for all excited substates 7 with the exception of the one 7;=r,=7;=0
for which x, is symmetrical with respect to the inner coordinates 1, 2 - - - n
of all the atoms, that is representing an excitation wave of infinite length
(having the same phase throughout the whole crystal). In fact using the
expressions (8) for X = Xy, and (22a) for xo=¢o, we have

U = Z Crkf e fU0¢0*¢del <o dTs

Fikoky

where ¢o=y;(1)Y¥;(2) - - - Yr(n), and ¢, is obtained from ¢, by replacing the
factor (k) by ¥1;(k). Introducing here the expression (3) for U= U° we get
S JU¢*¢wdr: - - - dr,=sum of integrals of the type

f Uk, 1 Reve* (B (BWe* Ova(D) dradr,

with respect to all values of /. Now this sum must obviously be practically
independent of %, that is of the location of the atom % within the crystal—so
far as surface effects can be neglected. Thus the preceding expression for U,° re-
duces to the product of a constant by the sum Zc,, which vanishes (practi-
cally, again neglecting surface effects) unless 7, =7, =73 =0.

It seems questionable whether the excited substate 7;=7y=7;=0 has
actually to be taken into account or not. But even if we do not exclude it,
we see that the probability of a transition from this state to the normal one,
so far as it is determined by U,° need not be much larger than that deter-
mined by U,’”’’ for similar transitions from all the other excited substates,
that is transitions involving the same number p of heat oscillators or rather
of elementary jumps. The matrix component M, for such transitions having
the order of magnitude (1/%'/2)? the corresponding probability will be propor-
tional to (1/7)?. The coefficient of proportionality cannot be determined accu-
rately unless we restrict ourselves to transitions from the substate 7;=7r,=17;
=0 and neglect U’’’/ with respect to U°. In this rather fictitious case (which it
will however be well to consider for the sake of illustrating that part of the
theory which is connected with the dependence of the resulting total prob-
ability upon the number of atoms %), the probability of a transition involving
the cooperation of p heat oscillators, or rather the square of the corresponding
matrix element, is given, according to (30) and (18), by
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M2 = l Urol 2up? (32)
where
AL)? N
Mr = i(' ) - (32&)
8 n

L, being an abbreviation for the product Ad,n, and « being defined by (19a).
« is the reciprocal of the square of a distance which depends upon the fre-
quency v, of the corresponding oscillator. For oscillators of the maximum
frequency in the acoustical spectrum »,%210® this distance 1/a!/? is equal to
3X107*/my'’2 cm where my is the atomic weight of the crystalline element we
are considering with respect to hydrogen. We thus see that the product
«(AL,)? must be of the order of magnitude 1, at least for the higher frequency
oscillators. For oscillators of lower frequencies it must however be smaller,
so that these oscillators must be less effective in the transformation of the ex-
citation energy into heat energy not only because their share is smaller, but
because they have a smaller probability of getting this share.

In (32a) a and N denote certain (geometrical) mean values for all the
p oscillators participating in the transition. Denoting the value of o for
oscillators of the highest frequency with o, we can put

AL, 2 . i/p
u = M(H”_N,> (325)

&n ? yy

where I} denotes the product over all the p oscillators we are considering.

6. THE RESULTING (STATISTICAL) VALUE OF THE PROB-
ABILITY OF RADIATIONLESS TRANSITIONS

The minimum value of p = p, is obtained if only oscillators of the highest
frequency or next to it are taken into account. This minimum value is give
by :

Ec—E Wu—-Wi+W/—~W/
Do = = (33)

hllo hVo

according to (26), and as was mentioned above is of the order of magnitude
of 100. Now these oscillators can be picked up from a much larger number Q
of oscillators whose frequencies are enclosed within an interval vo—v=Dv
which can be extremely small with respect to » but at the same time large
enough to make Q exceedingly large compared with p. Limiting ourselves
to longitudinal waves (which for the same wave-length possess a higher fre-
quency than the transverse ones), we have
47y

= vo2Dy
ud

where v is the volume of the crystal and « the velocity of the longtitudinal
waves, or since v =78 and (%/vo)? =\® =478/3

Q = 3uDv/v,. (33a)
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It must be emphasized that for a given value of Dy (or Dy/v,) Q is propor-
tional to the total number of atoms forming the crystal. Taking nx2102 (which
corresponds to a crystal with a volume about 1 cm?®) and Dy/vo=10"15, say,
we get Q =3 X108 which is still a million times larger than p,.

Our p, oscillators can be picked up from the set containing Q of them
in a number of different ways, this number being equal to

<g>=Q(Q—1)--~(Q—Po+1)ﬁgg
po 1:2-- - po _Po!

that is according to (33a) proportional to the po-th power of the total number
of atoms 7.

The total probability of a transition of the crystal from the excited state
to the normal one, in which the excitation energy will be shared by any p,
of the Q high frequency oscillators will thus be proportional to the product

O\ 1 o @ | US| 23 \ g)p«
M,(?())—[U,] PR \Sa(AL,)NVO (34)

that is, will be independent of n.

The fact that it turns out to be dependent upon the choice of the interval
Dy is naturally explained by our having restricted ourselves to this interval.
We can obtain some approximation to the value of the probability of any
transition from the excited state to the normal one, or rather to the total
value of ZM,? determining this probability by taking, in the above formula
Dv/vo21/2 and replacing po by a somewhat larger number p =2p, say.

The problem of the determination of the resulting transition probability
P, can be solved exactly by a method which we are presently going to de-
scribe. It must be remarked however that in deriving this probability we
must not restrict ourselves to the consideration of such transitions only, for
which all the participating oscillators jump to a higher level. On the contrary
we must take account of such transitions (which are under some circum-
stances by far the more frequent) in which some of the oscillators jump to
a higher level and others to the lower one, adding, so to say, their energy
to the excitation energy.

Further it must be remembered that the “resonance condition” expressed
by the equation (26) or

Ey— E, =Wu— Wi+ W,/ =W/
need not be exactly satisfied. Infact we have to consider, theoretically, transi-
tions for which the difference E,— E, has any value whatsoever. Let us de-
note the sum 2 M2 for all transitions for which the value of E(— E, is enclosed
between E and E+4dE by S(E)dE. Then the transition probability which is
actually observed referred to unit time is given by 8
2

4
P, = —h—S(E) (35)

18 See, for instance, J. Frenkel, Einfithrung in die Wellenmechanik p. 211,formula (72a).
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E being the resonance value of E,— E,, that is, the excitation energy of the
crystal, defined by the right hand side of equation (26). E,—E, can be
expressed as the sum Zp.e; over all the 3% oscillators, where ¢;=/hv, are the
corresponding energy quanta and p,=0, 41, or —1 for an oscillator not
partaking in the transition, jumping to the next higher level, and the next
lower level respectively. The total number of oscillators participating in the
transition p is thus equal to 2 ] P [, and the excess of oscillators gaining energy
over those loosing it Zp,. It must be remarked that for low temperatures,
and in the case of the high frequency oscillators even for room temperatures
jumps of the second kind (down) may not be possible, the corresponding
oscillators being in the lowest state (V,,=0)

We shall first neglect these downward transitions, that is, restrict our-
selves to the non-negative values of p, (0, 1). We shall further, for the sake
of simplicity, take the same value of u, given by (32a) for all the oscillators
(see below).

Our problem then reduces to the determination of the value of the sum

Z'm” = S(e)de/‘ U,"l 2
for all values of the p,(=0, 1) satisfying the condition
E< 2 pe S E+dE (36)

p being equal to the sum Zp;. This problem is quite similar to the familiar
problem met with in the Pauli-Fermi statistics of a gas with a given total
energy E the p, representing the possible numbers of particles in the s-th
state. From the physical point of view they differ by the fact that instead of
calculating the number of states of the whole system, that is the sum Z1 under
the restriction (36) (the logarithm of Z1 being defined as the entropy), we
have to calculate the sum Zu,?, and further by the fact that E does not ac-
tually represent the energy of the system of oscillators but the change of this
energy, the states thus being replaced by the transitions.

The restriction (36) can be removed by considering instead of the sum
Z'u,® the sum Zpu,”e#% with suitably adjusted parameter 8 (corresponding to
the reciprocal of the temperature), extended over all possible values of the
ps. The second (unrestricted) sum is of course different from the first (re-
stricted) one, but there exists a simple approximate relation between them.
Writing the unrestricted sum in the form

> uPePE = f S(E)e$EJE
0

(the factor 1/|U,°|? is dropped for the sake of brevity), we see that the
integrand S(E)e#F must have a maximum for some value of E, which by a
suitable choice of 3(>0) can be made to coincide with the given value E,,
lying in the interval (36). If this maximum is sharp enough, which is actually
the case when E,, is not too small, we can replace the function S(E)e#Z by a
Gaussian function

S(E ) ¢~BEmg—(E=Em)2/v?
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where the parameter v measures the width (or sharpness) of the maximum.
This gives

+0
S uretE = S(E,)ePEn f e~ E-Envg(E — E,) = S(E,)ePEnyrl/2
or

BEn

, e (37)

S =

where the (unrestricted) summation on the right hand side has to be carried
out exactly.

The specified value of the parameter 3 can be easily determined from
the condition that the “average” value E for the curve S(E)e#% practically
coincides with the extremal value E,. This gives

f ES(E)e-#EdE ,
E = = — 8—5 IOg fS(E)e‘ﬁ dE = Em
fS(E)e—ﬁEdE

or
E,= —0dlogZ/dB (37a)
where

Z = 2 uresE (370)

is the analogue of the “state-sum” (Zustandssumme) of the usual statistical
theory. The determination of the parameter v requires some approximate
knowledge of the function S(E) and can be effected after the evaluation of
S(E ) according to (37).

We have
7 = Z M(p,+pz+---)e;ﬁ(p‘éﬁpzeﬁ—“-) = H Z#Tpse—ﬁpse,
PLipge e s s
= H(l + #re-ﬂex)
whence
logZ = 2 log (1 + peds) = f log (1 4 ureP<)g(e)de (38)
s 0

g(€e)de being the number of oscillators whose energy quanta e =/Av lie between
e and e+de. Restricting ourselves to longitudinal waves we have

g2(e)de = 3ne’de/ep®.
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Now p, being a very small number (of the order of 1/#) we can put with suffi-

cient accuracy
log (1 4+ pefe) = pefe

which gives

3 puy ‘o
log Z = f oBeede. (38a)
0

603

This formula shows at once that Z s actually independent of n; the same
follows from (37) and (37a) for B and for S(E.), the quantity which deter-
mines the probability for which we are looking.

The above results can be easily generalized to allow for the difference of
the factor u, for different oscillators. Replacing u,? by the product IIu,,?* we
get formulae of the same type as before. In evaluating log Z according to
(38) or (38a) we have to consider u, as a function of the index s or of the energy
e(=¢€s).

Denoting the value of u,, for e=€pand N,;=1 with u, we have
Mrs = Mrést/éo
so that instead of (38a) we get

3nu,

: f " BN (e)de. (39)
0

logZ =

€o

The average value of N(e) at the temperature T under the assumption of
statistical equilibrium is given by Planck’s law N(€) =1/(e¢/*T—1). If we as-
sume this distribution to hold for the initial (excited) state of the crystal
then (since N,;= No,—1) the preceding expression has to be increased by 1,
the average value of N(e) thus being

N(e) = 1/(e/* — 1) + 1 = 1/(1 — e~</*T), (392)

The above theory can be applied to the estimation of the probability of
transitions of the opposite character, that is from the normal state to the
excited one, so far as all the participating oscillators jump in the same sense,
that is downwards, their energy being converted into the excitation energy.
In this case we have to put of course

N(e) = 1/(es!* — 1), (39b)

It can be easily shown that our simplified theory, which takes into account
jumps of the same sense only, holds for the limiting case that the product
nu, (which is independent of # and which is a measure of the change of atomic
distance produced by excitation) is very small. The probability of transitions
in which # oscillators take part being approximately proportional to (un)?/p!
(cf. equation (34)) a strict economy in the use of the different oscillators will
be observed in this case, their number being reduced to the minimum p,
=(Eoy—E,)/hvo=E /€ and “useless” jumps in the wrong sense practically
excluded.
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To get a rough idea of what will take place in the opposite case, that is if
un is large, we have to sum up the preceding expression for all values of
starting with p=p, If un<Kp, this sum will still practically reduce to the
first term. If however un>>p, it can be replaced by the sum Zpil(pn) r/pl
giving e#”. The same result is obtained by replacing the sum by its maximum
term, which corresponds to p =un and putting p!=(p/e)".

The method applied above for the approximate evaluation of the re-
stricted sum of the products u, | ? |is no longer applicable when the numbers
P, are allowed to take negative values (—1), for the simple reason that the
function S(E) has no tendency to increase in this case with increase of E.
To the contrary it has a very flat maximum for E=0 and vanishes for
| E|>Ze,. Onecould getrid of this restriction E <Zp.e, <E-+dFE in this case
by a more general method, involving the use of Dirichlet’s disruptive multi-
plier.?® It does not seem worth while however to develop this method at a
greater length here and we shall satisfy ourselves by making a direct cal-
culation for the simplified case ¢;=¢=const. Our problem can then be stated
as follows: The number # is expressed as the sum of three numbers
n'+n'"4+n’’"’, denoting respectively the number of positive, negative and
zero values in the sequence pi, p: - - - pn; to determine the sum Z/'pr’+n’’
under the restriction that n’ —#n'' = po=E/e.

Since each “partitio” n=n'+n""+n""’ can be effected in n!/n'ln'"In'"’!
different ways (by permuting the numbers p;) we get

n_p n!
Z/'un/—i—nn —_ Z _______an_n/I(n/ =" + o, W = — 2 — ?O)-

e 00 1!
The ratio of the »’’-th term of this sum to the preceding one is equal to
(n— 20" + po+ D(n — 20" + po 4+ 2)u2/n"' (0" + po)
or approximately so long as #’/ is small compared with »
(nu)?/n"" (0" + po).

The maximum term is that for which this ratio is equal to 1, the condition
n'’<n being obviously satisfied for n’/(n’’+po) = (nu)?. Replacing the sum
by its maximum term we have

Zl'u,,/.;.n// = (nu) nl+nll/nl !%NI
This gives if n’”>>1 using Stirling’s formula
()70

PI (40)

2o (" o) e

where

n' = [(m)? + (po/2)]'* — po/2. (40a)

19 That is the integral [y®sn ax cos bx dx/x which is equal to =/2 for ¢ >b, — /2 for a <b
and 7 /4 for a =b.
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If nu is much larger than p, we can put #’’ =#nu and reduce the above sum to
Do un o g2t e [ 2eny.

In the opposite case (nu<Kpo) we have n'’ 2(nu)?/p,, the result given by (40)
being practically the same as in the case »’’ =0 which corresponds to one-

sided jumps, that is
2 2 () P/ o
Which case is usually met with in practice, is difficult to say.

7. RADIATIVE TRANSITIONS (ABSORPTION AND EMISSION OF LIGHT)

We have considered heretofore only radiationless transitions of the
crystal from the excited state to the normal one or vice versa. We must
now briefly examine such transitions which are connected with the absorption
or emission of light. As has been pointed out in the introduction the excita-
tion of a crystal by incident radiation forms the first stage of the process of
light absorption, the second stage being provided by the radiationless tran-
sition to the normal state.

The energy levels or spectral terms which have to be considered in this
connection are those that have been discussed already in the preceding sec-
tions, the energy of one of the excited sub states with respect to the normal
state being given by (26). Since there are n-substates, corresponding to one
single excitation state of an isolated atom, there must appear in the spectrum
of a solid body in general # lines, corresponding to one single line in the spec-
trum of the gas, so far of course as the initial or the final state is the normal
one. The frequencies of these lines, which can be described as forming an
“excitation multiplet” are given by

v = (1/BY(Wnu — Wy — W) + W,/ /k (41)

if vibrational transitions are not taken into account. Allowing for these
transitions we get a still larger number of spectral lines with frequencies
differing from the preceding ones by the amounts

Ave = 2 [1e(Nes + ) — vos(Nos + 3)]. (41a)

The spacing between the main lines (41) is determined approximately by
the expression (15) or (8a). Itis the smaller, the larger the number of atoms
in the crystal. The total width of the multiplet formed by all these lines,
is however independent of #» and equal approximately to V,+46Vi, where

Vo =f f Uk, ) | yua(k) | 2| (D) | 2dradmy (42)

and (for the case of a simple cubical lattice)

V= 6f ] Uk DY * ()i (R * (D (D) dridr (42a)
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k and I denoting two neighboring atoms. This width is of the same order of
magnitude, or perhaps just a few times larger, than the shift in the spectral
levels of two atoms, produced by their combining together into one mole-
cule. The maximum spacing between the lines of such a multiplet is of the
order of 2V,/n, that is, so small that they should appear in practice as a
continuous band even if they had no satellites due to the accompanying
vibrational jumps and no natural width, which is measured by the proba-
bility of radiationless transitions we have examined before. This natural
width (equal to the “mean life” of the corresponding excited substate),
being independent of # must be much larger than the spacing between the
consecutive lines. We thus see that the resolution of the continuous (band)
spectrum of a solid body into single lines, which has been observed by ]J.
Becguerel in the spectra of some rare earths at the temperature of liquid air
and recently by W. Obreimow?? in iodine and other substances at very low
temperatures (of liquid hydrogen or helium) cannot be explained without
special assumptions about the separation of the lines of an excitation multi-
plet or their intensities.

It can occur, namely, that for some excitation state II the “exchange
energy” (42a) is abnormally small, so that the whole multiplet will appear
as a single line, accompanied by satellites due to the vibration jumps. Since
the coupling of the electronic states with the vibrational ones is determined
partially by the same energy Vi, as the width of the excitation multiplet
(see for instance formula (15a) for the change of the crystal lattice §), these
satellites will be rather faint. This may account for the lines observed by
Becquerel, which were not very much influenced by the temperature.

Another possible explanation is that only a few of the excited sub-levels
can combine with the normal one, these combinations forming a series of
more or less widely spaced lines. Now the natural width of these lines due to
radiationless transitions will be the smaller the lower the temperature, for
as we have seen the coefficients u,; which determine the probability of such
transitions are proportional to the average values of the quantum numbers
N, and must therefore decrease as the temperature decreases. At the same
time and in the same measure will the intensity of the satellites decrease
due to vibrational jumps. It can thus happen that for sufficiently low tem-
peratures the continuous spectrum of the solid body will be resolved into
separate lines, in accordance with Obreimow’s observations.

It is however hardly possible to substantiate the above explanation by
actual calculation of the intensities of spectral lines, that is of the probabilities
of transitions connected with absorption or emission of radiation.

In the simple case of an atom or a molecule these probabilities are de-
termined by the matrix elements of the resulting electric moment of the
system. In the case of a molecule consisting of # identical atoms this sum is a
symmetrical function of their electronic coordinates 1, 2, - - - #. Replacing
the molecule by a crystal and considering pure electronic transitions not
accompanied by vibrational jumps, we get for the matrix element of this

20 W. Obreimow and Proc. Amsterdam Acad. de Kaas 31-3, p. 353 (1928).
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symmetrical function P(1, 2, - - - ) with respect to the functions x, and
Xo a value which can be shown to be zero for all the excited substates with
the exception of the symmetrical one (by the same argument as in Section 5).
It thus seems that, as a matter of fact, the whole multiplet will be reduced to
one single line, or there will be no lines whatever if the symmetrical excitation
state cannot be realized.

This argument is however fallacious, for in the case of a crystal whose
linear dimensions are large or even comparable with the wave-length of the
absorbed or emitted light the probability of absorption or emission will be
determined not by the resultant electric moment P(1, 2, - - - #) but by a sum
of the moments of the separate atoms P.(k) multiplied with certain phase
factors, which depend upon the positions of these atoms Ry. In case of a system
of plane electromagnetic waves (of resonance frequency) propagated within
the crystals in the direction x, say, with the phase velocity w, these factors
would be e®27»zk/v g0 that the probability of absorption of a single light
quantum, that is of the excitation of a single atom, would be measured by
the matrix elements with respect to the functions x, and xo of the sum
ZPo(k)e2mv=rl»  There is no reason why these matrix elements should vanish
for most of the substates 7, remaining different from zero for a few others.

The computation of the excitation probabilities by the above method
can hardly give perfectly correct results, a more consequent quantum-
mechanical treatment being necessary in order to obtain them, but it seems
fairly certain on the basis of these crude considerations, that nothing like a
selection rule for the different terms of an excitation multiplet can be expected
to exist.

It is possible that the phenomenon observed by Obreimow is limited to
the case of compound substances, which lie outside the scope of this in-
vestigation. Preliminary results which I have obtained for such compound
crystals, seem to support this conclusion.



