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ABsTRAcT

The well-known problem of the entropy of the universe as a whole arises from the
difficulties encountered by classical thermodynamics —first in failing to account for
the presumed fact that the entropy of the universe has always been increasing at an
enormous rate and nevertheless has not yet reached its maximum value —and second
in failing to allow an emotionally satisfactory feeling towards our universe whose ulti-
mate fate would be the stagnation of "heat-death. " The purpose of the present article
is to examine this problem from the point of view of the extension of thermodynamics
to general relativity which has previously been made by the author.

A number of earlier contributions to the solution of the problem, which have been
made from the standpoint of classical thermodynamics or statistical mechanics, are
first briefly described in order to emphasize the very different character of the contri-
bution to the problem made in the present article. It is then pointed out that the
problem of the entropy of the universe arises in the classical thermodynamics because
of the presumption that thermodynamic processes cannot take place both reversibly
and at a finite rate, and that the general nature of the contribution to the problem
offered by relativistic thermodynamics consists in showing the possibility of thermo-
dynamic changes which could take place at a finite rate and at the same time re-
versibly without increase in entropy.

The principles of relativistic thermodynamics are then reviewed, and this differ-
ence between the classical and relativistic thermodynamics is shown by considering
the possibilities of carrying out reversible changes at a finite rate in the properties of a
thermodynamic fluid. In the classical thermodynamics it is found that no change in
the thermodynamic properties could be allowed to take place at a finite rate, the
entropy density of the fluid necessarily remaining constant in accordance with the
equation

dip—= 0.
dt

On the other hand, in relativistic thermodynamics it is found possible to allow changes
to take place at a finite rate in the proper volume of the fluid, due to changes in the
gravitational potentials g„„and still maintain reversibility provided the changes
satisfy the relation

To exhibit the nature of the reversible changes at a finite rate thus permitted in

relativistic thermodynamics, consideration is given to the highly idealized model of a
non-static universe filled with black-body radiation as a thermodynamic fluid, and it
is shown that the radius, total proper volume, and entropy density of such a universe
could be changing at a finite rate and yet reversibly without increase in entropy.
Furthermore, in the case of an expanding model of the kind considered, it is shown
that an ordinary observer, who marks out with rigid meter sticks a small region of
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this universe in his immediate vicinity for study, would find the energy density, energy
content, and the temperature of this region decreasing with the time, and would find
the number of quanta leaving the region per second greater than the number entering,
and the average frequency of the quanta that leave greater than that of those that
return. These phenomena would be interpreted by the observer, from a classical point
of view, as due to radiation from his neighborhood into the colder surroundings of
space and hence as leading to an increase in entropy, in spite of the fact that all the
processes taking place in such a model would actually be reversible from the point of
view of the relativistic thermodynamics which should be applied to such a problem.

In conclusion remarks are made concerning the disparity between the above
model, which was chosen for purposes of illustration because of its mathematical
simplicity, and models which would be more suitable to serve as representations of
the actual universe. And some indication is given of the further developments that
should be undertaken.

PART I. INTRODUCTION

)1. Purpose of present article.
''N A number of previous articles I have endeavored to present the prin-
~ - ciples for an extension of thermodynamics to general relativity and to
consider some of the applications of the new system of relativistic thermo-
dynamics based on these principles. ' The purpose of the present article is to
examine the bearings of relativistic thermodynamics on the well-known
problem of the entropy of the universe as a whole. It will be found that this
extended thermodynamics provides new possibilities for thermodynamic pro-
cesses to take place at a finite rate without increase in entropy. And it will be
shown that the recognition of these new possibilities not only appears to be
essential for a true understanding of the problem of the entropy of the
universe, but may even provide to a greater or lesser extent the basis for its
solution.

tl2. The nature of the problem of the entropy of the universe.

In accordance with the views of the classical thermodynamics all thermo-
dynamic processes, actually taking place in the universe at a finite rate, were
regarded as accompanied by an increase in entropy. Among these processes
appeared a wide variety of immediately appreciated terrestial occurrences of
a meteorological, biological or technological nature in which the increase of
entropy depended for the most part on the degradation of energy originally
received as radiation from the sun, —in addition, various tidal actions in
which the increase of entropy resulted from the degradation into heat of
mechanical energy of astronomical motions; —and quantitatively most im-
portant of all, the continuous How of radiation from the stars with a great
increase in entropy due to the presumable drop in temperature in passing
from the hot interior of the stars to the cold depths of intergalactic space.

In general the view was held that entropy was everywhere increasing at an
enormous rate and that this would continue until the entropy of the universe

~ Tolman, Proc. Nat. Acad. 14, 268 (1928); ibid. 14, 701 (1928};Phys. Rev. 35, 875 (1930);
ibid. 35, 896 (1930).

' Tolman, Proc. Nat. Acad. 14, 348 (1928); ibid. 14, 353 (1928); ibid. 17, 153 (1931);Phys.
Rev. 3S, 904 (1930);Tolman and Ehrenfest, Phys. Rev. 36, 1791 (1930).



ENTROPY OF THE UNIUERSE AS A WHOLE

had reached its maximum, —the sun and stars cold, all of creation dead and
u11ch an gll1g.

Such a view, however, carries with it two difficulties. The first difficulty
has genuine intellectual validity and can be expressed by the question: Why
has not the entropy of the universe already reached its maximum value in the
infinite past time which has presumably been available? The second difficulty
has perhaps only emotional validity and can be expressed by the question:
What significance can we ascribe to a unrverse whose ultimate fate is merely
the "heat-death" of maximum entropy? These are the difficulties which con-
stitute the problem of the entropy of the universe.

$3. Nature of earlier contributions to the solution of the problem.

Various suggestions have been made with regard to the solution of the
problem. It will be profitable to consider some of them briefIy in order to
emphasize the very different nature of the suggestion which will be made in
this article.

a. Finite time since creation. The most obvious treatment of the problem
is to assume that the universe was indeed created at a finite time in the past
with sufficient available energy so that the entropy has not yet reached its
maximum value. In the future this maximum would be reached and all
significant changes would cease. A modification of the treatment could be
made by assuming an infinite past during which the universe was in a qui-
escent metastable state of large available energy, and a disturbance at a finite
time ill thc past which initiated thc pl occss of degradation.

These suggestions depend too greatly on special ad hoc assumptions to
be scientifically satisfying.

b. Continuous regeneration. A second type of suggestion depends on the
assumption of the existence of regenerative processes of such a nature as to
maintain the universe in an approximately steady condition. Thus Millikan'
has suggested the four-step cycle: (1) Matter in the stars is transformed into
radiation which flows out into intergalactic space; (2) the radiation in inter-
galactic space is transformed into electrons and protons; (3) the electrons and
protons combine to form helium and other elements, giving rise to the produc-
tion of the observed cosmic rays; (4) the matter thus formed drifts back into
the stars, thus completing the cycle. The evidence for step (2) is completely
lacking at present; steps (2) and (3) assume the occurrence of processes of
synthesis under the theoretically unfavorable conditions of extremely low
concentration; and the cycle contradicts the principle of microscopic reversi-
bility. The evidence for step (1), however, is very strong, the evidence for
step (3) cannot be dismissed as trivial, and there is no inherent improbability
in step (4).

c. Continuous approach to maximum entropy. A third type of suggestion

' Millikan and Cameron, Proc. Nat. Acad. 14, 637 (j.928).
For a partial historical account of this principle, see Tolman, Proc. Nat. Acau. 11, 436

(1925). For a discussion of the principle, see for example Tolman, '-'Statistical Mechanics"
Chap, I5, Chemical Catalog Co. , New York, 1927.
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would be to assume an infinite past for the universe, coupled with ever de-

creasing values for the entropy of. the universe as we examine backwards in

the past and a continuous asymptotic approach to the maximum of entropy
in the future. ' If such an assumption were allowable, it would avoid the
difficulty of a limited past time for the existence of the universe, but the
difficulties of a practical exhaustion of the energy available for human needs
within a finite time in the future would not appear to be avoided. The as-
sumption would perhaps not be a Possible one for a finite universe of finite

energy content, for which we have some evidence.
d. F/uctuations in entroPy in accordance with its statistical-meckanical

interpretation. A fourth of type of contribution to the problem depends on the
statistical mechanical interpretation of entropy, as given most clearly by
Boltzmann's famous I7-theorem. In accordance with this theorem it is found
that, although there is a great probability for the entropy of a system to in-

crease when it has less than its maximum value, it is not certain that this will

take place and fluctuations away from the maximum of entropy will occur.
This furnishes the possibility that the universe has existed for an infinite time
in the past and that we are now experiencing a return of the universe or of
that portion which is within our range of observation towards a condition of
maximum entropy after a major fluctuation away from that value.

This important possibility was clearly presented by Boltzmann' over
thirty years ago. The enormous improbability of a major fluctuation of the
kind assumed does not necessarily furnish a valid argument against the ex-
planation, since, as pointed out to me in conversation by Mrs. Ehrenfest-
Afanassjewa, the existence of sentient beings to observe the rare phenomenon
could presumably only occur at the time of decay of such a fluctuation. From
the point of view of human wishes, however, the explanation is not entirely
satisfying, since it implies that man himself is a transitory and improbable
phenomenon, that our surroundings are now headed with almost complete
certainty towards a condition at least close to that of maximum entropy, and
that the conditions under which life, as we know it, is possible are almost
never present. Nevertheless, these objections have emotional rather than
intellectual validity and the part played by the theory of statistical fluctua-
tions in a relatively complete solution of the problem of the entropy of the
universe may prove to be no mean one.

(4. Nature of the present contribution to the solution of the problem.

The present contribution to the problem of the entropy of the universe is
based on the system of relativistic thermodynamics which I have developed.
The general nature of the contribution depends on an extension given by this
relativistic thermodynamics in our ideas as to the kind of processes which can
occur at a finite rate without producing any increase in entropy.

As an illustration of this extension in our ideas, it would be impossible

' This possibility was suggested to me by some remarks of the late Professor William
James which were told me in conversation by Professor Gilbert N. Lewis.

' Boltzmann, Wied, Ann. 60, 392 (1897).
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from the point of view of classical thermodynamics to carry out an actual
expansion of a thermodynamic fluid reversibly and at a finite rate, since the
friction of moving parts and the deficiency between the actual pressure ex-
erted by the fluid and that which could be exerted with an infinitely slow rate
of expansion would lead to an increase in entropy. Nevertheless, in rela-
tivistic thermodynamics we shall find that the proper volume associated with
a thermodynamic fluid could increase at a finite rate, owing to a finite rate of
change in the gravitational potentials g„, without involving any increase in

entropy.
In further illustration, it appeared impossible in the classical thermo-

dynamics for a flow of heat to take place reversibly and at a finite rate, owing
to the increase in entropy connected with the finite temperature drop neces-
sary to maintain the finite rate of flow. Nevertheless, in relativistic thermo-
dynamics, we shall find that the reversible increase in proper volume, men-
tioned in the paragraph above, would make it possible for heat radiation to
be regarded by an ordinary observer as flowing out of a given region of inter-
est at a finite rate, without any increase in the entropy of the system as a
whole.

It is evident from these examples, that relativistic thermodynamics in-
creases in an important manner the variety of changes which could be taking
place in a universe which is actually in a state of maximum entropy, and
makes it necessary to re-examine processes which we have formerly taken as
evidence that the entropy of our own universe is actually increasing at an
enormous rate.

In Part I I, we shall first consider the general bearing of relativistic thermo-
dynamics -on changes in thermodynamic condition without increase in en-

tropy. In Part III, we shall then apply relativistic thermodynamics to the
very special model of a non-static universe filled solely with radiation. Such
a model ignores very characteristic features of the actual universe, but math-
ematically is relatively simple to handle and will present some features which

appear analogous to phenomena in the actual universe. Finally in Part IV,
we shall try to give some criticism of the role that the new ideas might play
in the general solution of the problem of the entropy of the universe.

PART II. RELATIVISTIC THERMODYNAMICS

(S. The first and second laws of relativistic thermodynamics.

The extension of thermodynamics to general relativity can be based on
two principles which may be regarded as the relativistic generalization of the
first and second laws of classical thermodynamics.

In accordance with the first of these principles, any thermodynamic pro-
cess occurring in the universe must take place in such a way as to agree with
the principles of relativistic mechanics as given by the tensor density equa-
tion

1 Bg~p
nP P

2 8Xp
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or the equivalent non-tensorial yet nevertheless covariant equation

B(Z„+ t„)
0

Bxv

where Z„" is the tensor density of material energy and momentum, t„" the
pseudo tensor density of potential energy and the g p the gravitational poten-
tials.

Since these equations reduce to the ordinary energy-momentum principle
in flat space-time where the gravitational field is negligible, the analogy of
this first principle to the ordinary first law of thermodynamics is evident. In
applying the principle to thermodynamic considerations, the system involved
will of course be treated from a macroscopic point of view, and this is an ad-
vantage since the applicability of these equations to microscopic phenomena
would certainly not be in accord with the development of quantum mechan-
ics, which has taken place since their formulation.

The second principle of relativistic thermodynamics may be stated in the
form

B dxfi dQp
pop —

g dxydxedxgdx4 +
B x~ ds To

(3)

where $0 is the proper density of entropy as measured by a local observer, us-

ing Galilean coordinates which are at rest with respect to the mass motion of
the thermodynamic Huid at the point of interest, the quantities dx„/ds are the
macroscopic "velocities" of the fluid at the point of interest as measured in
the coordinate system xi, x&, x3, x4, the quantity dQo is the heat Howing
through the boundary into the infinitesimal region and during the infinites-
imal time, denoted by dx&dx&dx3dx4, as measured in proper coordinates, and
To the temperature of the boundary also measured in proper coordinates.

The justification for the principle lies in the fact that it has been shown to
be a natural covariant generalization of the ordinary second law of thermo-
dynamics valid in flat space-time, Eq. (3) being a tensor equation of rank
zero which reduces in flat space-time and Galilean coordinates to

Bp B B B—+ —(pu) + —(pr) + —(pa) dxdydsdt &
Bt Bx By Bs' T

(4.)

where P is the density of entropy, u, v and m are the component velocities of
the fluid, dQ is the heat Howing into the region dxdyds in the time dt, and T is
the temperature, all these quantities now being measured in the particular
set of Galilean coordinates x, y, s, 3 which is being used.

f6. Application of the relativistic second law to a finite adiabatic system.

Let us now apply our new form of the second law as given by Eq. (3) to a
finite thermodynamic system, by taking x&, x2, x3 as being the space-like
coordinates and carrying out an integration over the spatial region of inter-
est. If we carry out such an integration, using coordinates such that the limits
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ar to include the system fall on the boundary which
separates the systtern from its surroundings, it is evi en a
of dQp/Tp over e inr the interior of the system wi cance ou, si

ed from neighboring elements. Hencen element of volume is abstracte rom neig
h te terms corresponding to theE . ~3,'b dx4, writing out t e separa e er

different values of p, and performing the integration we o
arrangement in order,

Qp 'g dxidX2dX3

4'p g
— + Qp g

dX3 1 dQpev' —
g
— * ~ + ZT8X3 dS

on the ri ht hand side of the above inequality is the totalThe last term on the right an si e o
th boundary whichvalue of the quantity ~, p„p 4 k t oun

e s stem from its surroundings, and by performing e inseparates the sys e
h d 'd f the expression can alsointegrations the other terms on t 'gheri ht an si eo

be seen to depend solely on conditions at t~ ~

heboundar . Weo tain

dX4
QpQ g dx] dxp dx p

Bx4 ds

I
I

dxgdxi
dxydx3QpQ —

g
— dzpdsp gp g

I

dX3 "' 1 dQp

T d 80UNDARYds p X4 BOU

(6)

ration at the boundary are denoted by x&, x&' etc.where the limits of integration a e
arded as a general statemen ot f the relativ-

istic second law of thermodynamics as applied to finite systems. e ning e
entropy of the system as

Pp —
g
—d Xid X2d Xro

hold between the rate at which the entropyit ives the relation which must ho e w1 gl
han in with the time x4 and those con itions aof a finite system is changing wi

nd the flow of heat betweenboundary which determine the flux of matter an t e ow o
the system and its surroundings.

For an adiabatic system with nono flux of matter or ow o eafl f h t between the
/ds dxp/dS,undin s we shall have the quantities dx& ssystem and its surroun ings we s a

ndar and the expression .willdxp/ds and dQp/dx& equal to zero at the boundary an e ex
then reduce to
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Qp
—

g dxyd$2dx3 ~ 0.

In accordance with this expression the entropy of an adiabatic system cannot
decrease with the time but can only increase or remain constant. As in the
classical thermodynamics, adiabatic processes in which the entropy increases
with the time may be called irreversible, since neglecting improbable fluctua-
tions the system after such a process could not of itself return to the original
state of lower entropy; while processes in which the entropy remains constant
may be called reversible.

f7. Increased possibility for reversible processes in relativistic thermo-
dynamics.

With the help of the foregoing considerations we may now compare the
conditions which would be imposed by classical and by relativistic thermo-
dynamics on the occurrence of reversible processes. In the present section we
shall show that the new thermodynamics offers the possibility for a kind of
thermodynamic change which was not contemplated in the classical thermo-
dynamics, and which might take place at a finite rate without increase in
entropy, in contrast to the conclusion of classical thermodynamics that re-
versible thermodynamic processes could not take place at a finite rate. And in
later sections we shall show by a simple specific example that such reversible
processes taking place at a finite rate might actually be realized, and play a
possible part in cosmological happenings.

a. Classical treatment of entroPy changes in a thermodynamic fiuid Let us.
first illustrate the kinds of classical considerations which have formerly lead
to the conclusion that thermodynamic processes could not take placeboth
reversibly and at a finite rate. ' To do this we may consider the conditions
which would be imposed by classical thermodynamics on reversible changes
in the condition of a thermodynamic Huid.

In the classical thermodynamics we could evidently write for the entropy
of a finite portion of thermodynamic Huid enclosed in a suitable container the
expression

S = p dxdyds

where @ is the density of entropy as measured in the particular set of (Gali-
lean) coordinates x, y, s, t which the observer uses, and the integration is to be
taken over the whole volume of the container.

If now we consider the possible reversible changes which could take place
in this thermodynamic Huid, it is evident in the first place that we could per-
mit no relative motion between different portions of the Huid, since the de-
cay of this motion would lead to an increase in entropy, and we may hence

7 Of course the classical thermodynamics permitted ideal mechanical processes to take
place at a finite rate without increase in entropy, but the distinction between mechanical and
thermodynamic processes was clear enough so that this did not prove to be a source of confusion.
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use a set of coordinates in which the thermodynamic fluid as a whole would
be at rest and rewrite our expression for the entropy in the form

(10)

where $0 is the proper density of entropy. In the second place, it is evident
that we could only permit adiabatic changes, since if we allowed heat flow in

our system at a finite rate we should have increases in entropy arising from
the finite temperature gradient which would be necessary to maintain this
How. Hence in accordance with the classical thermodynamics the condition
for our contemplated process to be reversible would be that of constant en-

tropy as given by the equation

')t')t'—)t P, d.dyd. = 0.

In the third place, it is evident that our process could not involve a change
in volume at a finite rate, for example by the withdrawal of a piston, since this
would involve mass How of portions of the fluid which would lead to an in-

crease in entropy that could be calculated from the difference between the
pressure actually exerted by the fluid on the moving piston and that which
would be exerted at an infinitesimally slow rate of expansion. Hence the con-
dition given by Eq. (11) for our contemplated reversible process might now

be rewritten with the differentiation inside the integral sign in the form

I')f)t
"'d.dyd. = 0. (12)

This final condition, moreover, could evidently be satisfied in our case only by
taking

dpo = 0
dt

at all points of the Huid, since for a stationary fluid with no How of heat there
would be no possibility at any point for negative values of the quantity
dpo/dt

This, however, completes the considerations necessary for the classical
conclusion that there could be no thermodynamic change at all in our fluid

which takes place both reversibly and at a finite rate. Indeed we see that no

changes could take place in the system as a whole through interaction with its
surroundings, since we have found that its volume could not be allowed to
change at a finite rate and heat could not be allowed to flow through its
boundary at a finite rate, and no changes could take place in the interior con-
dition of the fluid since we have found that it could have no macroscopic
internal motions, no internal flow of heat, and no changes in local entropy
density which take place at a finite rate.

b. Relativistic treatment of entropy changes in a thermodynamic fluid We.
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must now compare this conclusion with that which we would obtain by apply-
ing relativistic thermodynamics to the same system, namely a 6nite portion
of thermodynamic fluid. In this case in accordance with expression (8) in the
preceding section (6, the condition for a reversible adiabatic change in the
condition of the Quid would be

dx4
@0+—f ISydX2dX3 = 0

8 $4 ds

where x4 is the time like coordinate and the integration is to be taken over the
whole range of spatial coordinates xI, x&, x3 necessary to include the Huid.
And this condition can evidently be satis6ed if we have the equality holding
at each point in the Quid

or

4'o 8x4
(15b)

This expression gives a relation between the percentage rate at which the
proper entropy density $0 is changing with the time x4 at a given point and
the percentage rate at which the quantity (Q—g dx4/ds) is changing with the
time at that same point. The value of this latter quantity, however, is deter-
mined by the gravitational field at the point in question, and by the kind of
coordinate system xi x4 which is being used.

If now we assumed the gravitational field negligible, as is tacitly done in
the classical thermodynamics, and had a quid with no relative motion be-
tween its parts, we could choose a system of Galilean coordinates x, y, s, t in
which the Quid as a whole would be at rest. In this system of coordinates the
quantities g—g and dx4/ds would have the constant value unity and the con-
dition given by Eqs. (15) would reduce to the result

1k') p = 0

which we have already found to be characteristic of the classical thermody-
namics. It is thus by a neglect of the gravitational 6eld and its possible change
with time that the classical thermodynamics has been led to the conclusion
that no reversible processes can occur at a 6nite rate.

On the other hand in relativistic thermodynamics we must not assume
that the gravitational 6eld is necessarily negligible but must specifically con-
sider the part which it plays in thermodynamic processes. Hence in relativ-
istic thermodynamics we must consider the condition for reversibility given
by Eq. (15) in its full form, and retain the possibility of mutual changes in
gravitational 6eld and entropy density taking place together at a finite rate in
such a way as to satisfy this condition for reversibility.
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In Part III we shall consider a definite model which exhibits such a
mutual change in gravitational field and entropy density taking place at a
finite rate and satisfying the condition for reversibility. To conclude the pres-
ent section, however, we may first investigate somewhat further the general
nature of the reversibility requirement given by Eq. (15).

Consider the case of a thermodynamic fluid which is at rest with respect
to the spatial coordinates xl, x2, x~ which are being used. Since the macroscopic
velocities dx,/ds, dxp/ds, and dxp/ds are everywhere zero by hypothesis, it is
evident that the amount of fluid in any given coordinate range dx&dx&dx3

would not be changing with the time since there is no flow across the bound-
ary. In accordance with the principles of relativity, however, we can then
write for the proper volume d t/'0 of the small element of fluid in such a coordin-
ate range the well-known equation

dx4
dUp ——Q —

g dx, dxpdxp
ds

and substituting this expression into the condition for reversibility, as given
by Eq. (15a), we can rewrite this condition in the new form

8 dX4 8

Bx4
PpQ —

g dx&dxpdxp ——— (Pp dUp) = 0
ds Bx4

(18)

since the coordinates xi, x~ and x3 are independent of the coordinate x4.
This equation, however, states that the total entropy for each given small

element of fluid shall be constant as measured by a local observer, and this is
merely the condition for a change in the proper volume of the element with no
flow of heat and with balance between internal and external pressures. Hence
if we had a fluid with no flow of heat and constant proper pressure through-
out, a finite rate of alteration in the gravitational field which produced no
flow of heat and changed the proper pressure at the same rate throughout the
fluid would satisfy the condition of reversibility. This alteration in gravita-
tional field, however, would lead to an alteration in proper volume and thus to
alteration in the entropy density, so that the thermodynamic state of the
fluid would be changing reversibly and at a finite rate. It is this dependence
of proper volume on gravitational field, which was quite outside of the con-
siderations of the classical thermodynamics, which leads in relativistic ther-
modynamics to the possibility of reversible processes which take place at a
finite rate.

PART III. APPLICATION TO A SPECIFIC MODEL

)8. The general nature of the model.

We may now apply the foregoing considerations to a specific model. For
this purpose we shall take a non-static universe' filled with a uniform density
of black-body radiation. The choice of this model is not made because it is

For an account of various treatments which have been given to the non-static line ele-
ment for the universe, see Tolman, Proc. Nat. Acad. 16, 582 (1930).
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thought to give a close approximation to the actual state of the universe but
because the mathematical treatment will be relatively simple. The model
neglects the presence of matter and its agglomeration into stellar systems
which are very characteristic features of the actual universe. Nevertheless, we
shall find that the behaviour of the radiation in such a universe furnishes a
surprizing possibility of insight into the How of radiation from the stars which
is such a puzzling feature of the actual universe.

)9. The line element for the non-static universe.

The line element for a non-static universe filled with a uniform distribu-
tion of matter and energy can be derived' by treating the contents of the
universe for the purposes of large-scale considerations as though filled with a
perfect fluid, on the basis of the two requirements, (a) that the fluid shall at
all times be uniformly distributed spatially, and (b) that particles (nebulae)
which are stationary in the coordinate system used shall fulfill the stability
requirement of not being subject to acceleration.

The line element so obtained can be written in a variety of forms depend-
ing on the choice of coordinates, and for the purpose of the discussions in the
present article it will be most convenient to write it in the form"

ds' = —e«') + r'd0'+ ~' sin'Odp' + d$'
1 —r'/R'

(19)

where r, 0 and @ are the spatial coordinates, t is the time coordinate, R is a
constant, and the dependence of the line element on the time is given by the
exponent g(t).

)10. Certain general properties of the non-static universe.

Before proceeding to our special model, it will be desirable to recall certain
properties which are implied in general for the non-static universe by the
form of the line element and which will be needed in our later discussion.

In accordance with the requirement (a) on which the line element was

derived, the proper macroscopic density poo and the proper pressure P() of the
Huid which fills the universe will be independent of the position r, 0, Q, but
may be changing with the time t. And indeed working out the components of
the energy-momentum tensor T„" which correspond to the line element (19)
and equating to those for a perfect Auid we obtain as the only non-vanishing
components"

I 9 3 1 3
SxTg ——SmT2 = SmT3 = —Smpo = —e & + g +—j~ —A

R'
4 3 3

Sm'T4 = Svrpoo = —e ~ +—j2 A.
4

(20)

(21)

9 Tolman, Proc. Nat. Acad. 16, 320 (1930).See also Ibid. 16, 409 (1930),and note that the
five assumptions mentioned in )2 of that article can be included under the heading of the two

requirements (a) and (b) given above.
' Tolman, Proc. Nat. Acad. 16, 511 (1930).Eq. {5).Note that theP of that article is our

present r.
"Tolman, Proc. Nat. Acad. 16, 409 (1930). Eq. (2).



where A is the cosmological constant; and these equations give the depend-
ence of pressure and density on the exponent g and its time derivatives g
and g, and thus on the time itself.

With the help of these expressions for the components of the energy-mo-
mentum tensor we can now easily apply the principles of relativistic mechan-
ics in the well-known form

8+p, 1 Bg~peP 0
~&v 2 ~&p

With p, = 1, 2, 3 we merely obtain identities, but substituting into this equa-
tion for the case @=4 we can easily obtain after dividing through by a con.-

stant factor"

(p ppg/p) y p spg/p p
dt dt

(23)

This important result can evidently also be obtained directly by combining
Eqs. (20) and (21).

In accordance with the requirement (b) on which the line element was
derived, particles which are at rest with respect to the coordinate system r,
8, P will not be subject to acceleration but will remain at rest. And this can be
directly verified by calculating the Christoffel three-index symbols which
correspond to the line element (19)and substituting in the geodesic equation
which governs the motions of particles in general relativity.

As a result of the foregoing, observers who are at rest with respect to
the coordinate system will remain permanently so. And in accordance with
the form of the line element (19), for such observers, the proper time as meas-
ured by local clocks will evidently agree with the coordinate time t. On the
other hand, for the proper distance dlo as measured with rigid meter sticks we
shall evidently have

for points at the coordinate distance dr in the radial direction, and

dlo = re«'d0 and dlto ——r sin Oe«'d@

for the 8 and d/ directions. For the proper volume d Vp associated with a given
small range of coordinates we shall have

r' sin 0 e'«'
d Vp —— drd8dg.

] r2
(26)

Although particles which are at rest in the coordinate system r, 0, Q will
remain so, nevertheless it is evident from Eqs. (24) and (25), that the proper
distance between such particles as measured with rigid meter sticks will in
general be changing with the time, since the exponent g is itself a function of

"See reference 11, Eq. (4).
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the time. Thus for the proper distance between a particle located at the origin
r =0 and a particle permanently located at the coordinate distance r =r, we
shall have

e«'dr r
to —— ——e«'R si,n-'—

, Qf —r2/z~ g
(27)

and this will be increasing or decreasing with the time in accordance with the
dependence of g on the time. Also in accordance with Eq. (26), the proper
volume associated with a given coordinate range will be a function of the
time, and for the proper volume of the universe as a whole we shall have

2~ 7r 8 r2 Sin 0 e8«2
V drd0d@ = x'R'es«2.

o 0 0 V'& r/~ (28)

In accordance with thjs result it is natural to consider Re«' as the radius
of the universe and to speak of an expanding universe if g is increasing with
the time and of a contracting universe if g is decreasing with the time.

The change with time in the proper distance between objects in the uni-
verse leads to a shift in the observed wave-length of light coming from distant
objects, a shift towards the red in an expanding universe and a shift towards
the violet in a contracting universe. The magnitude of this shift is given by
the formula"

&o + ~~ —e( 0—00) I ~

PEo

(29)

where go is the value of the exponent occurring in the general expression for
the line element at the time when the light was emitted with the original wave-
length ) o, and g is its value at the time the light is received and observed to
have the wave-length ) o+ Q .

In accordance with this formula we may regard the wave-length, which
would be found by a local observer for any given quantum of light, as a quan-
tity which is changing with the time in accordance with the change of g with
the time. And, indeed; differentiating Eq. (29) with respect to the time we can
evidently write

d'A I d 1 dg——(Xo + 8X) = ——
X dt )o+D, dt 2 dt

(30)

as an expression for the fractional change in the wave-length of any given
quantum with the time. Or in terms oF frequency we can write

as an expression for the change in the frequency of radiation with the time,
v being, of course, the frequency as measured by proper observers who are at
rest with respect to the Quid in the universe and hence also at rest with re-
spect to the coordinates r, 0, P.

'3 See reference 11, Eq. I',21).
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This completes the statement of general properties of the non-static uni-
verse which we shall need in discussing our special model.

)11. Properties of non-static universe filled with black-body radiation.

We may now turn to the discussion of the special model in which we take
the thermodynamic fluid filling the universe to be a uniform distribution of
black-body radiation of the same proper density throughout, a proper observ-
er being one who finds no net flow of radiation.

Under these circumstances we can obtain a great simplification in treat-
ment since it is evident that the proper macroscopic density of the fluid poo

and its proper pressure po will be related by the well-known expression con-
necting the density and pressure of radiation

poo = 3po (32)

And this permits us to obtain an immediate relation between the pressure of
radiation in such a universe and the time variable g, since by substituting in
the general Eq. (23) we have

3 (p &3g/2) + P ~3g/2 —O
dt dt

(33)

and this can at once be integrated to give

po = Ae g RI1(i poo = 3c48 (34)

where A is the constant of integration, the pressure and density of radiation
thus being quantities which decrease as the radius of the universe Re« in-
creases.

As an important consequence of this result it now becomes possible to
obtain a solution for g as a function of t. Substituting the expression for
proper density given by Eq. (34) into Eq. (21) we obtain after some rear-
rangement

—(eg) = +
dt

4 4
32+3 ——eg + —Ae"

R2 3
(35)

as a differential equation for the dependence of g on t, where the plus sign
corresponds to an expanding universe and the negative sign to a contracting
universe. Eq. (35) can itself then easily be integrated to give an explicit solu-
tion for g as a function of t. The form of the solution will depend on the sign of
the cosmological constant A, and it is merely of interest for our present pur-
poses to remark that for the case of a universe containing nothing but radia-
tion there appears to be no solution, having physical reality, which would
make g a periodic function of t.

As the most important consequence, however, of the expression for den-
sity given by Eq. (34), we can now show that the changes taking place in
such a universe on account of the changing value of g are thermodynamically
reversible. In accordance with Eq. (34) and the well known relation of Boltz-
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mann connecting the density of black-body radiation with its temperature,
we can write

4

poo = 3Ae 'g = @TO (36)

where a is the Stefan-Boltzmann constant and To is the proper temperature.
Solving this for the temperature and substituting in the known expression
for the entropy density of black-body radiation, we obtain

1/4

y, = —aZ, =4—
3

'
3

(37)

as an expression for the proper entropy density of our fluid. "On the other
hand in accordance with Eq. (26) we have

r' sin 0 e'«'
dUo = drdgdy

1 —e' R' (38)

as an expression for the proper volume associated with the coordinate range
drdgdg Hence .combining the two expressions (37) and (38), we can evidently
wite

8—(4odUo) = 0
dt

(39)

since g is the only quantity involved which depends on the time and this is
seen to cancel out from the product.

The final result, however, is the very expression which we obtained in
Part II ()7, Eq. (18)) as a general condition for a reversible process in relati-
vistic thermodynamics. And since g and hence Po will in general be changing
in such a universe at a finite rate, we have thus actually illustrated by a
specific example the possibility provided by relativistic thermodynamics
for reversible processes to take place at a finite rate.

fl12. Interpretation by an ordinary observer of phenomena in an expanding
universe 611ed with radiation.

Turning our attention now in particular to the case of expansion, with the
radius Re«' increasing with the time, we can show that the special model of a
universe, filled with black-body radiation and expanding reversibly without
increase in entropy, would nevertheless exhibit important phenomena which

"The relations connecting energy density and entropy density with temperature, used in

(36) and (37), presuppose that the frequency distribution of the radiation remains that for
black-body radiation for all values of g. This introduces no difficulty, however, since even if
there were a tendency for the frequency distribution to change away from that for black-body
radiation, as the size of the universe changes, this could be prevented by the introduction of a
small amount of Inaterial to act as a catalyst; and in actuality there is of course no such tend-
ency since it would involve a decrease in entropy. In addition it can be shown in detail that
the dependencies of frequency and energy density on g given by Eqs. (31) and (34) are such as
to preserve the black-body distribution of frequency for all values of g, if we have such a dis-
tribution for one value of g.
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would be interpreted by an ordinary observer as similar to phenomena in the
actual universe which have been regarded in the past as important evidence
for an increasing entropy of the universe. To obtain a description of these phe-
nomena, we shall consider that the observer in question marks out a small
region of the universe in his immediate vicinity, using rigid meter sticks, and
then studies the changes taking place in this region. We shall then show that
the observer will find the density of energy in this region and the total energy
content of the region continually decreasing with the time, its temperature
dropping, the number of light quanta leaving the region always greater than
the number entering, and the average frequency of the quanta which leave
greater than the average frequency of those that enter. Evidently our ordi-
nary unsophisticated observer would interpret these findings as evidence
that his immediate neighborhood was cooling off by radiation into the colder
depths of space, and with a knowledge only of the classical thermodynamics
he would conclude that the entropy of the universe was increasing at an enor-
mous rate, in spite of the fact that the relativistic thermodynamics, which
must be used under the circumstances, actually shows that there would be no
increase in entropy in such a universe. The analogy between the phenomena
interpreted by this unsophisticated observer as leading to an increase of en-

tropy and phenomena in the actual universe which have hitherto been inter-
preted in a similar manner is close enough so that we must certainly be cau-
tious lest we draw too hasty conclusions as to increases in entropy in our
actual universe.

To proceed now to the detailed exposition, let us consider that the ob-
server in our idealized model of the universe is located for convenience at the
origin of the r, 0, Q system of coordinates and is provided with a rigid scale of
proper length dip. With the help of this scale he marks out a small sphere
around the origin of constant proper radius lp, which gives him a small region
of the universe in his immediate vicinity to serve as the subject of his studies.

For the relation between the constant proper radius of this sphere and the
coordinate r of its boundary we may evidently write in accordance with Eq.

e g/2d~

lp = r= e«2R sin-'— (40)

and for the case in hand where the sphere considered is very small compared
with the whole universe, so that r is small compared with R, we obtain from
this the approximate relation

Since the proper radius of the sphere lp is constant by hypothesis, we note
that the coordinate r of its boundary is a quantity which is decreasing with
the time in an expanding universe owing to the increase in g with time.

For the proper volume of this sphere contained within the radius 1p we can
evidently write in accordance with Eq. (26)
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4m-r'e' g "dr
Up= I

J 0 Q1 —r'/R'

r R'. r"
= 47re""R — QR—' —r'+ —sin '—

2 2 R p

(42)

Developing this in the form of a series in r/R and neglecting higher powers,
we obtain

U, = 4~.3«2r3
1 r' 1 r'

+ ~ ~ ~

1 r
+ +

2 E. 4 E.' 16 R'

1 r 1 r' 3 r' 4
+ + + + = —s r'e' «' (4. 3)

2 R 12 R' SOR' 3

And substituting the value of r given by Eq. (41), we obtain for the proper
volume of the sphere in terms of its proper radius l p, as a close approximation,
the result which might be expected

Up = —~~p
3

which is a constant independent of the time.
Ke may now consider the nature of the observations which our observer

would find in studying this sphere of constant measured radius which he has
marked o8.

As a result of Eq. (34), the proper energy density at every point in our
special model of the universe would be changing with the time t in accordance
with the expression

1 dppp dg

ppp
(45)

Moreover, the measurements of energy density which our observer would
make in his immediate neighborhood would actually be measurements of
proper energy density, and from the form of the line element (19) the proper
time which he uses would agree with the coordinate time t. Hence it is evident
that our observer would find the energy density in his vicinity to be decreas-
ing with the time in accordance with Eq. (45).

Furthermore, in accordance with Eq. (44), the proper volume of his sphere
of constant measured radius is itself independent of the time. Hence it is evi-
dent that our o'bserver would find the total energy content Z&p of his sphere
decreasing at the rate

dip dg——2 —.
Ep dt dt

(46)

In addition, owing to the relation between energy density and tempera-
ture for black-body radiation given by Eq. (36), it is evident that our obser-
ver would find the temperature in his vicinity to be dropping at the rate

1 dTp 1 dg

Tp dt 2
(47)
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Still further, since the total number of light quanta in the universe would
be independent of the time, and the proper volume of the universe as a whole
would be increasing with the time while the proper volume of the observer's
sphere remained constant, it is evident that the observer would find a larger
number of light quanta leaving his sphere per second than entering. To calcu-
late this excess we may evidently write for the number of quanta n inside the
sphere in terms of the total number of quanta X in the universe

where the numerator of the fraction is the proper volume of the sphere as
given by Eq. (44) and the denominator is the total proper volume of the uni-
verse as given by Eq. (28) . And carrying out a logarithmic differentiation of
this with respect to the time we obtain

de 3 dg

dt 2 dt
(49)

which gives the net loss per unit time in the number of quanta within the
observer's sphere. The result so obtained, when combined with the rate at
which the frequencies of the quanta are decreasing with the time as given by
Eq. (31), is just sufficient to account for the rate of decrease in the proper
energy of the observer's sphere as given by Eq. (46).

Finally, we may point out a curious circumstance which would reinforce
our unsophisticated observer in his interpretation of the above phenomena as
radiation into surroundings of lower temperature. Let us suppose that our
observer, ever active in his scientific investigations, stations one of his assist-
ants on the boundary of his sphere at the fixed distance lo from the origin as
measured with rigid meter sticks, and instructs him to observe the average
frequency of the light entering and leaving the sphere through its surface.
This assistant will not be at rest in the coordinate system r, 0, Q, but in accord-
ance with Eq. (41) will have the coordinate velocity

dr 1 dg 1 dg—= ——foe
—&~2 —= ——r-

dt 2 dt 2 dt
(50)

Hence, since it is evident that the average frequency of the radiation would
be independent of direction for an observer at rest in the coordinate system,
this assistant will find the average frequency of the radiation entering the
sphere less than that of the radiation leaving the sphere, as a result of the
Doppler effect corresponding to the velocity given by Eq. (SO).

This completes a considerable chain of evidence which would lead an or-
dinary observer, unfamiliar with the expansion of the universe, to conclude
that the region in his immediate neighborhood was cooling off by radiation
into surroundings of lower temperature, in spite of the fact that the changes
taking place in the model actually involve no increase in entropy. The analogy
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between the findings of this observer in the hypothetical model and those of
the classical thermodynamist in the actual universe is very striking.

)13. Summary.
PART IV. CQNcLUsIoN

In the foregoing article an attempt has been made to show the bearing of
relativistic thermodynamics on the well-known problem of the entropy of the
universe as a whole. The origin of this problem lies in the difhculties encoun-
tered by the classical thermodynamics, —first in failing to account for the pre-
sumed fact that the entropy of the universe has always been increasing at an
enormous rate and nevertheless has not yet reached its maximum value, —
and second in failing to allow an emotionally satisfactory feeling towards our
universe whose ultimate fate would be the stagnation of "heat-death. "

In the present article a brief description was first given of various older
contributions to the solution of this problem, which have been based on the
standpoints of the classical thermodynamics and statistical mechanics. This
was done in order to show the very diferent character of the new contribu-
tion proposed in this article. A summarized account of the nature of this
contribution may now be given.

The problem of the entropy of the universe arises because of the com-
monly accepted conclusion that the entropy of the universe is actually in-
creasing at an enormous rate, and this conclusion is in turn based on the pre-
sumption, familiar in classical thermodynamics, that thermodynamic pro-
cesses cannot be taking place at a finite rate, as observed, and at the same time
reversibly without increase in entropy. The general nature of the contribu-
tion to the problem offered by relativistic thermodynamics lies in showing
that there can be thermodynamic processes which take place both reversibly
and at a finite rate.

To illustrate this difference between the classical and relativistic thermo-
dynamics, we may consider the possibility of carrying out a reversible change
in the thermodynamic properties of a finite portion of thermodynamic fluid.
In the classical mechanics it is found that no internal motions of the fluid, no
flow of heat, and no change in volume can be allowed to take place at a finite
rate and hence that no change at all in the thermodynamic properties of the
fluid can take place at a finite rate, the entropy density of the fluid remaining
constant in accordance with the equation

dip—=0
cM

On the other hand, in relativistic thermodynamics it appears possible to al-
low changes in the proper volume of the fluid, due to changes in the gravita-
tional potentials, to take place at a finite rate and still maintain reversibility.
Indeed, the condition for reversibility is found to be satisfied if we have at
each point in the fluid the relation
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QX4 8

BX4 dS(Pp~g dxgdppdxp —— (ypdVp) = 0
BX4

and this permits a finite rate of change in the proper entropy density Qo with
the time x4, provided it satisfies the equation

To exhibit the nature of the reversible changes at a finite rate thus per-
mitted in relativistic thermodynamics, we may consider the highly idealized
model of a non-static universe filled with black-body radiation as our thermo-
dynamic fluid. It is found that the radius and total proper volume of such a
universe could be changing at a finite rate with the time and yet reversibly
without increase in entropy.

Furthermore, if we take the case of an expanding universe and consider
an observer who marks out with rigid meter sticks a small region of the uni-
verse in his vicinity, it can be shown that he would find the energy density,
the energy content, and the temperature of this region decreasing with the
time, and in addition would find the number of light quanta leaving the region
per second greater than the number returning and the average frequency of
those passing outward through the boundary greater than that of those re-
turning. He would thus be led to interpret the phenomena taking place in
such a universe as a flow of radiation from his immediate neighborhood out
into the colder regions of space, in spite of the fact that the changes in the
universe would in reality be taking place without any increase in entropy.

The general nature of the contribution to the problem of entropy made
in this article has thus been to show that phenomena which have hitherto
been regarded from the point of view of classical thermodynamics as furnish-
ing unmistakable evidence for an increasing entropy in the universe are not
necessarily leading to any increase in entropy at all, and to emphasize the
necessity for analyzing the phenomena of the universe from the more accept-
able point of view of relativistic thermodynamics before conclusions are drawn
as to what extent the entropy of the universe is increasing if at all.

)14. Critique.

Finally a few words of criticism will not be out of place. The foregoing
statement as to the nature of the contribution made in this article carries with
it at least the possible implication that an analysis of the phenomena of the
actual universe from the standpoint of relativistic thermodynamics would
show that there are in reality no important changes at all taking place in the
entropy of the universe.

I feel, however, that although the article has clearly demonstrated the
necessity of using relativistic thermodynamics in analyzing the entropy
changes of the universe as a whole, it would be premature to assert too pre-
cisely what is to be expected as the result of such an analysis until it has been
applied to a model of the universe which is not so over-simplified as the one
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employed in this article. This model of a universe, containing nothing but
radiation, neglects two of the most characteristic features of the actual uni-
verse, namely the presence. of matter and its high degree of concentration into
stellar systems. At a later time I hope to give more consideration to these
properties of the universe. They appear, however, greatly to increase the
mathematical complexity of the problem and for this reason I have contented
myself for the present with a very simple model, which can nevertheless give
us considerable insight into the problem of the entropy of the universe.

One feature of the model which was mentioned in )11 should perhaps be
emphasized, namely that there appear to be no periodic solutions of Eq. (35)
for g as a function of t which would have physical interest. Hence if we had
an expanding model of the kind considered it would continue to expand, rever-
sibly to be sure, but without actual return to its original condition. Our model
is so over-simplified, however, that we must no conclude therefrom that
periodic solutions would not be of interest for the actual universe.

Further it should perhaps also be emphasized again that the theory of
Huctuations may play an important part in a relatively complete treatment of
the entropy of the universe. At the present time, however, we cannot say just
how large this part may be.

In conclusion then, it has apparently been definitely demonstrated that
the problem of the entropy of the universe as a whole must be treated with
the help of relativistic rather than classical thermodynamics, and it has been
shown that the application of relativistic thermodynamics to a highly over-
simplified model of the universe gives results of great interest. It remains for
the future, however, to consider the application of relativistic thermodynam-
ics to more complicated models which would give a better approximation to
the actual universe.


