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ABSTRACT

Electrical networks consisting of inductances, resistances, an. d capacitances form
a group with the impedance function as an absolute invariant. That is, to a given

impedance function there corresponds an infinite number of networks, any one of
which can be obtained from any other by a special linear transformation of the in-
stantaneous mesh currents and charges of the network. In this manner one may
arrive at the complete infinite set of networks equivalent to a given network of any
number of meshes. This is done by writing down the three fundamental quadratic
forms of the network. Then a linear affine transformation of the instantaneous mesh
currents and charges of the network results in the formation of new quadratic forms,
the matrices of the coefficients of which represent a member of the group, i.e. , an
equivalent network. Instead of performing the substitutions, the three matrix multi-
plications C A C are used, one for each quadratic form, where A represents the original
matrix, C the transformation matrix, and C' its conjugate. It may be possible to ex-
tend this theory to include continuous systems where the quadratic forms become
integrals or infinite series and one deals with infinite matrices and infinite transfor-
mations.

'N 4904, in an address before the Mathematics section of the International
- ~ Congress of Arts and Science, Professor James Pierpont said, "The group
concept, hardly noticeable at the beginning of the century, has at its close
become one of the fundamental and most fruitful notions in the whole range
of our science. "' And now this abstract notion of groups finds application in
an important branch of physics —electric circuit theory.

Considerable has been written on electrical networks and the impedance
function, ' but it has hardly been suspected that electrical networks formed a
group with the impedance function as an absolute invariant and that it was
possible to proceed in a continuous manner from one network to its equivalent
network by a linear transformation of the instantaneous mesh currents and
charges of the network.

Before proceeding with the general n-mesh network it will be instructive
to construct the quadratic forms and the impedance function for the two-
mesh network with all three network elements present, shown in Fig. 1. -

The elements 'A~~, p~~ and 0.~~ are the elements common or mutual to
meshes 1 and 2. ) ~i, p~~ and 0.~~ are the total parameters of mesh 1, that is,
they are, respectively, the total inductance, resistance and elastance of mesh

* This is part of a dissertation presented to the Massachusetts Institute of Technology for
the degree of Doctor of Science in 1930.

J. Pierpont, Bulletin of the American Mathematical Society 2, 144 (1904).
' O. Heaviside, Electromagnetic Theory, 1912, and Electrical Papers, 1925; J. R. Carson

Electric Circuit Theory and the Operational Calculus, 1926; V. Bush, Operational Circuit
Analysis, 1929.
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1. Similarly, ) ~2, p22 and 0~2 are the tota1 parameters of mesh 2. The quantities
i~ and i2 are the instantaneous mesh currents, the arrows indicating their direc-
tions. Let qj and g2 be the corresponding mesh charges, so that

$y = ding/dE

$2 = ding/if'.

(&)

(2)

The total instantaneous magnetic energy in the complete network is given by

g (~11 ~12)&i. + 2~12(~1 + ~R) + 2 9'92 ~12) &9

g P 11&1 + 2~19&1&2 + ~M&2 )

Similarly, the total instantuneols electrostatic energy in the complete net-
work 1s given by

2 (ir11 ir12)gl + kir12(if 1 + A) + 2 (022 ir12)gm

2(0'llgl + 2012/1/2 + 029/2 ) ~

i&HI (" AI2 &
Di RzlLz

'1 T&e 2

»g. 1. General two-mesh network.

Fi»lly, th«otal instantaneous power lost in the resistances of the complete
network is given by

~ = (Pii —Pie)4 + Pi2(»+ ~2) + (»'
pll~l + 2p12&1~9 + p29~2 ~

In more compact notation, T, V and R may, respectively» be wri«en

(6)

(7)

(g)

Since );q=X@;, 0';q=aI, ;, p;@=pA,; it is readily seen that by giving g and ~ all
possible values from f to 2 in any manner, Eqs. (6), (7) and (8) reduce to Eqs.
(3), (4), and (5).

It might be weII at this point to generaii«Eqs (ti), (&) and (8) for +
meshes. This is done simp1y by changing the upper limit of the summation
from 2 to n. For n meshes, then, these equations become

7 = 2Zg"X;I, i;iy

~ = ~~~ "&~ag~gl

~ —@~1 pq'k&q'&k

where/ and k take on all possible values from j. to n, in any manner.

(9)

(&o)

(&&)
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The quantities T, U and F are the so-called quadratic forms' which are
positive and definite. That is, they are positive for all values of the variable
i or q, and they are zero when and only when all the variables are zero or
when the corresponding parameters are all zero. The positiveness of these
forms follows at once from physical considerations since the magnetic energy,
the electrostatic energy and the power lost in the resistances of the network
are positive quantities, and are zero when and only when all the currents or
charges are respectively zero, or when the corresponding parameters are zero.
These quadratic forms play an important role in dynamics, and significant re-
sults are obtained from their positive and definite character.

lt is instructive to point out here that the coefficients of the quadratic
forms (6), (7) and (8) may be obtained directly from certain matrices. Thus,
the coefficients of the quadratic form (6) are contained in the matrix

~I2 ~22

and the form is obtained at once by writing

X]121 + 2X12Z1Z2 + ~2212

(12)

which is, of course, 2T. Similarly, the coefficients of the forms (7) and (8),
respectively, are contained in the matrices

fT11 &12 Pii Pi2

P12 P22

Also, in the n-mesh case, the coefficients of the quadratic forms T, U and Ii

are contained, respectively, in the matrices

~11 ~12 ' ~1 &ll &12 Pii P12 ' ' Pln

&12

(14)

gin pin pnn

From these matrices, the respective quadratic forms of the n-mesh net-
work as well as the respective networks are readily constructed.

The impedance function is obtained from the determinant of the network. 4

Thus the determinant of the network of Fig. 1 is

llllp + Pll + &11/p ~12p + P12 + P 12/p

7112p + P12 + &12/p ll22p + P22 + &22/p

and the impedance function is obtained by dividing this determinant by the
minor of the element in the first row and first column. Thus

Di
~(p) =

~22P + P22 + P22/P

' See M. Bocher, Introduction to Higher Algebra, 1927, p. 150.
4 V. Bush, reference 2, Chapter III.

(16)



It will be helpful first to consider the simple two-mesh network containing
only two kinds of network elements shown in al Fig. 2.

The parameters of the network are X11=2, X22=1, X12=1; pll. 2l p22

p» = 1, and thus the quadratic forms are

2' = —',(2z„'+ 2zzzz + zz')

I" = —', (2z„' + 2z, z, + 2zz')

and the matrices of the coefficients of these forms are

(17a)

(17b)

2 1

1

2

1 2

~onoooo~=--=
AlQlz I o' Pzz-Plz-I

o Alz-I
Q Pli-Plz. l

lz-I
I 2

a'
";: Az-I

~00000000
Ail-A, iz*

d Aiz. 4
I

zz- Pfz. 2
Plz- 6

~00(Ã0ZZ000~~ ~000000~
An. l „Azz-4

Plz-2 Pzz-Plz 6
I 2

~000000

All-Alz $

b
Pll& g I,

'

Pz

Afz=-'

Rz-g~, 'Xlz*~&

I

~00000

c'
Pl

OOOOOO

A.zz-Aiz-g

lAz-Plz-,'

A, z~g

2

Mimllli' =-"- 'H5MAIIP—
lAll-Alz f ~, Azz-Alz z

Pil-Plz-g ~ Aiz-zb

I
" 2

Pll. p ~ PZZ-
3

Alz=~ g Azz-Aiz.

z

All-Alz I P22

I'll=' Xiz-g

I 2

Pll-Plz-g Azz-Aiz-g

R' Pie-$ Plz-5
I 2

--=—IftAltllSP-
Al l.I,I A.zz-g

f' Pii-Plz-$ 'Miz-$

I 2
'lfg5'

A iz-2 Azz-A(zZ

9 Plz 6g Pzz-Plz. 2

2

A. lz 2
9 Pa=2~ PzzP-

I

Some members of the group of

networks having

p'+ 4p+ 3

p+2 Flg. 2.

The minimal networks of the

impedance function

( )
+ p +
p+2

Now perform the following linear transformations of the instantaneous
mesh currents in the network

P
Zj Zi

Z2 a2121 + a22Z2

(1»)
(19b)

where the a s are any real numbers, positive or negative. Substituting these
values for z, and zz in the quadratic forms (17a) and (17b), we have

T' =
2 [(2 + 2az1 + azl') zl" + (2a22 + 2azla22) zl'zz' + (azz') zz" ] (2«)

F = —', [(2 + 2a„+ 2a»')zz" + (2azz + 4azza»)zz'zz' + (2azz')zz"] (20b)

Thus, the transformations (19) give the new quadratic forms (20). The two
matrices containing the coefficients of these new forms are then

2a21 + a21 a22 + a21a22

a22 + a21a22

2 + 2a21+ 2a21 a22 + 2a21a22
(21)

a22 + 2a21a22 2a22
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These two matrices determine an infinite group of networks equivalent to
the network shown in a, Fig. 2. The different networks are obtained by as-
signing different real values to a» and a». Thus, for example, by giving the
values of +1 and —1 respectively to a» and a2~, the matrices (21) become
under these substitutions

5

4 2

1
1

2

3
0

2

0 2

(22)

From these matrices the parameters of the network are readily obtained,
They are

5 1 3
~11 & ~22 ~

y ~12 j pll & p22 2p p122' 2

and the corresponding network is shown in b, Fig. 2. It is a simple matter to
verify the fact that the networks a and 5 of Fig. 2 have the same impedance
function, namely,

P'+ 4P+ 3
z(p) =

I+2 (23)

In the same way, by assigning different real values to a» and a», one can
obtain the complete infinite group of networks having (23) for an impedance
function. Thus, for example, all the networks shown in Fig. 2 have the same
impedance function, namely, (23). These networks are some of the members
of the infinite group of networks contained in the tensors (21). It is not diffi-
cult to ascertain what values of u» and a2~ in the transformation matrix will
give these networks.

Note that the networks a'-g' are, respectively, identical with the net-
works a-g, except that the branches in mesh 2 are interchanged. The former
networks may thus be considered images of the latter. Mathematically, two
networks with their branches in mesh 2 interchanged, are considered different
networks, and to exhaust the complete infinite group of networks, both net-
works and their images must be included.

Note also that the networks d-g and their respective images d'-g' are
minimal networks. That is, they are the networks of the group containing
the least number of network elements. These can be easily obtained from the
tensors (20). Finally, note that it is unnecessary to go through the work of
substituting (19) in (17) to obtain the matrices (21) of the quadratic forms
(20). We merely make use of an important theorem on matrices, namely, that
if we subject the x s in a quadratic form with matrix A to a linear trans-
formation with matrix C, we obtain a new quadratic form with the matrix
C'AC, where C' is the conjugate of C. In open form, the matrix of the new
quadratic form is obtained by multiplying the three matrices

' M. Bocher, reference 3, Theorem 1, p. 129.
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Cll C21 ' ' ' Cn1 all a12 ' ' ' aln Ci] C12 ' ' ' Cln

C12 a21 C21
X X (24)

Cln''''''Cnn anl ' ' ' ' ' ' ann Cnl ' ' ' ' ' ' Cnn

In our problem, the linear transformation is (19), the matrix of which is

1 0

a21 a22
(25)

which corresponds to the C matrix. Hence, using this matrix and the matrices
(18), we obtain for the matrices of the transformed quadratic forms

1 a21 2
X X

0 a 22 1 1

1 0
(26a)

1 01 a21 2
X X

1 2 a21 a22
(26b)

Performing the multiplication of the matrices in (26a), we have

+ 2a21 + a21 a22 + a21a22

a22 + a21a22
(27a)

Note that this is the left-hand matrix of (21), which was obtained from the
transformed quadratic forms (20). In the same way, performing the matrix
multiplication in (26b), we have

a22 + 2a21a22 2a22

+ 2a21 + 2a21 a22 + 2a21a22
(27b)

which is the right-hand matrix of (21).
Thus, however complicated a network may be, and however numerous its

meshes, a transformation (24) will give the complete set of equivalent net-
works. Some of the networks of this infinite set may contain negative as well
as positive elements. To obtain networks with only positive elements, it is
necessary that the transformation matrix be such that the elements in the
main diagonal of the transformed matrix are positive and greater than the
corresponding non-diagonal elemen ts.

The infinite group of networks with all three kinds of network elements,
namely, inductance, resistance and capacity elements, which have the same
impedance function, are obtained exactly in the same manner. Now, however,
the transformations are

I
Zl —Zl

+ a22&2
I

gi = g]

g 2 a21$1 + a22$2

(28a)

(28b)
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and we will have three matrices representing a network instead of two. Fig.
3 shows some of the members of the group of networks having the impedance
function

iip' + 32p3 + 64p' + 60p + 40
~(P) = n

P(4P'+ 4P+ 8)
(29}

As before, the number of arbitrary constants, namely a21and a22, tells us
the number of network elements which may be eliminated from the network
without disturbing the invariance of the impedance function. Thus, for the
two-mesh network containing three kinds of elements, the minimal forms
will have, in general, seven elements.

Q, Gii-GI2 5 kPQ

I alz-ZT 2
—I.' l-

hllhl2 ~g Glf 5 h22hl2 3 022 8
Ri.5

P iz-I
l p

hl2 )~SI2 $

Pii-5 Gii 5 h22AI2'33 0'22.72

d II222.3|2
kz-5

l 2

hii-hl2n 1tl 5 822 f222
e RI5 h„.'

z
Some members of the group of networks having

11p4+ 32p3+ 64p~+ 60p+ 40
z(p) =

P(4P'+ 4P + 8)

Fig. 3.

For the general case, then, of networks of any number of meshes contain-
ing all three kinds of network elements, namely, inductance, resistance and
elastance elements, we have the following three matrices which represent or
definitely 6x the network.

~11 ~12 ' ' ~1n P» P12 Pl~ 0 le 012 ' ' " &ln

P12

p 1
~ ~ ~ ~ ~ 0 1

~ ~ ~ n 0nn

Making the following linear transformations of the instantaneous mesh cur-
rents or charges in the network, we have

'b2— 122121 + 122222 + ' ' ' + 122n2n

Zn—

for the currents, and

~el&1 + &&2~2 + ' + ~an'4
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gl = gl

~2lfl + ~22/2 + ' @2ngn

~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~nigl + +napa + ' ' ' + ~nngn

for the charges.
The three fundamental forms of the electric network of n meshes, whose

coefficients are determined from the three matrices (31), are, respectively,

~ = -'&l"~ I& 4
& = 2&l"p;a~;~I

g~l"0 jkg jgk.

(32a)

(32b)

(32c)

The substitution of the transformations (31) in (32), results in three new
quadratic forms, namely,

(33a)

(33b)

(33c)

The coefFicients of these new quadratic forms, X;I,', p;I,
' and 0.;I,

' will of course
be functions of the elements of the matrices (30) of the original quadratic
forms (32) and of the a coefficients of the transformations (31). This has
already been noted in the previous two-mesh example.

The transformation matrix, which contains the coeScients of the trans-
formations (31) may be written

1 0 . 0
0.2 lC= (34)

~nl ' ' ~nn

The matrices containing the coefficients of the new quadratic forms (33) are
of course

I
Pll ' ' 'Pln I I

Oil ' ' 01n

j j 0

I I I I
Pln ' " Pnn

(35)

These matrices contain the complete infinite group of networks having for an
impedance function the impedance of the network of (30). The impedance
function is thus an obso)use invariant to a linear transformation of the in-
stantaneous currents or charges of the networks in which the indicial current
and corresponding charge are kept invariant. ' The matrices (35) include
within them the matrices (30), which are obtained by the identity transfor-
mation, namely,

' See also the Appendix.
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/
Z1 Z]

Z2 =

Z3 =

~ /
'b2

~ /
Z3

(36)

Zn— ~ /
Zn

The C matrix corresponding to this transformation is the identity matrix

0

~ ~ ~ ~ 0

(3&)

0. ~ 1

As in the two-mesh example, the actual substitution of the transforma-
tions (31) in the quadratic forms can be avoided by making use of the trans-
formation theorem (24). Thus, the tensors (35) are obtained from the matrices
(30), and the transformation matrix C (34) by the following matrix multi-
plications:

~21 ' ' ' ~nl

0 u22
X

~11 ' ' ' ~ln 0 ~ 0

~21 &22 ' ' ' &2n
X

0

(38a)

0 a2„. a„„ ~nl ~n2 ' ' ~nn

P11' ' 'P1n

X X (38b)

p» pnn

&11

X

&1n

X (38c)

&» ' ' ' 0'nn

The result of the matrix multiplications will be the three tensors (35) where
the elements X', p' and 0' are expressed in terms of the elements of the given
network, X, p and 0, and the elements a of the transformation matrix C (34).~

' The expressions for X', p' and a' in terms of X, p and 0. and the elements a of the trans-
formation matrix C may be expressed by the following summations:

n

= ~ a„asfXrs
r, s~l

n

Psfs = ~ arsasaPrs
r, s=l

n

0'sk = ~ ari ask&rs
r, s=l

where the summation may be carried out in any order.
I am indebted to Professor E. A. Guillemin for these compact expressions which give the

transformed parameters directly in terms of the given parameters and the elements of the trans-
formation matrix.
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The above network transformations have been made for the purpose of
preserving the invariance of the driving-Point impedance function. These
transformations need not be so limited. Transformations may be made
whereby the invariance of the transfer-impedance function is preserved. This
givt'. s rise to a new notion of equivalence, namely, equivalence with respect to
a definite mesh.

It has been noted that the number of arbitrary constants in the transfor-
mation matrix determined the number of elements which could be eliminated
from the network without disturbing the invariance of the impedance func-
tion. Thus, the least number of elements necessary in any network to realize a
definite driving-point impedance function, or a definite transfer-impedance
function, can be readily determined. This is important because one can tell
whether a communication network of any number of meshes has superHuous
elements.

Instead of imposing conditions on the a coeScients of the transformation
to give minimal networks, it may be possible to obtain equivalence with re-

spect to more than one mesh in a network; that is, to make the instantaneous
currents in both the k-mesh and r-mesh, for example, invariant for the com-
plete infinite group of networks. Finally, we may obtain equivalence with re-
spect to, say, j-meshes, by using a still more general transformation.

In the foregoing theory, we have limited ourselves to networks of a finite
number of meshes, that is, to networks with n degrees of freedom. There is
no reason physically why this theory cannot be applied to networks of an
infinite number of meshes, that is, an infinite number of degrees of freedom.
Here interesting problems arise which bear intimately on mathematical
theory, acoustics, electromagnetic wave theory, elastic waves, —in short, all
branches of physics involving oscillations. This is also true for the finite prob-
lem, since the theory explained above can be applied to any physical vibra-
tional problem involving a finite number of degrees of freedom, not merely to
electric circuit theory. The latter province, however, appears to offer the most
fertile soil for further investigation, and to provide a physical picture of the
phenomena which occur.

In the problem involving networks with an infinite number of degrees of
freedom, we have to deal with matrices and tensors containing an infinite
number of elements as well as with quadratic forms which are power series
or integrals. The matrices containing the coefficients of the three fundamental
quadratic forms will contain an infinite number of elements, as will the trans-
formation matrix and the resulting tensors. But for a physical network of
an infinite number of degrees of freedom, we know physically that the total
instantaneous magnetic energy, the total instantaneous electrostatic energy
and the total instantaneous power lost, are finite quantities. Hence the three
fundamental quadratic forms, which are now power series or integrals, are
properly convergent. Likewise, the linear transformations, which are linear
forms of an infinite number of terms, have meaning, as have the infinite trans-
formation matrices which contain the coefficients of the transformations.
Finally, the resulting tensors, which contain an infinite number of elements
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have physical meaning. They represent the complete infinite group of net-
works of an infinite number of degrees of freedom, discrete or continuous sys-
tems, which are equivalent in one or all the ways defined above.

The network with an infinite number of degrees of freedom may be merely
a continuous system such as the smooth transmission or communication line.
Thus, not only may there be an infinite number of different terminal net-
works which may perform the same function in a communication or trans-
mission system, but also an infinite number of communication or transmission
lines, which likewise may perform the same function. That is, there exists an
infinite group of lines all of which have the same impedance function.

It will be recalled that this investigation has considered essentially two-
terminal networks. By the principle of superposition, it should be possible to
extend the theory to networks of any number of terminals. This extension is
important, since by means of it any section of a communication network can
be removed and replaced by an equivalent section.

In conclusion, it may be useful to suggest problems for further investiga-
tion. First, it should be mentioned that the conception that networks form a
group in which the impedance is an invariant may prove useful in simplifying
many problems in network theory. Thus, for example, the solution for the
instantaneous currents of a network of the group at once results in the solu-
tions for the instantaneous currents of all of the infinite number of networks
in the group, since these currents are obtained from the former by a simple
linear transformation. Furthermore, the solution for the instantaneous cur-
rents in one network in the group may be much simpler than for another;
and there may be one network in the group for which the computations are
least complicated. Hence, if it is necessary to obtain currents and voltages in
one network, it may be simpler first to transform the network to an equiva-
lent one, for which the computations are much simpler. This is already recog-
nized, for example, when we transform from Y to 6 and vice versa in three-
phase alternating-current network problems. Thus it is probable that sim-
plification may result in operational circuit analysis by the above method.

It should be noted that in the matrix multiplication which gives the tensor
containing the complete infinite group of equivalent networks, the impedance
function vanishes from the scene. This suggests the possibility that the notion
of the impedance function, which is a special creation of the electrical engi-
neer, may perhaps disappear in the future. What we have to deal with are
networks, currents and energies; and while the impedance function may be
helpful for visualization, it may not be necessary to obtain the final important
results.

As has been indicated, the problem of currents and charges in an electrical
network is identical with the problem of velocities and displacements in a
dynamical system. Although this is generally recognized, there is much in
classical dynamic theory that remains to be translated in appropriate lan-
guage for electric circuit theory. Many questions suggest themselves. What
in electric circuit theory corresponds to the principal or normal coordinates
in dynamic theory? Is it possible to eliminate the cross product terms in the
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fundamental quadratic forms of the electric circuit, thereby giving expres-
sions which are sums of squares of the currents or charges? If it is, can a
physical network be built which realizes this?

Problems of networks with an infinite number of degrees of freedom, equiv-
alence with respect to transfer-impedance, equivalence with respect to more
than one mesh, networks with more than two terminals —these have been
merely intimated. Furthermore, it appears that mathematics does not dis-
criminate against negative network elements, which seems to indicate that
perhaps they may be realized physically, though not, of course, by coils, re-
sistors and condensers.

Finally, in the study of an electrical network and its response to an im-
pressed electromotive force, one continually encounters many seemingly un-
related branches of mathematics, such as (l) continued fractions, (2) Cauchy
residue theory, (3) asymptotic series, (4) fractional and irrational derivatives
and integrals, (5) group theory, (6) Fourier series and transforms, (7) integral
equations, etc. It seems almost as if something were there, inarticulately try-
ing to make itself understood. But perhaps it must await a modern Euler.
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APPENDIX

Consider the pair of quadratic forms representing, respectively, the in-
ductance and resistance quadratic forms of an n-mesh network containing
inductance and resistance elements:

Q(iy i„) = Z,"X;gi;ig

4'(&1 ' ' ' '4) ~1 Pile~i ik

and form the pencil of quadratic forms

QP + f = +1"(~jkP + j7Pc)&i 4

The discriminant of this pencil is the determinant of the network:

~IIP + Pll ' ' ' ~IIP + PI

~lnP + Pln ' ' ~nnP + Pnn

This is a polynomial which is in general of degree n and may be written

8 Bell System Technical Journal, vol. 3, 1924,
' Ibid.
» Archiv. fur Elektrotechnik, Heft 4, Band 17, 1926."Elektrischen Nachrichtentechnik, Heft 7, Band 6, 1929.

(39a)

(39b)

(40)
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D(P) = ~0)P" + ~(l ~)P" '+ ~~(l p)P" '

+ + Aa(p, X)p'+ 6~(p,X)p + A(p) (42)

where 6()j.) and A(p) are the discriminants of P and P respectively, while
A&, (X, p) is the sum of the different determinants which can be formed by re-
placing k columns of the discriminant of P by the corresponding columns of
the discriminant of P.

Likewise, form the first minor of D(p), namely,

~22p + p22 ' ' ~2np + p2n

Mgg(p) =
~2nP + p2n ' ' ' ~nnP + pnn

(43)

This may be written as a polynomial in general of degree n—1, namely,

~11(p) ~11(~)p + ~11 (~yP)p + ' ' ' + ~11 (Py ~)p j ~El(P) (44)

Now it can be shown that the coefficients 6()) h(X, p) h(p) of D(p) are
integral rational invariants of weight two of the pair of quadratic forms P and
f."Similarly, the coefficients 3E»(X) M» ()I, p) 3II»(p) are integral ra-
tional invariants of weight two. Thus it is that the linear transformations of
the variables of the quadratic forms make the impedance function Z(p), which
is the ratio of D(p) and M~~(p); that is, the ratio of two relative invariants of
the same weight, an absolute invariant. The foregoing is true also of n-mesh
networks containing all three kinds of elements, where we now have in addi-
tion to the inductance and resistance quadratic forms, the elastance quadrat-
ic form. Thus

Z(p) = D(p)/Mii(p)

becomes under a linear transformation with matrix

10 0

&2i' ' ' a2n

(45)

~nl ' ' ' ~nn

10 0 2

a2n

Z(p) = &nS ' ' ' &nn D(p)—X—
s22 ' ' ' +2' ~11(p)

(47)

~n2' ' ' &nn

= D(p)//3I»(p) ~

'~ See M. Bocher, Introduction to Higher Algebra, 1927, p. 166.


