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ABSTRACT

The general expression for the van der Waals energy arising from dipole inter-
action between atoms involves a summation over transition probabilities. These are
in most cases difficult to calculate. It is here pointed out that since these transition
probabilities obey the sum rule of Thomas and Kuhn, they may be evaluated in a
manner which permits van der Waals' forces to be calculated with good approxima-
tion, provided that the polarizability is known. The method is outlined and illus-
trated by application to two examples: Na and He. The result in the case of He is in

very good agreement with that obtained by the variational method.

'HE methods proposed so far for a calculation of intermolecular forces
depend on an (exact or approximate) knowledge either of the molecular

wave functions' or of the oscillator strengths (dispersion f-values) associated
with transitions from the ground state of the molecules in question. Occa-
sionally, useful approximations were obtained in terms of polarizabilities and
other known characteristics. In this note we wish to suggest a method, semi-
empirical in character and not involving the use of wave functions, which in
general, enables a calculation of van der Waals forces between atoms with
greater accuracy than others of equal simplicity permit. It consists in expres-
sing the perturbational energy of the second order as a sum over f-values, as
was first done by London, and then determining these f-values by means of
the sum rule of Thomas and Kuhn, and the relative intensities of spectral
lines.

Suppose that the two interacting atoms, AI and A2, are similar and a dis-
tance R apart, R being so large that electron interchange does not take place.
Let both A& and A2 be in their lowest energy state which we take to be spheri-
cally symmetrical (s-state). n and P denumerate the various excited states of
A& and A2 respectively. If we restrict our consideration to the eRects of the
classical dipole interaction

g2

(y, y, + s,s, —2xgx2)E'
' Part of the considerations here presented have been reported at the meeting of the Amer.

Phys. Soc., Feb. 26-28. Hitherto we did not feel that they were of sufficient interest to be pub-
lished more fully. Recently, however, Slater and Kirkwood (see ref. 2) have calculated a value
for the attractive forces between He atoms differing widely from London's result. They at-
tribute this discrepancy to the neglect of double electron jumps in London's theory. Aside from
being applicable to many cases not of immediate interest at present, the method here outlined
shows the correctness of the latter supposition.

Eisenschitz and London, Zeits. f. Physik 60, 491 (1930);Slater and Kirkwood, Phys. Rev.
3V, 682 (1931);Hasse, Proc. Camb. Phil. Soc. 2'7, 66 (1931).

' F. London, Zeits. f. phys. Chemic, B, 11, 222 (1930)~
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which is proper for large separations only, the second order perturbation en-
ergy of A y+A2 becomes

62E =—
. P 8 +EP —2ZI

(via 31p + sin s1p + 4+la zip + 2ylgs1aylpslp

4SJ~yg zgpy]p 4xg sg~xgssfs)

gI is the coordinate matrix associated with a transition of 2 from the lowest
state (I) to the state n, e g x~ =. f. R„(r)xR„~(r)P& e'"4'r'sin Mrd9+; n, I, and
rN being the quantum numbers with their usual significance. (We are writing
X~0 for the radial function of the lowest state without meaning to imply that
n=1 for this state. ) It follows directly that

&la/la g&ins1e gy laslI

Hence in summing (3) over the magnetic quantum numbers of both A& and
A2 we obtain —,'8~' 8&'os'/R' r& 'r&q' so that (2) becomes

(4)

where now the summation is no longer over magnetic quantum numbers and
includes only states connected with the ground state by dipole radiation (I =
lp=1). But r~ is related to the f-values appearing in the dispersion formula

by the relation

7l flan ~ V~ —P

2ns 2m E —EI

Substituting this in (4) there results a formula meanwhile already obtained
by London and used by him to compute intermolecular forces by means of a
knowledge of a limited number of empirical f-values We wish to .propose a
scheme permitting the f-values to be determined independently of spectro-
scopic dispersion formulae, which necessarily emphasize unduly the f's in the
vicinity of the spectral region for which the formulae were calculated.

Combining (5) and (4) and realizing that Z,~ includes an integration over
the continuous region of the spectrum we may write
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'-f~v
' t" f~.(dfiE/dE)dE

62E = —F + 2
v vv(v + vp), Jo v (1+E)(v + 1+ E)

(df,E./dE') (df~E "/dE") dE'dE"

(1+E') (1+ E")(2 + E' + E")

We are here using the abbreviations:

&a= Eaj &a=
3 he 4

g6 2yg~6 3 2x

E is the energy of any state beyond the series limit, measured in units equal
to the energy of the series limit, E&. (6) does not take explicit account of possi-
ble multiple electron transitions to discrete states beyond the series limit, the
energy of which is frequently not known. They may be considered included
in the integration, however, since the f-values will be adjusted in such a man-
ner that their sum obeys the theorem of Kuhn and Reiche, 4 which postulates:

f'" dfiE
Qfi + I

dE=~o
Jp dE

(7)

Zp being the number of dispersion electrons.
It becomes necessary to make some assumption about the distribution of

the f&E's Fort.unately, the calculation of 62E is not very sensitive to this
choice, provided that (7) is satisfied. We shall suppose, in conformity with
what is known about H and x-ray spectra, that

lE

(1+ E)'

y being at present undetermined. Moreover, we shall consider that the rela-
tive intensities of the first few emission lines of the principal series are known.
The accuracy of the calculation is not seriously impaired if this is not the case.
Suppose these relative intensities to be J . Then one may easily verify that

PJ
fi- =, =—PA-,

&a

since J = const. (E,—E~)'r~, '. P is another undetermined constant. To deter-
mine P and y we have 6rst (7), which may be written on account of (8) and
(9):

(10)

and second the expression for the polarizability in a static field:

' For complex structures, this sum rule is merely an approximation.



or, explicitly,

1 8k y& 8 y@ JE 8E

2'r
P g —+ —= saucy A.v'„4 eh

(10) and (11) supply the required numerical values of P and y. If line intensi-
ties are not known, we may put the erst p =1 and all others equal to 0. The
evaluation of (6) is now an easy matter.

In cases where Zo = 1 (no multiple jumps) the contribution of the region
beyond the series limit is usually small. It may then be advisable to write (6)

F f dfisQ'(1+ I'-p)fi-fop+ 2 Q II (1+ I'.s)fi.

0 0

with the abbreviations

1 —su, (s + s.)/2)
~'Ap

sos„(vg + v„)/2)

v~ being j.+E.
Using (7), this goes over into

F
Zo' + Q' I'.sf~.fop + 2 Q'I' sf'

ap e

+ J( J( I', dE dt I. „'"
Recalling the definition of the v's we see that in some cases where the energy
of all excited states is small compared with that of the lowest state they do
not differ greatly from 1, which makes the I"s small. Then one may expect to
attain a fair approximation to the polarization forces by retaining in the I I
of (12) only the term ZP. For hydrogen, the last 3 terms contribute about 8
percent of the total. If we make use of (8), (9), (10), and (11) expression (12)
becomes:
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4 1
R

Vcr 3

1
+ log (1+ s,) —1.

2'Vct V,t 'Vo

For hydrogen, this expression gives AzR to within 1 percent if only Q s are
used.

As an illustration, let us compute the polarization energy of two Na-
atoms by the method here outlined. n can here be calculated since the f
values happen to be known. ~ They will also afford a check on our P and y. n
turns out to be 24.2)&10 ". (We omit the details of the calculation, which is
made with the aid of Eq. (11.) We shall use only P&, corresponding to the
resonance transition, and put it equal to 1. v& is then 0.409; e& = 8.145&(10 "
ergs. Eqs. (10) and (11) give

v P vP+ —= 1; — —+ —= 5.88,
2 0.409~ 4

so that P =0.888 and y =0.224. From (13) one then obtains

12.5 790
h~E = X 10 "ergs = volts,

R' r6

if r is measured in A. The correct value, which may be calculated from Sugi-
ura's work, is

14.5
~pE = X 10 "ergs.

R'

It may be approximated as closely as desired, of course, by taking a greater
number of p's into account. We note in passing that these results suggest the
existence of very strong polarization forces and the formation of polarization
molecules, such as were observed in X& by Kuhn. '

Another more interesting application is to He, where our calculations can
be no longer controlled by a sufficiently accurate knowledge of the f values-
There exist intensity measurements on the emission lines of the "principal"
series' from which the g 's may be obtained by (9).We have considered 10 of
them, but it turns out that very few of them would have been sufficient, be-
cause the main contribution to the f's seems to come from the region beyond
the series limit. Taking o. as 0.206X10 ", Eqs. (10) and (11) become

If now we use the relative intensity data in Hopfield's arbitrary units Z 'p =

' Y. Sugiura, Phil. Mag. 4, 495 (1927).
6 Kuhn, Naturwissenschaften 18, 332 (1930).See also Oldenberg, Zeits, f. Physik 4V, 184

(1928) and SS, 1 (1929).
7 Hopfield, Astrophys. J. '72, 133 (1930).
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293.7, and Z 'g /v '=351.1, whence P=5.97X10 ' and y=3.64. The sur-
prising magnitude of y shows clearly, and probably over-emphasizes, the im-

portant role of the transitions to states beyond the ionization limit of one
electron. That these states need riot belong to the continuous spectrum, and
that our integration (instead of summation) is dictated by convenience and
lack of data to handle them more properly has already been pointed out.
Substituting P and y in (6), or more conveniently in (13) (where now, of
course, on account of the size of y only the second term in I I may be neg-
lected) we find

9.68 14.4 0.9|
DsE = X 10 "(1 49) ergs =—X 10 "ergs = volts, ifrisinA. (14)

E.' r

(The somewhat smaller value reported previously' was obtained by consider-
ing only transitions of one electron, putting Zo ——1, which is not legitimate. )
(14) agrees very well indeed with the result of Slater and Kirkwood, calculat-
ed with a variational method, namely

14.9
g f 0 6~ ergs.

R'

The latter authors suggest that the large difference between their result and
the one obtained by applying London's simple approximation, which yields
an upper limit 62K „=12.4)&10 "ergs, is occasioned by the neglect of dou-
ble jumps in London's expression. The calculations presented here make this
evident.

' See ref. 1.


