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ABSTRACT

With the spinor analysis developed by B. van der Waerden which comprises
all representations of the Lorentz group, even those not contained in ordinary tensor
calculus, one is able to write all derivations and equations in an automatically covoriant
form. For the convenient translation into spinor language of the Maxwell equations, it
becomes important to introduce three self-dual tensors, one representing the electro-
magnetic field, one corresponding to the Hertzian vector, and one representing a kind
of current potential ~ These correspond to symmetric spinors of the 2nd rank. Many
spinor equations thus become simpler than the corresponding tensorial equations,
especially the expression for the stress energy tensor. From the 1st order Dirac equa-
tions in spinor form, as given by v.d. Waerden, we derived the 2nd order equation,
which agrees with the Gordon-Klein form but for a correction term which again con-
tains the self-dual field tensor. Further the expression for the current was derived, and
its decomposition into conduction and polarization currents, and both Maxwell and
Dirac equations were derived from a spinorial variation principle, analogous to the
results of Gordon and Darwin. In addition to the divergence condition for the cur-
rent three new invariant relations between the wave functions which are independent
of the potentials were obtained (Chapter III, Eqs. (11), (12) and (13)).

INTRQDUcTIoN

'HE Dirac equations of the electron have for the first time furnished an
example of a system of equations, which show an invariance of form

when subjected to a Lorentz transformation, but which only very artificially
could be written with tensors. This difficulty was felt especially by Darwin'
when he wrote: "The relativity theory is based on nothing but the idea of
invariance, and develops from it the conception of tensors as a matter of
necessity; and it is rather disconcerting to find that apparently something
has slipped through the net, so that physical quantities exist, which it would
be, to say the least, very artificial and inconvenient to express as tensors. "

The Dirac equation is

[(I'"Pg) + mc]P = 0

where p~ represents the 4-vector'

h 8
PI, = — +&I

i Bx"

' C. G. Darwin, Proc. Roy. Soc. 118, 657 (1928).
We use the Dirac h, which is 1/2x times the Planck constant, and write here; and in

Ch. III, @I, for e/c times the ordinary four potential.
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and F~ are four four-row matrices, given by 3

j0 0 0-1
0 0 —1 0

(0 0 0 z)
0 0 —i 0

0 1 0 0 0 —i 0 0

0 0 0)
Po 0 —1 0

0 0 0 1

(0 0 1 0)

0 0 0 0 0 0

(0 —1 0 0) (0 1 0 0)
f is a function of two kinds of variables, of x' and an inner variable, which
can only assume four discrete values; the p~ act upon the x' while the I'
operate on the inner variable. This way of describing Eq. (1) is of course
equivalent to regarding Eq. (1) as four equations containing 4 P's, each of
them a function of x" only.

There are two points of view possible, with regard to the transformation
properties of the Dirac equation: The first of these regards the I'" as a matrix
four vector, and the f as constant. According to the second point of view, the
1"~ are constants and the P are being transformed.

One can easily show that these two methods are equivalent. For if we sub-
ject the coordinates x to a Lorentz transformation,

x = x'I.
I

then the p~ will be transformed like

P = I- 'p'.

If we consider I'~ as a four vector, it will transform like x~, and the scalar
product

(1"P) = (1"~J-'f') = (1"P')

will remain invariant. On the other hand, we can always 6nd a matrix 5 such
that

Now the I'~ are kept constant, and since they act on the inner variable only,
they are exchangeable with 5, so that

or

Putting

(S 'I'P'$)g + me/ = 0

(pp')(~4) + ~~(~4) = o.

' %hen written out, Eq. {1)agrees with the form given by Weyl, Gruppentheorie and
Quantenmechanik, Leipzig 1928, page 171, Eq. {45').If the above given matrices for I', I', I'»

are divided by i, they become identical to Acyl's I'1, I"2, I"», our I' is equal to his I'0.
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we regain (1), now with transformed P. This point of view regards the I"
simply as determining the coefficients 0, + 1, +i in the four wave equations.

For special two dimensional Lorentz transformations, Darwin has written
out the transformation (5). They have the peculiar character that the coeffi-
cients contain the angle ll/2, when the coordinates are rotated by the angle 0.
We can see already from (4) that S is something like a square root of I..' This
shows that f cannot be a tensor, and that there are equations, which defy
translation into tensor language and yet fulfill the relativity principle. Now it
has been known to the mathematicians that the ordinary tensor language
does not comprise all possible representations of the Lorentz group as had
always been assumed tacitly by the physicists. ' The necessary extension of
the tensor calculus, the senor cult."ulus, was given by B. van der Waerden, '
upon instigation of Ehrenfest, and indeed gives all possible representations.

These two points of view correspond in a certain way to the particle and
wave description of the electron. The first may give additional information
concerning the particle velocity, ' the second, however, is necessary for the
consideration of the Dirac equations as field equations. In this case the f
must naturally be transformed to a new coordinate system just as B and H
in Maxwell's equations. We shall restrict ourselves to this point of view.

CHAPTER I. THE MATHEMATICAL APPARATUS OF THE SPINOR ANALYSIS

)1. Since van der Waerden's article is not very easily accessible, and in
order to make the spinor analysis more popular, we shall brieHy develop the
few necessary theorems and formulae here, following van der Waerden closely.

Consider the following binary transformation

$1 &11/1 + &12)2

$2 &21(1 + &2252

and its complex conjugate:

(1 &11/1 + &12/2

$2 0'21(l + ~22/2

with the determinant
&11 ~12

~21 ~22

All these transformations form a group of 8 —2=6 parameters. Any two
numbers transforming like the t~, $2 in (1), we shall call a spinor of the 1st
rank, and denote by

4 Landau therefore calls P a half vector,
Compare especially Hermann Weyl, Gruppentheorie und Quantenmechanik, Leipzig,

1928. Kap. III.
B. van der Waerden, Gottinger Nachrichten 1929, page 100. The spinor formalism is

already implicitly contained in the book of Weyl, and in a paper by V. Fock, Zeits. f. Physik
S7', 261 (1929).

' V. Fock, Zeits. f. Physik SS, 127 (1929); G. Breit, Proc. Natl. Acad. 14, 553 (1928);
E. Schrodinger, Sitzungsber. Berliner Akad. 24, 418 (1930).
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k=1, 2

whereas any two quantities transforming like (2) will be written

b, r=1, 2

Any four quantities transforming like the products $&$&, $&$2, $2$&, b)2 we call
a spinor of the 2nd rank and write

k, 1=1,2.

Correspondingly 4 quantities transforming like the products of && and $2 we
denote by

P, S = 1, 2.

There are also "mixed" spinors of the 2nd rank transforming like a product
of a barred f and an unbarred $, denoted by

r'=1, 2; k=1, 2.

Analogously we can define spinors of higher rank, like a," &.

One can show easily, that because of (3) the area of the parallelogram
formed by two spinors $~ and g~

is invariant under transformation (1). This enables us to introduce contra
variant spinors ak or b", according to

a~ = u2

8 = —Qy

b'= b2

b2 —
pe

(4)

because in this way the scalar products

CyC + C2C = GyC

bid' + b2d~ = bpd'

are invariant. ' When we establish the usual connection between covariant
and contravariant indices by means of a spinor ck' according to

gk ~k) g

we find

and

(
0 +1)

where

(6)

' Summation signs are as usual suppressed; dummy indices are always given Greek letters,
free indices Latin letters.
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g k

As in the usual tensor algebra, the only covariant operations are also here
mnltiptication and contraction. For instance from the spinors a„, and b"'k& we

can form the spinor of the 6th rank

Crs kt ars b kt

or the spinor of 4th rank

Cs kt ass b kt
.l, .jl.p

or the spinor of the 2nd rank

cst &ys b xt ~
. .X

The following two rules are essential in calculations. According to (6) we

have

a),b~ = —a"b),

An immediate consequence of this is that any spinor of odd rank has absolute
value zero

a ax 0. axpva 0 (7a)

Similarly we have

a"b),c + a),b c'+ a„b"c~ = 0

Of course this rule may also be applied to the product a~c& . It also holds for
three dotted indices.

There are two more rules concerning the relations of dotted and undotted
indices.

1' It is not necessary to fix the position of dotted and undotted indices be-

longing to the same spinor. Thus, for instance

ar'tt = aIr't = alar' ~

On the other hand two dotted or two undotted indices are not necessarily
interchangeable; if they are, the spinor in question has special symmetry prop-
erties.

2' The complex conjugate of any spinor equation is obtained by replacing
all undotted indices by dotted ones and vice versa.

ft2. We will now establish the connection between spinors and world ten-

sors. We assert that the following combinations of components of a second
rank spinor a;~ are to be associated with the components of a world vector
A', A', A', A4 as follows
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—2'(4221+ 4212) = A' = Al

(4421 4212) A A 2
2i

2(44jl 822) = A = A2

2 (4211 + 4222) A A4

(9)

These combinations are real, and after a transformation (1) and (2) they will
still be real; thus their transformation coefficients are real also. To prove that
it is a Lorentz transformation we solve (9) for the 41,4 and obtain using (4)

a' = —a" = A' + iA' = Al + iA2

al2 a A &A A 1 tA2

all + a22 A3 + A»

a = —ai' = A' —A» = A3+ A4

(10)

Now it is easily verified that

'=A,A .

To every transformation (1) there corresponds one Lorentz transforms, tion;
vice versa, since the connection formulae between the transformation coeffi-
cients of A and the 42's of eq. (1) are quadratic, there are two transformations
(1) differing in sign, corresponding to one Lorentz transformation. There-
fore (1) and (2) form a representation of the Lorentz group. It can be proved,
and this is the fundamental theorem of the spinor analysis, that one obtains
all representations of the Lorentz group by transforming all possible spinors
according to (1) and (2). It follows that the true "quantities" belonging to
the Lorentz group are spinors, of which tensors form only a special class.
Analogous to (10) spinors of the fourth rank with two dotted and two un-

' For example using the transformation formulae (1) and (2) for a spinor a„~ we find that
for a Lorentz transformation

ct' = ctcosh8+ sinh8
z' = ct sinh 0 + z cosh 0

there correspond the two transformation matrices

and with a special rotation

there correspond the two matrices

x' = xcos8+ ysin0
y' = —xsin8+ ycos8

0 + f2+if j2

For general spacial rotations we see that because of the invariance of t, that is to say of
&&&&+$2&2 the corresponding binary transformation (1) will be unitarian. For more information
compare especially H. Acyl, Gruppentheorie und Quantentheorie, Leipzig 1928, p. 106—114.
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dotted indices correspond to world tensors of the second rank. The formulae,
connecting them are obtained from (10) by multiplication. For instance

ammn = s""= A" —A" + i(A" + A") = A n —Amp + i(A gg + A2))
(12)—as' g

= a"' = A" —A" + i(A" —A") = Agg + Agg + i(Agg + A42)

In the following table all possible kinds of spinors of the 5 lowest ranks are
written down and those corresponding to world tensors are underscored.

~kttv

)3. Although the underscored spinors correspond directly to tensors of
half their rank, the spirlors of even rank can be related to tensors of higher
rank, which possess certain symmetry properties. Let us consider the simplest
spinors of this kind ak l and its complex conjugate a .„.We decompose ak t into
a symmetric and antisymmetric spinor, according to

sw = 2(sat + &t~) + 2(so& —s&a) = &rt + &H

The antisymmetric part O.kt has only one "Kennzahl"

%12 ~21 s(+12 s21) 2 (sl + s1 )
—g P1
2 P

(13)

which is an invariant. The symmetric part 0 k t has three "Kennzahlen" and can
be shown to correspond to an avtisymvMtric self dual ten-sor Consider . a real
antisymmetric world tensor F". The dual tensor to this is obtained by means
of

where Ski = 0 when any two indices are equal and = + 1 according to whether
the indices form an even or odd permutation of the numbers 1234. Thus two
dual tensors F*k' are possible to an originally real tensor Fk'; they differ only
by the sign, so that one is the complex conjugate of the other. Obviously the
dual to F~kt is again the original Fk' without asterisk. The self-dual tensor
Gk' is the sum of the two"

Gkl —Fkt + P+kt

Gkl pkl FW kt

Calling the three Kennzahlen k&, k&, ks, Gk' may be written

' We note the theorem, that for any two self-dual tensors Gkt and Hk' the product

G+Ifk) =—0
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—k3

k2 —kI —ik3

ks —k2 —ikg )
0 kI —ik2

(15a)

ikI

or taking the lower sign in (14)

ik2 ik3 0

k3

k2 —lCI

ZkI ZlC2 —ik3

ill
ik2

ik3

0

(15k)

Then we form the spinor of the fourth rank g„,qt according to (12) which using
G~' can be written

gt 8k gf s& Ic
. . l . .x l

and which using G" can be written

g"Il = ~r'gIl.

(16a)

(16k)

Here the spinors g„, and gI, ~ are symmetric Solving . (16) and (16a) we obtain

gr'i = 2gr'e)

gkl 2g&i kl

The formulae connecting the components of the symmetric spinors with those
of the antisymmetric, self-dual world-tensor are

gag = 2(kn + ik&)

g22 ——2(k, —ikg)

gi2 = g2i = —2&k3

and using (16a) we simply obtain the complex conjugate

gg& = 2(k2 —ikg)

g2g = 2(kg + skg)

gI2 = g2I = 2'l~3

(18)

(18a)

f4. Corresponding to the introduction of a covariant gradient vector we
now define a gradient spinor 8, ~ according to the connection formulae (10)
as follows

8
z

Bx

a
~2=~i2= ——

BxI

a2 a.I II
Bx

8
z

Bx2

8

Bx4

8 8
+

8x3 Bx4
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where the contravariant vector (x', x', x', x4) corresponds to (x, y, s, ct)
Analogously to (11) we may now translate the familiar vector analytical
operations like Div or C3 into the spinor language. We have

(20)

8'5 ——~d,B~~S.
Bx 8x 2

CHAPTER II. MAXWELL EQUATIONS IN SPINOR FORM

flSn. To facilitate the comparison, we shall briefly recapitulate the Max-
well equations in the ordinary tensor form. As usual we define the antisym-
metric field tensor

(' 0 II. —II„—Z, i
0 II —E~Pkl

0 —E,

then the dual tensor according to (14) is

( 0 E. —E„ II,
0 E, II„

0 II,
l 0

The two Maxwell equations are

where 5' is the four-current (pv, /c, pv„/c, pv, /c, p) obeying the continuity
equation

We can embody these two equations into one

by using the self-dual tensor
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Qkl Pkt + P+kl

which has the form (15), with"

1389

k = II —iE.
We can derive G"' from the four-potential P"= (A„A „,A„P) by means of

(9)

The Q~ are subjected to the accessory condition

(10)

Introducing (9) into (6), using (10) we get the wave equation for Q"

$2' is—= S".
8Ã),BS

$5P. To free ourselves from the condition (10) imposed on the potentials,
we express @~ in terms of a self-dual antisymmetric tensor Z~t, the analogue
to the Hertzian vector in three dimensions by means of"

(12)

Introducing this in (11), we get for Z"' a third order differential equation

pe M.

= S'.
Bx" Bx Bx

In the three dimensional form one reduces this to a second order differential

equation by an integration of the current pv/c with respect to the time. "The
analogue of this is the derivation of S" from a stream potential Q~', which is

again an antisymmetric' self-dual tensor, according to

~' Comp. Riemann-Weber, Die partiellen
schweig 1901, Vol. II, 348. L. Silberstein, Ann.
Handbuch der Physik vol. XII, p. 93."When we represent Z~' by the scheme

Differentialgleichungen der Physik, Braun-
d. Physik 22, 579 (1907). See also F. Zerner,

Z1Lt = z
(

0 Z, Zg ZZQ

0 iZs

0

then the three dimensional form of (12) is

1 l9Z
A =icurlZ ———

c Bt

@ = divZ.

"See e.g. Madelung, Die mathematischen Hilfsmittel des Physikers, Berlin 1922, p. 196.
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This causes the continuity equation (5) to be identically satisfied. For Z" we
then get the wave equation

$5y. The stress-energy tensor Ti, ' whose divergence is equal to the com-
ponents of the four force can be written

This can be written in terms of our tensor GI, ~

&i' = 4(oi.G'+ Gi.G')

where the conjugate tensor is to be formed according to Eq. (15) of Chapter I.
As is well known this tensor has a diagonal sum which is zero

as one sees using the theorem of footnote 10. Consequently Tl, ' has only
nine linearly independent "Kennzahlen. "

$58. It is important for the sequel briefly to discuss the phenomenological
form of the Maxwell equations in matter. Since the dielectric displacment D
and the magnetic induction 0 are connected with E and H through

D=E+I'
8 = II+ I

where I' and I are the electric and magnetic polarization respectively, we can
write the Maxwell equations

cllvE= p

BE
curl 8 ——

Bt

div 8 = 0

1 BB
curl E+ — = 0

c Bt

p = p —cllvP

J pV I—= —+ curl I +-
0 C c Bt

(19)

If p, (pv/c), I' and I are given, the above system agrees formally with the
equations in vacuo. To write (18) and (19) in four dimensional form we intro-
duce the two self-dual tensors G'"' and Mi'. They have the form (15a) where

kg ——8 —iE
(20)

~M ~+
We then write (18) and (19)
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where (21)

)6n. Having been able to write the entire formalism of Maxwell equations
with the help of the self-dual world tensor G~' and its complex conjugate,
we can now introduce by means of formulae (18) and (18a) two symmetric
spinors g„„and gp~ of the second rank, and thus avoid the introduction of
fourth-rank spinors altogether. It is obvious that the spinor g&&, just like the
tensor G~', will only be needed in the formulation of the stress-energy tensor.

We know from Chapter I I, that the four-current S' becomes a spinor
s ~, the gradient 8/Bx' according to (19) a spinor operator 8„~', we see now
that the simplest way of connecting 8 & and s .

& in a manner analogous to (6),
is by letting 8 & act on a spinor with two dotted or two undotted indices. We
choose the former and write Maxwell equations'

lgpm = 2~ml ~

The continuity equation for the four current reads

8&"sq), = 0.

(6a)

The identity of this with (5) was already noted in Chapter I formula (20).
The analogue of the four potential P~ will be the spinor Q ~. It is connected

with the field spinor g„-, by the following curl-like operation, which, however,
in this case is symmetrical:

g;, = ~,) 4'" + ~').4'"

The P & are subjected to the divergence condition

8""Q ),
—0

Introducing (9a) into (6a) we have

8~((B; y„+B„y, ) = 2s (.

Using (8) Chapter I, we can transform each term according to

l~paQm = ~ a~p /till C ~pap l

~ 1~m 4' = ~ml~ja4' ~'l~ a4' '

'4 For l =1, m =1 and for L =2, m = 2 we have

8 I.gj, j, + Ig2j, = 2sil
~ 2gi2 + ~ 2g22 = 2~22

(9a)

(10a)

Kith (4), (10), (19), (18) of Ch. l, and (8) Chapter II, this becomes:

1 1
curl, H ——E, + div E —i curl, E + —H, —div H

C C

1 1—curl. H+ —E, +divE +i curl, E+—II, + divH
C C

from which follow four of the eight Maxwell equations.

pV& + p
C

p8 + p
C
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Adding these, the last two terms cancel because of (2) Chapter I, and due to
(10a), we get

Opal Qml 2$mg ~ (11a)

$6P. The analogue of the self-dual Hertzian tensor Z" is the symmetric
Hertzian spinor s„;.The potential spinor P i is derived from this according to

Qml ~ l~mir ~ (12a)

By this operation the divergence condition (10a) is identically fulfilled, for
we obtain, introducing (12a) into (10a)

g jhow.
—gpXgd~g,

using the symmetry of s„& we have

This vanishes applying (7) Chapter I to the index X. Analogous to the stream
potential Qi;i, a self-dual tensor we now derive the stream spinor s„i from

(13a)

where g; is again a symmetric spinor of the second rank. Introducing (12a)
and (13a) into (11a), and dropping a 8 operator on both sides, we obtain the
wave equation for 8';

~prz~p ~rr'ss = 2/~a ~ (14a)

Cl6y. The spinor analogue of the stress-energy tensor Ti, i will be a spinor
of the fourth rank with two dotted and two undotted indices. Its divergence
will have to be equal to the spinor f i which corresponds to the four vector
of the Lorentz force density and the action density. To derive this expression
we write down the Maxwell equations and their conjugates according to
(6a), using P) Chapter I

8'fgp ~ —2$

8'yg = —2$'

Then we multiply the upper equation with g" and the lower with g""' and
contract with respect to r and l. After adding we can write this

g.„I gpmgxi I
— 2 I gpyjgg li + gxkgmiI

Introducing

we have

]r'mlle

1gr'mal�)s

(15a)

where the force spinor

g .„]pmk k —2 grrsk
pX

fm 0 — 1 Igjim~, 0 + gxigA~ I

(15b)

(15c)
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It follows from the symmetry of the spinors gr™and g'~ that tr™~has only
nine "Kennzahlen. " Thus relation (16) is already embodied in the structure
of the stress-energy spinor.

)65. Analogous to the developments of )55 we introduce two symmetric
spinors g'„; and m„, which correspond to the self-dual tensors 6'~' and M~'.
We then write the spinor analogue of (21)

~'tg u' = 2J's

where

j„& = s, t + ~(8'imu„+ 8, m, „) (21a)

where the first term on the right side is due to conduction and the second
term to electric and magnetic polarization.

CHAPTER III. THE DIRAC EQUATIONS IN SPINOR FORM

$7. Van der Waerden has shown how to write the Dirac equations in
spinor form. The four wave functions lf of Dirac correspond to two spinors of
the first rank f and x~, and his equations become

h
mcx) — —8 )+g'), = 0 (1a)

(Ib)

where g'g is the potential spinor as according to (9a) Chapter II. We shall
also need the complex conjugate equations which read

(2a)

(2b)

%e now wish to obtain the second order Dirac equations. Introducing the
abbreviation

we eliminate y~ from (1) and get

m'cQ + P "Pj,P. = 0.

We apply the identity (8) Chapter I to the second term and have, using also
identity (7) Chapter I,

Taking (3) into account we see that
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h
P &P O' —P 'P 4' = —P(~ ~4

" + ~ ).0 ")
Z

= —P gm.

the latter because of (9a) Chapter II. Thus the second-order wave equation
becomes

1 h h h—8 ~+/'~ —8), +P), P + m'c'P = ——g,P'.
2 i z 2i

Correspondingly one obtains

h . . h h
+ 4 —.~') + 4') X~ + m'c X~ = —.gI ~X .

2 i z 2i

The left side is identical with the Gordon wave equation written in spinor
form, whereas the right side represents the spin correction. It is satisfactory,
that the held only occurs in the form of our symmetric spinor g „resp. gI„-~.

Cl8. To derive the expression for the current we multiply (1a) with p',
(1b) with —y', (2a) with —P', (2b) with y', and add all four equations.
Using repeatedly identity (7) Chapter I all terms containing the mass and
the potentials cancel and we can write the result

where

~""jpx = 0 (6)

jmi = /mal&+ XmX~

f9. We shall split up the above expression after the fashion of Eq. (1a)
Chapter II. We replace P and x& in (7) by their expressions following from
(1a) and (1b) and have, using identity (8) Chapter I

h h
mCjmg = —

P&
—~m +pm X~+Xm —, ~ i + g g fu

z z

h h= + 0 —.&..+4.. x —x' —. &. + 4. )P-
z z

h h
+ P& —.~mi + /mt X —

X~ —.~mi + /mt
Z

We then replace in (7) P& and x by the expressions following from (2a) and

(2b) and transform the equations by means of (8) Chapter I in a completely
analogous fashion. We thus obtain four expressions for mcus„~. Adding all of
them we have after a few elementary transformations

where

JF'1 &r1+ g (& immit + &r rs'al) (8)
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h
&rl'. (Nar7r lx +'xa~rlg + 0 rlr lx'd + x 6is4)

4imc

+ 4'iQ X +4'X')
2mc

h
(AX* + AX')

imc
(10)

Fquations (8) (9) and (10) are the spinor form for the decomposition of the
current hrst given independently by Gordon" and Darwin. "Similarly to the
correction terms on the right side of (4), the spinor (10) expresses the exis-

tence of a spin.
(10. Tlie multiplication process described in $8 is not the only process by

means of which the potentials P & may be eliminated from the Dirac equa-
tions. In fact, besides the one leading to the continuity Eq. (6), it is possible
in three more ways to eliminate the P„~ each of which lead to an invariant
relation between the p and X.

For the sake of convenience we write down the four Dirac equations, but
using only covariant 8-operators. In four columns at the right side of the
equations, the various factors, with which we multiply are given.

h
mcXg + —B~~f' + 4.nf =0'

h
me/ 8''yX P 'gX = 0 +x'

h
mcx ——a„)P"+ 4.)P' = 0

z

h
m&4'r + —, ~niX &&X'

+x

We obtain

6'~6V4" + X'X') = o (6)

This is Eq. (6) for the current.

(b)
mc

a.„(4'0" —X'X") + 2f—8 "X, P AX') = 0
h

(c) (d) Adding and subtracting the results of process (c) and (d) we have,
using (7) and (7a) Chapter I

» W Gordon, Zcits. f. Physik 50, 630 (1928)."G. Darwin, Proc. Roy. Soc. A120, 621 (1928).
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(12)

(13)

It is clear, that these are the only relations between the wave functions which
are independent of the potentials P &, because we have eight equations (the
four Dirac equations and their complex conjugates) in which only four po-
tentials P ~ occur. '" It is curious, that three of these relations are also inde-
pendent of the mass.

A few words may be added concerning the quadratic invariants which do
not involve differentiation. Due to (7a) Chapter I the only two invariants
are:

~ = 4)x"

~ = 4'x'

It is easily verified" that the square of the current

j ),j'" = 2hA

and the square of the polarization spinor (10):

(14)

and

m,.mp' = 2

h
mpm~=2

(16)

Introducing the abbreviation

&'i = 4'ltd —x'xi

for the spinor whose divergence occurred in (11), it is readily seen that

h
k&&m;; = — j;&~

zmc

jf')mpe =—
imc

$11. Darwin" has shown how to derive both the Maxwell and the Dirac
equations from a variation principle. The analogous development using spinor
analysis runs as follows. We start with the Lagrangian function

'"' Relations (11), (12) and (13) were found more or less accidentally by the authors. The
point of view described in the text was supplied by Professor G. Y. Rainich, who found them
independently. Professor Rainich further communicated to us a rigorous proof of the fact that
the Dirac equations possess only two algebraic quadratic invariants, which are simply our 6
and Z. Also relations (17) are due to him. The authors are greatly indebted to Professor Rainich

for several discussions on the subject."Compare C. G. Darwin, Proc. Roy. Soc. A120, 621 (1928). See esp. p. 627."C. G. Darwin, Proc. Roy. Soc. A118, 654 (1928).
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h
I 4'"~jVx X~i'li Xx 0 ~")4'ji + X rl"xxji }

z

+ 2mc(5 + 6) + p&"j q
—'g&'g— " (18)

where the meaning of 6, 3, j ~ and g„„in term's of p, X, and p are given in

Eq. (14) (7) Chapter III and (9a) Chapter II respectively. I is to be con-
sidered a function of p, X, p and their derivatives.

1'. Varying lf & we obtain as Euler-Lagrange equation

which is identical with (1a).
2'. Varying X we obtain

BL BLgm„P
~(~'~x. ) ~x-.

which is identical with (1b).
3'. Varying f we get (2a) and varying X& we get (2b).
O'. Varying P.

& we obtain

that is to say

BL BL
g. l

a(a..y') ay (

= 0

lgiim —2jml —2(li, lilii|+iXiiixl)

which are the Maxwe11 equations with the Dirac current.


