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ABSTRACT

The results arrived at in a preceding paper are generalized for diatomic crystals
(§81, 2, 3). A direct determination of the probability of light absorption in a linear
lattice leads to the establishment of a selection rule amounting to the law of the con-
servation of momentum for the light quanta and the “excitation quanta.” This rule
enables one to explain the linear structure of the spectra of solid bodies at low tempera-
tures (§4). The preceding results are generalized and applied to a new description of
the process of light scattering in crystals (§5) and the theory improved by intro-
ducing the width of the excitation lines and allowing for the damping of the exciting
light waves.

1. GENERAL CONSIDERATIONS FOR A DiatomIic CRYSTAL

N A previous paper under the same title! I have limited myself to the con-

sideration of monatomic bodies. The first object of the present note is
to generalize the above results for the case of a diatomic (binary) crystal; the
further generalization for a more complicated body will be quite obvious and
will, therefore, not require special consideration. The main difference be-
tween a diatomic (or polyatomic) crystal and a simple one consists in the
fact that the heat motion is realized here not only by elastical vibrations, for
which the relative positions of the atoms within one molecule are approxi-
mately constant, the molecule oscillating as a whole, but also by “molecular
vibrations” which can be visualized as the (distorted) vibrations of the atoms
constituting the separate molecules, the center of gravity of the latter remain-
ing approximately at rest. Whereas the elastical vibrations have a practically
continuous spectrum, extending from »=0 up to a certain maximum fre-
QqUEeNcy ¥max, the molecular vibrations are usually characterized by one par-
ticular frequency v., described as the “characteristic ultrared frequency” of
the crystal and detected by the absorption and reflection of ultrared light
or the Raman scattering of the ordinary light.

As a matter of fact there is no sharp distinction between the vibrations
of both types. This is clearly seen if one considers a simple crystal as a limiting
case of a diatomic crystal with actually identical atoms of “different sort.”
Owing to the mutual action of the molecules the vibration frequency »q, char-
arteristic of an isolated molecule, is split up into a series of # (or 3#n, # being
the total number of molecules in the crystal) frequencies v ;1, v, - * - ¥¢, which,
however, usually lie very close to each other and are, therefore, considered
as a single characteristic frequency », shifted more or less with respect to »,.
It must, however, be born in mind that the mutual action of the molecules

1 Frenkel, Phys. Rev. 37, 17 (1931).
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in a crystal produces not simply a shift of their characteristic frequency but
causes it to split up into a number (3%#) of components, corresponding one
by one to the various frequencies constituting the elastical spectrum. In fact
the corresponding vibrations must have in both cases exactly the same wave-
length.

The general theory of the oscillations of a compound crystal lattice has
been developed in great detail by M. Born.? In this theory Born treated the
electrons and nuclei as capable of vibrating about certain equilibrium posi-
tions in accordance with the pre-quantum views. We shall have to reserve
Born’s treatment for the atoms (or ions in a case of an ionic crystal) as wholes,
the motion of electrons within a single atom being described by specifying
the quantum state, normal or excited, of the atom, as has been done in the
preceding paper (I). The localization of the excitation state in a particular
atom, just as in the case of a simple crystal, does not correspond to a station-
ary state of the crystal as a whole. Such stationary states are obtained by
“diluting” the excitation state over all the atoms of the same kind in the form
of excitation waves. To a first approximation these excitation waves are not
influenced by the presence of atoms of other kinds (which produce a perturba-
tion of the second order only). We thus get exactly the same picture of the
excited states or sub-states in the case of a diatomic crystal as that which has
been developed before for a simple one.

In the present case, just as in the former one, the excitation of the crystal
must entail a slight alteration in its structure, size and vibration frequencies,
which will provide an indirect coupling between the different heat oscillators
representing these frequencies. To get the looked for generalization of our
former theory we need but add to the 3z harmonic heat oscillators represent-
ing the elastic spectrum, an equal number of oscillators representing the mole-
cular vibrations. With the same approximation which is implied in assigning
to all the latter oscillators the same characteristic frequency », we can deter-
mine their contribution to the probability of a “deactivation” process by
means of the Egs. (32) and (32a) of I. The probability of a radiationless
transition of a diatomic crystal from some excited state or more exactly “sub-
state” (2) to the normal state, with the transfer of the excitation energy to p
molecular oscillators is thus proportional to the pth power of the quantity

LN T (1)
m= 2h ve n

where AL=n-Ad is the measure of the change of the distance between the
atoms caused by the excitation of the crystal. This quantity must in general
have different values for the molecular oscillators on the one hand and the
oscillators representing the elastic vibrations on the other. Further, in the
former case m is approximately equal to the sum of the masses of the two
atoms of different kind (m.+m ), whereas in the latter it is given (with the
same approximation) by the equation 1/m = (1/m.)+ (1/ms).

2 Born, “Dynamink der Kristallgitter,” Leipzig, 1915. Atomtheorie des festen Zustandes,
Leipzig, 1925.
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2. QUANTITATIVE THEORY OF A UNIDIMENSIONAL MODEL

For the convenience of the reader we shall briefly sum up here the theory
of the vibrations of diatomic crystals, replacing the latter for the sake of sim-
plicity by a one-dimensional model which we shall call a “bar” and which
consists of atoms a and b in alternating order. The consecutive atoms of dif-
ferent kind may be combined in pairs representing the “molecules.” The dis-
tance from an atom a to the next b on the right of it 6,; may be in general
different from the distance 85, from b to the next ¢ atom in the same direction
(Fig. 1). The sum 045+ 05, = 0 will represent the lattice constant; the smaller
of the two distances 6,5 and 68, if they are different can be considered as cor-
responding to that pair of atoms which actually forms a molecule. Denoting

aab 6ba

e

a b a b e b

k—1 k k41
Fig. 1.

the displacements of the atoms forming the kth molecule from their equi-
librium positions with #; and »; respectively (we shall consider longitudinal
displacements only) we can represent the potential energy of the whole sys-
tem by the expression

U'=U~—Ts=% Y anm + D _comvr + % D bum (2
kL *

and write the equations of motion in the form

d2uk

— Me = Yanm + X buw
di? 1 1
dzv;,

— my = Ycumr + D cum
dt? 1 !

In case of an unlimited bar (%, / varying from — o« to -4 ) these equations
admit the solution

Uy = Aei(pk-—wt) o = Bei(pk»wt) (3)

representing waves of frequency » =w/2m and length A =273/p travelling in
a definite direction with the velocity w=wd/p. Substituting these expressions
in the preceding equations and taking into account the fact that the coeffi-
cients @i, bn1 and ¢, depend only upon the difference I —# of the two indices,
we get the following two equations for the (complex) amplitudes 4 and B:

Aa, + Bc, = Amw?
» » W } )

Acy* + Bb, = Bmyw?
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where

@, = Daue?, I, = D bue,
4 i

()
choe“’l = Zcme““’l .
i

Cp = 26013“’[7 cp*
1

Equating the determinant of (4) to zero, we obtain the following equation for
the frequency

(ap — maw?) (bp — Myw?) = cpcyp"

1 /a b 1 /a b\ cpep* M2
o= (22 e[ (2o ) ©
2 \mq, my 4 \m, my Moy
It can be easily shown that the negative sign corresponds to the elastical

vibrations and the positive to molecular vibrations. The corresponding ratios
of the amplitudes 4 and B are:

1 /a b 1 /a b\2  cpc,t M2 c
Bi;Ai=w(l__p>¢[_<_p__p>+ ””] — 2. (6a)
2 \mg mp 4 \m, myp M b, Mg

If the difference (a,/m.) — (b,/ms) is very small in regard to lc,, l (mamp) Y2 this
equation reduces to

my 1/2 c m 1/2
o as (YL ()
un Cp q
if one takes into account that the coefficient ¢ must in this case be real and
negative. This result corresponds to the usual approximation implying that in

the case of molecular oscillations the atoms belonging to the same molecule
are vibrating with opposite phases. The frequency of these vibrations is ap-

proximately given by
1 /e b ¢
ot = & <_p n ,_1’) L el
2 \mg,  my (mamp)'?

and is considered to be independent of the “wave number” p(or p8/2w), which
of course is a quite unjustified assumption.

In the case of an unlimited bar the number p remains arbitrary. It the
bar consists of # molecules, then p can have only the following series of values
0, 2n/n, (2m/n)-2, - - - (2w/n)-(n—1). Of course, running waves of opposite
directions and of the same length (corresponding to p;+p2=2m) have to be
combined in this case with the same (or rather conjugate complex) amplitude
into standing waves.

The normal co-ordinates £ are connected with the displacements u, vi by
means of the equations

whence
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Ur = Z<£P+AZJ+ + &74,7)etPE) )
(7

Il

»

U Z<$p+Bp+ + £, B, )eirE
»

where 4 ,*, B,* denote the normalized solutions of the Egs. (4). Solving (7)
with respect to the £ we get

B = 2 (wed 2* + 0B e, (72)
k

The co-ordinates £, refer to the “molecular” and £,~ to the “elastical” vi-
brations.®
The expression (2) represents the change of the potential energy of the
bar due to the displacement of the atoms. The value of this energy in the
equilibrium state U, as well as the equilibrium distances 6,5 and 8, are de-
termined from the conditions
U, aU,

00asp 0dpa

Now the energy U, is slightly different for an excited and a non-excited bar;
the same must therefore be true with respect to the distances 8., and 6 pa.
The corresponding changes in the normal co-ordinates can be determined in
the same way as in the case of a monatomic crystal, namely, putting
ur=~k-Adand vy,=k-Ad+Ad,; in (7a). We shall thus get values! of the same
order of magnitude both for A{t and A&~ In view, however, of the greater
frequency in the “molecular” vibrations, their role in the deactivation transi-
tions may be expected to be more important than that of the elastic vibra-
tions according to (S). The increase of frequency is partially reduced, at least
for comparatively low temperatures, by the decrease of the average quantum
number N (it must be born in mind that the latter refers not to the initial
but to the final state, so that in the initial state IV can be equal to 0, the cor-
responding vibrations appearing only after the transition).

We shall illustrate the above results by considering the special case
8as=03.=%08 (model of a symmetrical crystal of the NaCl type). We shall
further neglect the forces between all but the next atoms (which are assumed
to be different) and write accordingly the potential energy U’ in the form

U = Z%f[(%k — o) 4 (Mk - Uk—l)z + (%k+1 - 'Uk)z]

k
which gives through comparison with (2)
arr = brx = 2f, Crp = Cpp1 = — f

all the other coefficients a, b, ¢ vanishing.

3 If we wish to deal with standing waves instead of running ones, the factor et in the
above formula has to be replaced by cos pk.
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We thus get, according to (5)
ap = by, =2f, ¢, = — f(1 4 €%?), c,c,* = 2f2(1 4 cos p) = 2f* cos“’—;;

whence with the abbreviations 1/u=(1/m.)+(1/ms) and m =mq+ms:

4 1/2
w2=—f—(1i|:1——'usin2—?—] >
M m 2

For small values of p, that is for large wave-lengths A =278/, this reduces to

2\ 1/2 202 p
we) ot
'3 m 2

the latter expression corresponding to a velocity of propagation

W\ £ \!2
w=""0 (—_
27 2m
independent of N\. As the wave-length decreases, w_ increases and w; de-
creases. For the shortest wave-length corresponding to p=m we have

4 1/2 4 1/2
= L (- 2") = 20-(-2))
M m M m

In the particular case m,=m; when the atoms ¢ and b can be considered as

identical, these two limits coincide (since 4u=m) and the two spectra, the

molecular and the elastical, coalesce into one single elastical spectrum de-
termined by w?=f/u(1 £ cos p/2) which is equivalent to the usual formula

4 ’

w? = — (1 — cos p') = —sin?—

m m 2

with p'=(Q2r/2n)s, s=0,1,2, - - - 2n—1.

3. MOLECULAR VIBRATIONS AS EXCITATION WAVES

The opposite limiting case when the two atoms have a very much differ-
ent mass or when the distance 8,5 is different from 644 so that the molecular
structure is more or less preserved within the crystal (represented by our
“bar”), the molecular oscillations can be treated by a method entirely differ-
ent from the preceding one (which must be preserved for elastic oscillations)
and quite similar to that which has been used to describe the motion of the
electrons within the individual atoms. We can namely describe the state of
an individual molecule by specifying its vibrational quantum number N, re-
ferring to this state as “normal” if N =0 and “excited” if N>0. The station-
ary states of the crystal will be then described by “excitation waves” quite
analogous to those which were introduced for the description of the elec-
tronic state. In fact we have but to replace the atoms and electrons of our
previous theory by molecules and atoms respectively, to get these new “mole-
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cular” excitation waves. The latter will be represented by functions

Xp=z

k

eipk¢k (8)

nl/Z

¢ being the product of the oscillator wave functions, ¥» for the separate
molecules, supposed to be all in the normal state N =0 with the exception of
the kth molecule which may be in a given (Vth) excited state. The excitation
wave defined by (8) corresponds to the “molecular oscillation wave” of the
classical theory given above and associated with the normal co-ordinate £,*
defined by (7a). The quantum number N of the excited molecule defines the
the amplitude of the oscillations and must coincide with the quantum num-
ber of the quantized oscillator describing them. The method of the excitation
waves is nothing but a first approximation given by the perturbation theory
to the exact quantum treatment which in our case consists in the preliminary
introduction of the normal co-ordinates and their subsequent quantization
and which has been used in the preceding section. It may be remarked that
this method cannot be applied to the “elastic oscillations” because they are
determined solely by interaction forces, which can be dealt with as perturbing
forces then only if there are other more powerful forces associated with the
separate particles (i.e., forces holding the electrons within the atoms, or the
atoms within the molecules).

The theory of the excitation waves as developed in I was restricted to the
simplest special case of the excitation if a single atom. Its application to
molecular vibrations implies therefore that the excitation is restricted to one
molecule only. So long, however, as the molecular vibrations are considered
as strictly harmonic this limitation has no practical significance, a complex ex-
citation state corresponding to #; molecules having N; quanta, #, having N,
quanta and so on being practically equivalent to a simple excitation state
with one molecule having #;N1+#nsN2+ - - - quanta (this multiple excitation
is of course diluted over all the molecules in the sense that it is not associated
with a particular molecule, but is, so to say, travelling from one molecule to
another).

Applying to molecular vibrations the method of the simple excitation
waves, one can treat the radiationless transitions of the energy of a crystal
from molecular vibrations to elastic ones or vice versa (that is the exchange of
energy between the normal co-ordinates £+ on the one hand and & on the
other) in exactly the same way, as this has been done above for radiationless
electronic transitions. In the present case the direct coupling between the
different elastic oscillations must play a much more important role with re-
spect to the indirect coupling (provided by the change in structure which is
produced by molecular vibrations) than in the case of electronic transitions,
since the energy quantum of the molecular vibrations is not a 100 times but
at most only 10 times as large as that of the elastic vibrations of maximum
frequency.

The transitions of energy between different elastic oscillations (that is be-
tween different £~) must of course entirely depend on direct coupling only.
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Such transitions have been studied in detail by R. Peierls* in connection
with the theory of heat conduction in crystals.

The treatment of the molecular oscillations by the method of excitation
waves entails some formal modifications of the theory of the radiationless
electronic transitions so far as the electronic excitation energy is transformed
into the molecular excitation energy.

We shall not stop, however, on this question here, and shall now proceed
to the investigation of radiation transitions, i.e. transitions accompanied by
the absorption or emission of light, with a view of introducing an important
amendment to the results of the last section of I, dealing with such transi-
tions.

4. SELECTION RULE FOR TRANSITIONS DUE TO ABSORPTION OF LIGHT;
ANALYSIS OF THE SPECTRUM OF CRYSTALS AT VERY Low TEMPERATURES

We shall again confine ourselves, for the beginning, to the case of a mono-
atomic crystal, represented by a linear model and shall determine the proba-
bility of the absorption of light propagated in the direction of our “bar.”

We shall first suppose the light wave to be harmonic (infinitely narrow
spectal line) and travelling in the same way as if there were no bar, so that
the electric intensity at a point x along the bar will be represented by

E = E°cos 2r(vt — ax) 9)
its value at the kth atom thus being
E; = E°cos (wt — qk) (9a)

where w=27v and ¢=27rad=2mw0/\, N=c/v being the wave-length of the
light in vacuo. Denoting the electric moment of the / th atom in the direction
of E (which is of course perpendicular to X) with Uy, we get the following ex-
pression for the perturbation energy:

0 n
V=—— ZUl(ei(ql—wt) + emitaton), (10)
2 =1
If our bar was initially in the normal electronic state
X0 = Xooe——inWOt/h

(x0° being a function of the electron co-ordinates alone) the probability that,
it will be switched to the excited (sub) state x,=x,’"#"7"?t* without any
alteration of the vibrational states is determined by the matrix element

VUF = fVXOXp*dT

where dr =dry-d7s - - - dr, is the volume element of the electronic configura-
tion space (drj referring to the kth atom). According to (10) and (8) (the
latter expression holding both for electronic and molecular excitation waves

4 R. Peierls, Ann. der Physik, 1930.
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with a corresponding meaning of the functions ¢ and ¢, see I), this matrix
element assumes the form

E°

Vop = — Zn_)m [e—i(w+w0p)t ]Z zl:ei(pk—l—ql)f U1 *dr

+ ei(w—wop)t Z Zei(pk—ql) f Ut¢00¢k0*d7']
k 1

where wo,=2m(W,— W) /hand ¢,°=x,". Now the integral [u;o°¢+°d7 can
be easily shown to be different from zero in the case only if k=1 (cf. I. p. 20)
in which case it reduces to

UO(I, II) = kathO(x)l//nO*(k)di
i.e., to the amplitude of the matrix element of the electrical moment of any

one of the atoms for the normal and the excited state of this atom.
The preceding expression for V), is thus reduced to

Vop = emitatan)t S piltrtak

k

BT, 1) [
2(n)1/

+ gitovn)t 3 gitr—ak il (11)

k

We need here only to consider the second term in the bracket for the first
term will not contribute appreciably to the transition probability in the
neighborhood of the “resonance condition” w=wq, or Av=W,— W, In ad-
dition to this condition which, from the corpuscular viewpoint is interpreted
as the equation of the conservation of energy and which would hold just
as well in the case of a single atom, we have to consider in our case a second
condition of the same “resonance” type, namely p=g¢, which corresponds to
sharp maximum of the sum Y i{®=9% =y (this maximum is sharper the
larger the number of atoms). This second “resonance” condition can be
interpreted as the equation of the conservation of momentum if we assume
that an excitation wave can be associated with an “excitation quantum?” simi-
lar to a light quantum and having a momentum k/N where N is the corre-
sponding wave-length. It may be remarked that the energy of this excitation
quantum whose motion represents the travelling of the excitation through
the crystal—is not related to the frequency of the excitation wave but is equal
to the difference between the energy of the excited and normal state.

The absorption of light by a crystal can be thus visualised from the cor-
puscular point of view as the transformation of the incident light quantum
into an excitation quantum having the same energy and momentum.

From the wave point of view the latter condition amounts simply to the
equality between the wave-length of the exciting light (2768/¢) and that of
the resulting excitation wave (2w8/p).



TRANSFORMATION OF LIGHT INTO HEAT IN SOLIDS 1285

This condition can be regarded as a kind of “selection rule” reducing the »
spectral lines corresponding to transitions between the normal state and the »
excited substates, to a single line, for which both the frequency (energy) con-
dition v =W, — W,/h and the wave-length (momentum) condition Niight =Nexc
are simultaneously satisfied.

It must be emphasized that the conditions » =(W,— W;)/h and Mgt =
Nexe. are not equivalent to each other and actually provide two equations for
the unambiguous determination of ». We have in fact, according to Eq. (15)
of part I (for the unidimentional case)

Wp=Vo+2Vicosp/2 (12)
whence with the abbreviations (Vo— Wy)/h=aand 2V,/h =
v = a+ fcos p/2

On the other hand we have Aexe.=2w8/p or, since Nexe. =Might =¢/7,
p=(2wd/c)v so that finally

vy = a + B cos (w6/c)y (12a)

This equation has in general only one solution which can be found to a first
approximation by substituting in the right side of (12a) the “zero approxima-
tion” » =« (so long as B is small compared with «) which gives

2mda
v =2a -+ B cos— (12b)
¢

Thus, contrary to the view expressed at the end of I, the absorption spec-
trum of a crystal so far as transitions from the normal state are concerned
which are not accompanied by a change of the vibrational state, should not
consist of continuous bands corresponding to the excitation multiplets, but of
single lines corresponding one to one to the absorption lines of an isolated
atom.

This result provides an explanation of the remarkable phenomenon re-
ferred to in I, that the absorption spectra of solid bodies which at ordinary
temperatures consist of continuous bands, at very low (liquid hydrogen
or liquid helium) temperatures become more or less linear, as those of
gases.

In fact the band structure of these spectra at ordinary temperatures must
be attributed entirely to vibrational transitions which accompany the elec-
tronic ones, and which we did not take into account in the preceding consid-
erations. The probability that a number of “heat oscillators,” elastic or mole-
cular, will participate in the electronic transition associated with light absorp-
tion, is determined in exactly the same way as in the case of radiationless
transitions; provided, namely, that each oscillator s jumps over one step only,
it is represented in the expression of the resulting transition probability by
the square of the factor (1), or rather of the factor
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wm ,
nu = 2~h—2 (AL)Nsys (1 )

the number # in the denominator of (1) being cancelled by the factor express-
ing the number of possible ways of choosing this oscillator (the total number
P of the latter participating in the transition being represented by a factor
p!in the denominator of the resulting probability). Now since #N,»; denotes
the vibrational energy of the respective oscillator (without the constant part
3hvs) which rapidly decreases as the temperature approaches the absolute
zero, it is clear that the participation of the heat oscillators in the electronic
transitions must become less and less active, which will result in the gradual
splitting up of the absorption bands into single lines.?

It must be remembered that N, in the preceding expression denotes the
vibrational quantum number of the initial state if it decreases during the
transition (N,—N,—1); in the contrary case which is in general the more im-
portant one, N; means the vibrational quantum number in the final state; for
the absolute zero of temperature upward jumps of N, are only possible with
the final value N,=1 (since the initial is zero). The same formula (1’) shows
that in this case, i.e., with all the N, equal to 1, the probability that an oscil-
lator will participate in the transition is proportional to the square of its fre-
quency. Therefore at very low temperatures practically oscillators of the
highest frequency only i.e. the molecular oscillators, and to some extent the
elastic oscillators with the highest frequency vmax (“characteristic frequency”
of Debye), will participate in the transitions.’ In the case of a simple (mono-
atomic) crystal only the latter come into consideration. We are lead thus to
expect that the absorption spectrum of a monoatomic (non-metallic) crystal
at or near the zero point of temperature must consist of groups of lines, cor-
responding to the absorption lines of an isolated atom, each group consisting
of a series of equidistant lines with the constant spacing Ay = hvmax. The lowest
frequency line must have the largest intensity for it must correspond to the
purely electronic transition, the next one, with a shorter wave-length and
smaller intensity to a transition associated with the upward jump of one
oscillator, the next with a still shorter wave-length and still smaller intensity,
to a transition associated with the upward jump of two oscillators and so on.
These lines must have a sharp edge on the high-frequency side and a rather
diffuse one on the other side (since elastic oscillators of lower frequency will
also, to some extent, participate in the transitions).

So far as the “selection principle” derived above for a monatomic crystal
(i.e. the condition Ajigns =MAexe.) remains valid for a diatomic one, which can
easily be shown to be the case, the preceding analysis of the zero-point spec-
trum can be immediately extended on diatomic crystals. In this case each

§ At the same time will decrease the natural width of these lines which is proportional to
the probability of a radiationless transition from the excited state into the normal one.

6 The predominance of these oscillators is insured not only by their higher frequency but
also in a three dimensional crystal, by their larger number, the number of oscillators with a
frequency between » and »-+-d» being proportional to »%d».
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group of lines corresponding to a particular absorption line of one of the
atoms (if they are different”) must be subdivided into two groups, the spac-
ing in the one being Avn.. and in the other Av,, vmax being as before the
maximum frequency of the elastic spectrum, and », the molecular vibration
frequency. The lines of the second group can be expected to have larger in-
tensities than those of the first. In both cases increasing frequency must cor-
respond to decreasing intensity.

As the temperature increases the satellites, due to the participation in the
transitions of the elastic oscillators, must become more and more diffuse on
the short frequency side, owing to the rapid increase of the energy N,kvo and
consequently the “activity” (in the sense of their participations in the transi-
tions) of the lower frequency oscillators until each group of lines will be trans-
formed into a diffuse continuous band. Thus on our theory the continuous
character of the absorption bands in the spectra of solid bodies at ordinary
temperatures is to be ascribed to the equi-partition of energy between the
elastic oscillators of different frequencies, resulting in an equal participation
of all these oscillators in the transitions associated with the absorption of
light.®

5. GENERALIZATION OF THE THEORY AND APPLICATION TO THE SCATTERING
or LiGgHT

The conclusions of the preceding paragraph have been reached on the
basis of a result (“selection principle”) whose derivation has been neither gen-
eral, for we have limited ourselves to a unidimensional model of a monoatomic
crystal, that was supposed to be initially in the normal state, and did not
take into account the vibrational motion, nor rigorous, for we have assumed
that the incident light wave were travelling through the crystal, as if the latter
was absent, and did not allow for the finite spectral width of thislight.

We must now remove these defects and thereafter revise the above con-
clusions in the light of the improved theory.

(a) We shall examine first of all the generalization from the unidimen-
sional to the three-dimensional crystal lattice. This generalization amounts to
the replacement of the numbers %, specifying the position of a given atom in
the lattice by triplets of numbers k1, k2, k3 which can be considered as compo-
nents of a vector k and a similar substitution of vectors p and g for the scalars
p and ¢ characterizing the wave-length of the excitation waves and of the
light waves. The direction of these vectors defines the direction in which the
respective waves are propagated; their magnitude is connected with the
wave-length in the same way as before (Miight=2m06/q, Aexe.=276/p). The
components of the vector p can of course assume values of the type
pi=2mr;/n; where r; are integers and #; denote the numbers of atoms along

7 If they are identical we have to deal with a molecular lattice and compare its spectrum,
not with that of one of the atoms, but rather with that of an isolated non-rotating molecule.

8 Another cause of the broadening of the lines lies in the radiationless transitions from the
excited state into the normal one, the probability of the the transitions being a measure of the
breadth of the lines. It is, however, difficult to estimate the value of this breadth.
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the different edges of the crystal (supposed to be of rectangular shape and to
have a cubical lattice with the constant §).

The formula (11) which serves to determine the transition probability
will remain valid for the three-dimensional case if the product of p; and ¢ is
replaced by the scalar products of the corresponding vectors. As a result we
shall obtain our “selection principle” in the form p =q expressing the equality
not only of the magnitudes of the vectors p and ¢ but also of their directions,
or from the point of view of the quantum interpretation, the transformation
of the incident light quantum into an excitation quantum with a momentum
of the same magnitude and direction.

(b) The generalization of the preceding result for a diatomic (or many
atomic) crystal is quite simple. We have, namely, seen that in case of different
atoms the excitation waves for the atoms of one kind are to a first approxima-
tion completely independent of the presence of the atoms of the other kind.
Equation (11) in the “vectorized” form will, therefore, apply to the atoms of
each kind separately.

The situation is somewhat different if the atoms supposed to be of differ-
ent kind differ only with respect to their position, but are actually of the
same kind. This corresponds to a molecular lattice, such as the lattice of I,
(solid iodine) for example. In this case it is convenient to replace the atoms as
elements of the crystalline structure by the molecules and deal with the mo-
lecular vibrations in the same way as with the electronic ones, i.e. describe
them by means of the excitation waves.

(c) This remark brings out the following interesting point. We have just
shown that the excitation waves must be associated with “excitation quanta”
possessing a momentum in the direction of propagation, and that the “selec-
tion principle” p =g can be regarded as the equation of the conservation of
momentum in the process of the absorption of a light quantum. Now if mo-
lecular vibrations (both in the case of equal or different atoms) are described
by excitation waves, it seems possible to combine an electronic transition with
a transition of some molecular vibration type in such a way that the equation
g =p should be replaced by an equation g =2p for the different excitation
waves involved in the transition, so that the electronic transitions will no
longer be restricted by the above selection principle.

This argument is, however, erroneous. Let us remark first of all that if a
few different types of excitation waves (corresponding to states with approxi-
mately the same energy) would be generated simultaneously forming a com-
bined wave of the type x =c¢'xp’+¢""xp''+ - - - the momentum equation
would run g=|¢'| 2p’+|c”’| 2" - - - . It can further be easily seen that it
should be fulfilled for each of the constituting waves (representing a station-
ary excited state) separately, so that g=p’=p’” = - - - . Since Ic'l 24| ¢ 2
+ - - - =1 the preceding equation actually reduces to g = p for any one of the
waves.

It must finally be born in mind that such excitation waves can be gener-
ated only for which the matrix element of the electric moment / (I, IT) of
an atom, or a molecule, is different from zero. In case of a diatomic homopolar
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crystal of the type of I this condition would obviously not be satisfied for
excitation waves of a purely molecular vibration type. In general the propor-
tionality of Vi, to U(I, IT) shows that excitation waves can be generated only
which correspond to the optically excitable states of the separate atoms or
molecules of which the crystal is built up.

It follows from the preceding considerations that the vibrational motion
of the atoms (or molecules) in a crystal, or the transitions from one vibra-
tional state to another, which may accompany the electronic transitions, do
not impair the “selection principle” provided by the equation g =p for these
electronic transitions.

This result requires but a very slight amendment in connection with the
following circumstances. In consequence of the vibrational (heat) motion the
atoms no longer form a regular lattice, which they were assumed to form in
the derivation of the above equation. Taking again for the sake of simplicity
the case of a linear lattice we can define the displacements of the atoms from
their equilibrium positions by adding to their ordinal (integral) numbers &
small fractions % whose products with § are equal to the respective displace-
ments. Now #; can be represented as a superposition of Debye waves in the
form-

Up = P et k=t
-

where @, are very small amplitudes.

The factors eti?' in the perturbation function (10) must be replaced ac-
cordingly by etie(+u or, since %, is very small, by et?¢(1 4-4qu,). Effecting the
same substitution in (11) we must replace w — wo, by @ —wg, —w’ and the sum
2 et »~9F whose maximum value has to be sought for the determination of
our “selection principle” by

> eitr—ak — iq D ay D eirr—ak, (13)
k p’ k

The latter expression has besides the main maximum for p=g secondary
maxima for p =g+’ which can be interpreted from the quantum corpuscular
point of view as the equations for the conservation of momentum of the light
quanta, excitation quanta and “heat-quanta” or “sound-quanta” correspond-
ing to the Debye waves. The resonance condition for the frequencies w=wy,
is in all cases replaced by w = wo,+w’ which can be interpreted as the energy
equation for the above three types of quanta.® This equation is consistent
both with the equation p=g-+p’ and with the equation p =g which means
simply that in the transition process two standing sound waves of opposite
directions, forming a standing wave with no resulting momentum, are gener-
ated. Since the main maximum of the expression (13) which is approximately
equal to the number of atoms # is much more important the secondary ones

9 These results are identical with those obtained by Ig. Tamm in his rather elaborate

theory of the scattering of light in crystals. The notion of “sound quanta” is also due to this
author.
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which have the order of magnitude of nga, the vibrational motion of the atom
has practically but a very small influence on the position of the groups of ab-
sorption lines in the spectrum of the crystal. Nevertheless we must be pre-
pared to find with rising temperature new groups in the form of continuous
bands to appear which correspond to the “unusual” selection rules p =¢q+p’
and whose intensity must increase linearly with the absolute temperature
(in the equipartition region).

(d) The last generalization that we have to carry out is the allowance for
absorption transitions not from the normal state to an excited one, but from
one excited x, ' state to another x,-’' (with a higher energy). It is clear that
the preceding results will still be valid for this case if we replace wo, =27 (W,
—Wo)/h by 2m(W "' —W,') /h and the vector p by the vector difference
p'’—p’, so that the two “resonance conditions” for the frequencies and the
wave-lengths, i.e., the equations of conservation of energy and momentum,
assume the form

W — Wy
hV=___};.___—7q=pN___pl qg =

— [ g
) - ’ ’ p - 24
)\light Aexc Aexc

2md , 276 27 >
if the effects of the heat motion and if the corresponding (vibrational) transi-
tions are neglected.

The preceding results must obviously hold not only for the absorption
but also for the emission of light (in a definite direction) and can be still
further generalized to allow for its scattering (by replacing » and g by the
differences »' —»'’ and g’ —q’’ for the incident and scattered light). We shall
not engage into a detailed investigation of this question and shall satisfy our-
selves with the following remarks. First, that the present theory of light scat-
tering in crystals so far as the relations between energy (frequency) and mo-
mentum (wave number) are concerned is the exact analogon to Schrédinger’s
theory of the Compton effect, i.e., of the scattering of light by free electrons,
the electron waves being replaced in our case by the excitation waves. In fact
the above considerations form the basis of a theory of the Raman effect, which,
as well known, is the analogon of the Compton effect for bound electrons
and atoms bound together into molecules. The analogy between the two ef-
fects is most clearly brought out by means of the conception of the excitation
waves as the analogon of cathode waves. Second, that the Raman shift of the
frequency of the incident light »' —»"’ can be calculated either by considering
molecular vibrations by the method of excitation waves, or by incorporating
them into the heat motion and allowing for the latter according to section (c).
Third, that the development of the theory sketched above in the quantita-
tive direction, i.e. to enable one to calculate the intensity of the scattered lines,
both shifted and unshifted, does not present any difficulty, for this calcula-
tion can be easily reduced to the corresponding-calculation for an isolated
atom or molecule (if the molecular vibrations are described by excitation
waves).
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6. IMPROVEMENT OF THE THEORY; FINITE WIDTH OF THE EXCITATION LINES,
AND INFLUENCE OF THE DAMPING OF THE Li1GHT WAVES

We must now turn to the improvement of our theory of light absorption
with respect to rigour.

(a) We have assumed the light to be strictly homogeneous, which of course
is not the case. This circumstance can, however, easily be taken into account
in exactly the same as this is done for a single atom. The result will be that
the probability of the transition xo—>x, in the case of a linear crystal lattice
considered in §4 will be equal to the probability of the corresponding transi-
tion for a single atom (which is proportional to l U, II)[ ) multiplied with
the square of the modulus of the factor

n

1
S =— Y itk (13a)

nll2 It

(cf. Eq. (11)). The maximum value of the sum D_ei®»=9* for p=q being =,
the total probability for the light absorption by the crystal turns out to be
equal, for the lines “allowed” by the “selection rule” p =g, to # times the cor-
responding probability for a single atom. This is just what would be expected
on the assumption that the atoms of the crystal do not influence the propa-
gation of the light waves.

The result obtained, which obviously holds for a three-dimensional crystal
lattice just as well as for a unidimensional one, requires strictly speaking,
some modification. In calculating the transition probability under the action
of a spectral line of finite width, one has to take into account the variation of
g=2mwd8/N=0w/c in the factor (12a) with the frequency of the light v =w/27.
This would amount to replacing the product of | S| 2 with the integral

f+w ei(w—wop)t _— 1
w — Wop

o0

2

dw

occurring in the theory of light absorption by a single atom by the integral
+o0 ei(w—wop)t — 1 2
f —————— || S| %o

It can be easily shown, however, that maximum of | S| about ¢=p is much
flatter than the maximum of the function

eilometmt — 112 §in? (w — wop)t/2

((w - “’Op)/z)2

about the corresponding point w=uwy, so that in carrying out of the integra-
tion l S [ 2 can be replaced by its maximum value (#) corresponding to w= wop
with a proper choice of p, of course. The dependence of | S[ 2on ¢—p can be
easily determined. We have namely for a unidimensional lattice if % is varied
from 0 till z—1

W — Wop
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1 eit—on — 1
nil2 it — 1
whence
1 sin?#n(p — q)/2

PRy Py (13b)

i

| s

The effective width of the maximum of |S|? can thus be determined for a
definite value of ¢ and a variable p by

Alp —q) = Ap =2n/n
or, since p =2m8/Nexe (Nexe =wave-length of the excitation wave)

' Alexc ! Aexc Aexc Alight
—_— = = = — (14)
Nexe no L L

where L =6 is the total length of the lattice.

This result can be easily generalized for the case of a three-dimensional
lattice, L denoting in this case one average linear dimension of the latter. The
width of the absorption region, i.e., the frequency interval Av for which transi-
tions from the normal state to excited sub-states can take place according to
our “unsharp” selection rule is given according to (12) by

Ay = —ﬁ- sin —aAp
2 2
that is
7rV1 . o
Ay = — sin — (14a)
hn A

where N can be identified with the wave-length of the light. Since §/\ is for
ordinary light a very small quantity we can put sin (w8/\) =78/\ and con-
sequently

1I'2V1 6

T (14b)

Ay =

Thus the width of the absorption lines, so far as the vibrational transitions
are not taken into account, remains very small at least for crystals of ordinary
size. The incompleteness of “resonance” with respect to the wave-lengths,
i.e., the departure of Migns—Nexe from zero, does not therefore contribute ap-
preciably to the width of the lines. At very low temperatures this width must
be determined mainly by the probability of the radiationless transitions,
whereas at higher temperatures the linear pattern of the spectrum is wiped
out by the participation of the low frequency heat (sound) vibrations in the
transitions as has been explained above (§4).
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(b) It remains for us now to take into account the fact that the propaga-
tion of light in a real three-dimensional crystal is substantially affected by
the latter, especially in the region of selective absorption, with which we are
particularly interested. This influence can be accounted for by replacing the
vacuum wave-length of the light Ny or the corresponding quantity ¢=go
=2wd/No by a certain complex quantity ¢ =¢:—1¢s determining the effective
wave-length N 1(g1 =27d/N1) and the absorption coefficient g/ 8.

In the case of the unidimensional lattice (“bar”) considered above, the
intensity factor (13a) assumes under this condition the form

1 e(i(ﬁ—_m)—qz)"_—l

ntl2  eilr—a)—a—1
whence
1 1 —2e2*cos (p — qi)n + e~2an

[sfr= 1
n 1 — 2e%cos (p — qu) + e

For large values of # this reduces to

1 1
|S[t=— — (15)
n 1 — 2¢ucos (p— q1) + e

the maximum of this expression for p—q; = 0

1
[S]2 = ——— (15a)
n(l — e u)?
being of course smaller and flatter than in the case of ¢go=0. The flatness of
this maximum must increase the width of the absorption lines and might in
fact lead to their transformation in comparatively broad bands even without
the participation of the low frequency vibrations. The width of the maximum
of | S [ 2 may be roughly put equal to ¢. if g; is sufficiently small, which gives
for Av the effective width of the absorption line, the expression
V1 P 7rV1Q25

Av = — @y 8in — =
p n

(16)

The ratio ¢gs/6 represents the value of the absorption coefficient of the light
per unit length of path and its product with \, gsA/8 =u the absorption coeffi-
cient per wave-length. Substituting this in the preceding formula we get

- . a
’ K )\

This formula shows that unless u is unreasonably large Av remains actually
small. It may be remarked that the ratio V1/k represents a frequency which
is about at least 10 times smaller than the frequency of ordinary light.

The preceding results can be easily generalized for the case of an ordinary
three-dimensional crystal.
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(c) In conclusion the following point should be noted. Since the resonance
conditions for the frequencies and for the wave-lengths are both unsharp, the
excitation state of the crystal induced by the absorption of light must be
represented not by one definite excitation wave, but by a superposition of a
number of such waves with approximately equal lengths and frequencies, i.e.
by a group of excitation waves. The corresponding group velocity can be con-
sidered as the velocity with which the “excitation quantum,” i.e., the excita-
tion state supposed to be localized in a definite atom and described as a cor-
puscule, should travel through the crystal (cf. I, §2).



