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ABSTRACT

The classical theory of x-ray scattering has been applied to the scattering of
x-rays by the electrons in the atoms of a solid. The case in which the solid consists
of atoms of one kind has been considered. The interactions of the waves scattered by
each electron with those scattered by every other electron in the solid has been con-
sidered. The analysis is simplified by the fact that the orbital periods of the electrons
in the atoms are very much shorter than the vibrational periods of the atoms due to
thermal agitations. The final formula obtained is

J;2
S = 1 + (Z —1)—+—X

Z' ZN

where S is the scattered intensity per electron relative to the scattered intensity from
a single isolated electron, Z is the atomic number, P the atomic structure factor in-

cluding the effect of thermal agitation, f' is related to f the true atonmic structure
factor (without thermal agitation), N is the total number of atoms, and X is a cer-
tain double summation. The value of X has not been obtained for an amorphous
substance but it has been evaluated for the case of a simple cubic crystal by Jauncey
and Harvey in the following paper in this issue of the Physical Review,

I. INTRODUCTION

N 1922, Jauncey' found that x-rays are diffusely scattered by crystals in a
. way which is similar to the scattering by amorphous solids. In particular,

the spatial distribution of the scattered rays was found to be about the same
for the crystals of rocksalt and calcite as for the amorphous substance glass.
These experimental results were in distinct contrast to the results predicted
by Debye's theory' of the intensity of x-rays regularly reHected by crystals.
Debye's theory requires that diffuse scattering from crystals must occur, but
that the spatial distribution and intensity of the rays scattered by crystals
should be very different from the distribution and intensity of the rays scat-
tered by amorphous substances. Furthermore, Debye's theory predicts that a
rise of temperature will cause an increase in the intensity of the rays scattered

' G. E. M. Jauncey, Phys. Rev. 20, 405 (1922). Note: Figs. 2 and 6 in this reference should
be interchanged.

' P. Debye, Ann. d. Physik 43, 49 (1914).
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by crystals. Accordingly, Jauncey' investigated the eRect of temperature by
measuring the intensities of the rays scattered by rocksalt and calcite at
568'K and at 290'K. It was found that neither rocksalt nor calcite showed as
great an increase of temperature as was demanded by the theory. In 1924,
Jauncey and May4 again investigated the scattering of x-rays by rocksalt
and determined absolute values of the scattered intensity. The results agreed
with the results previously found by Jauncey. '

In 1917, A. H. Compton carried out a theoretical investigation of the
eRect of atomic structure on the intensity of x-rays regularly reflected by
crystals. The unit in the diffraction or scattering of x-rays by matter is the
electron. The intensity of the x-rays scattered per unit solid angle by a single
isolated electron in a direction Q with the primary x-rays has been shown by
J. J. Thomson' to be

I = Io(e4/2m'c')(1+cos' g)

where Io is the intensity of the primary x-rays. If Z electrons are closely
packed together so that the charge of the aggregation is Ze and its mass is
Zm, it is seen from Eq. (1) that the intensity of the rays scattered by the ag-
gregation is Z' times the intensity scattered by a single isolated electron, or
that the scattered intensity per electron in the aggregation is Z'/Z =Z times
the intensity scattered by a single isolated electron. Hence, an atom which
contains Z electrons closely packed at the center will give rise to scattered
x-rays in a direction P which have an intensity per electron of Z times the
intensity scattered by a single isolated electron. If, however, the electrons are
not massed close to the center of the atom, but are at distances from the
center comparable with the wave-length of the x-rays, both constructive and
destructive interference takes place between the x-rays scattered by the vari-
ous electrons in the atom, with the result that the intensity per electron of
the scattered rays is less than Z times the intensity scattered by a single
isolated electron. The intensity of the x-rays scattered by a number of atoms
depends upon the configuration of the electrons within each atom and upon
the configuration of the atoms themselves. If the atoms are arranged in a
crystal lattice, there are certain special directions in which the x-rays are
scattered with great intensity, and thus we obtain Laue spots. However, if a
Laue photograph is examined, it is found that in between the black spots on
the developed photographic film there is general but less intense blackening.
Part of this general blackening is due to the diRuse scattering found by
Jauncey. ' There are thus two effects in the scattering of x-rays by crystals,
namely, special scattering, which produces Laue spots and which is caused by
regular reHection from planes of atoms according to Bragg's law, and diffuse
scattering.

The problem of the intensity of the special scattering by crystals has been

' G. E. M. Jauncey, Phys, Rev, 20, 421 (1922),
4 G. E. M. Jauncey and H. L. May, Phys. Rev. 23, 128 (1924).
' A. H. Compton, Phys. Rev. 9, 49 (1917).
' J. J. Thomson, "Conduction of Electricity through Gases, " 2nd Edition, p. 325.



discussed at length by Compton. ~ The con6guration of the electrons in an
atom is both rapidly and continually changing, and it becomes necessary to
obtain a time average of the intensity of the x-rays scattered (the term "scat-
ter" includes the ideas of both special and diffuse scattering) by the atoms of
a crystal. However, the kind of average depends upon the particular effect in
which we are interested. If we are studying the special scattering (i.e. Bragg
reHection), we take one kind of average, whereas, if we are studying diffuse
scattering, we take another kind of average. The erst kind of average leads to
the atomic structure factor as discussed by Compton. ~ Recently Compton'
has developed the theory of diffuse scattering from the atoms of a monatomic
gas. The scattering per electron in a d'irection @ with respect to the primary
rays is determined only by the average conhguration of the electrons within
each atom, and not by the con6guration of the atoms themselves. The atoms
are so far apart that they can be treated as isolated systems of electrons. In
the case of a gas there are no directions in which special scattering takes place.

The amplitude of the waves scattered in a direction P by a single isolated
electmn is proportional to the square root of the right side of Eq. (1). For
convenience, this amplitude is represented by unity. In the case of special
scattering by a crystal (Bragg reHection), the intensity is pmportional to the
square of the time average of the amplitude per electron. In the case of diffuse
scattering, the intensity of the scattered rays is proportional to the time aver-
age of the square of the amplitude per electron.

As example of the two kinds of average, let us consider the case of an atom
with two electrons, both at a distance r =a from the center, but with random
orientations. If a crystal consists of atoms of this kind and if the center of
each atom (the nucleus) is exactly at a lattice point and there is no thermal
agitation, Compton' has shown that the square of the average amplitude per
electron is E', where

E = (sin ka)/ka

k = (4n. sine)/X. (3)

In Eqs. (2) and (3), 0 is the glancing angle of incidence when the crystal is
set for the regular reflection of the wave-length ) . If, however, a monatomic
gas consists of atoms of this kind, Compton' has shown that the average
square of the amplitude per electron is

5 = 1+ (sin' ka)/k'a'

where k is given by Eq. (3) and 8 is half the angle of scattering.
When E, the average amplitude per electron in a crystal, is multiplied by

Z, the atomic structure factor F is obtained. In 1921, Bragg, James and
Bosanquet' showed how experimental values of the atomic structure factor. ,

7 A. H. Compton, "X-Rays and Electrons, " Chap. V.
8 A. H. Compton, Phys. Rev. 35, 925 4,'1930).
' Bragg, James and Bosanquet, Phil. Mag. 41, 309 {1921);42, 1 t,'1921).
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or F values as they are called, can be obtained from the experimental values
of the intensity of x-rays reflected in different orders from the different sets of
planes in a crystal. In an actual crystal, however, the atomic nuclei are sub-
ject to thermal agitation and the atomic structure factor I' which is obtained
from crystal reflection is not referred to the center of the atom but to a lattice
point about which the center of the atom vibrates. We shall call the atomic
structure factor which is referred to the center of the atom or nucleus the true
atomic factor, and we shall represent this by f

For several years it has seemed to the writer that in order to unravel the
structure of atoms by means of x-rays it would not only be necessary to make
observations on the x-rays regularly reflected, but also on the x-rays diffusely
scattered by crystals. The one eRect must in some way be complementary to
the other. It is the purpose of this and the following paper to show how the
two effects are interrelated.

I I. GENERAL THEORY

We shall first consider the intensity of the x-rays scattered by a large num-
ber, n, of electrons. Take a point 0 as shown in Fig. 1. Let AO represent the
direction of the primary x-rays and OB the direction of the scattered rays.
The plane containing AO and OB is then the plane of scattering. Let OV

Fig. 1.

bisect the angle BOB. Now draw a, plane perpendicular to the line OV, and
let OU be the line where this plane cuts the plane of scattering. We shall call
the plane whose trace is OU the reference plane. The waves which are scat-
tered by all electrons in the reference plane are in phase with each other. We
shall assume the phase angle of all such waves to be zero. Consider an electron
at P. The path retardation of the rays scattered by the electron at P rela-
tive to the rays scattered by an electron in the plane OU is CP+PD. This re-
tardation can be shown to be 2s sin 0, where z is thej length of PE and PE is
perpendicular to the plane OU. The angle 0 is one-half the scattering angle

@. The retardation depends only upon the distance of P from the reference
plane and is not affected by moving P in any direction parallel to the ref-



SCATTERING OF X-RA YS ii97

erence plane. The phase angle of the waves scattered by an electron at P is
then

(2x/X)2s sin e = (4s s sin 8)/X

For brevity we shall call this phase angle ks where k is given by Eq. (3) and 0
of that equation is P/2.

Let the rth electron be at a distance s„ from the reference plane, so that
the phase angle associated with this electron is kz„. The amplitude of the waves
scattered by a single isolated electron is unity, so that the resultant amplitude
of the waves scattered by n electrons is the vector sum of the amplitudes
associated with each electron. The resultant intensity I is the square of this
vector sum, so that

I = cos ks„ + sin ks„

Since cos 'ks„+sin 'kz„= 1. , this reduces to

The symbol g'P' implies that in the double summation r is never taken
equal to s. The value of I given by Eq. (7) is that due to a particular con-
figuration of the n electrons. If' the electrons are moving about, we must con-
sider the probability of the configuration which gives rise to the intensity I.
Let the probability that the rth electron is between s„and s,+ds„be p„(s„)ds„.
For brevity we shall write this p„dz„. The probability of a given configuration
is then II,":—&"p„ds„. The average intensity is therefore given by the n-tuple
integral

It should be remembered that n is the total number of electrons in, say, a
0.1 mm cube of a substance, and is therefore a number perhaps of the order
10'~. The limits of each integral are such that each

In consequence of Eq. (9),

'O' ' N PCS —N

immediately. To evaluate the integral of the double summation, let us fix
our attention on one of the terms of the summation, say, cos k(s —z„), which
refers to the two particular electrons, the Nth and the vth electrons. In carry-
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ing out the n-tuple integration, each integral with respect to s, will equal
unity unless r=u or v. Hence we can perform (n —2) integrations, so that

f
r=@

cos k s —s p ds
1=1

JfJf p„p„cos k(z„—s„)ds„ds„(11)

Hence

I., = ~+ g'Q' JfJf p„p, cos k(s„—s,)dz„ds, .

Dividing Eq. (12) by e, we obtain the scattered intensity per electron, thus

S = 1 + (1/e) g' g' Jfjf p„p, cos k(s, —s,)ds, ds, .

III. ScATTERING FRoM A SQLID

Actually, of course, electrons are aggregated into atoms. We shall now
consider the scattering of x-rays by the electrons in the atoms in a solid con-
sisting of one kind of atom each of which contains Z electrons. We shall
assume that the motions of the electrons within an atom are very much more
rapid than the heat motion of the atom. This enables us to obtain a time
average of the configuration of the electrons within an atom over a time inter-
val which is long compared to the orbital period of an electron within the
atom, but which is still so short that the configuration of the atoms them-
selves has practically remained unchanged during the interval.

The rth and sth electrons of Eq. (13) may or may not be in the same atom.
Let us consider the case where they are in the same atom. In this case we

may take the reference plane of I'"ig. 1 through the nucleus of the atom. If we
assume that the probability function for each electron is symmetrical about
the reference plane through the nucleus, then each

pr COS ~Brett X ps COS ~~s~~s

By referring to Compton, ' it will be seen that

p„cos ks„dG„= E„
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where E, is the average amplitude associated with the rth electron. Hence

JfJf p„p, cos k(s„—s,)ds„ds, = E,E, . (17)

In each atom there are Z(Z —1)/2 pairs of electrons and this is the number
of the products 2E,E, for each atom. Let us now introduce an average quan-
tity 8', defined by

r=z s=z

Z(Z —1)E'2 = ~' g'E, E.
r= l s= 1

where in the summation r is not taken equal to s. Also let us introduce a
quantity f' defined by

fr —ZE (19)

In the theory of crystal reHection, ' the true atomic structure factor f is de-

fined by

(2o)

The double summation for each atom is therefore Z(Z —1)f"/Z', and, since
there are n/Z atoms, we obtain on summing for all the atoms

(&/Z) X Z(Z —1)f"/Z' = e(Z —1)f"/Z'.

Multiplying by 1/n, Eq. (13) reduces to

(21)

S = 1 + (Z —1)f' /Z + (1/n) g" g" ~fJf p,p, cos k(s, . —s,)ds,dsr, (22)

where the

symbol+�

"g"denotes summation when the rth and sth electrons
are always in different atoms.

0 A P

Fig. 2.

IV. ORBITAL MOTIONS OF THE ELECTRONS IN THE ATOMS

In Fig. 2, let OU be the reference plane and let the center of the tth atom
be at Q and let the vth electron which is in the tth atom be at S. Let AQ =x,
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and CS =y&„, so that the distance of the electron at S from the reference plane
1s

~tt' xf + /tv ~ (23)

Similarly, let the center of the uth atom be at R, and the mth electron in this
atom be T. Let ER =x„and FT =y„, so that

~un —&M + P~im ~ (24)

Taking two particular atoms, together with a particular electron in the
first atom and a particular electron in the second, we may average for the
positions of the two electrons by taking an interval of time which is long
compared with the orbital period of the electrons, but so short that the cen-
ters of the atoms have practically remained stationary during this interval.
Hence we can treat the x's as constant when we integrate and ds may be re-
placed by dy. In this case

Jtjl p,p, cos k(»„—s,)ds„dz,

pIP~ cos k x& —x + y~
—

y~ dy~dy2

= cos k(x& —x ) J/J)PiP2 cos k(yi —ys)dy&dy,

(25)

—sin k(x, —g ) pgpp sin k(y~ —ys)dygdyg

where the subscripts 1 and 2 have been written for the subscripts tv and um.
The p's are now probability functions referred to the center of each respec-
tive atom. If the atom is symmetrical the integral containing sin k(y~ —y, )
vanishes and we are left with the integral containing cos k(y& —y2). The term
containing this integral then reduces to

= EyE» cos k(x( x~)
(26)

where the E's are given by Eq. (l6). If the atoms are of the same kind and
we sum for the Z electrons in each of the two particular atoms, we obtain

(
r=z 2

PE, cos k(x, —x„).

Then, summing for all the atoms, we obtain

t p,p, cos k(s„—s,)ds.ds, = f' g' g' ros k(x& —x„) (27)
F S



We now remember that although the electrons in the atoms are moving
much more rapidly than the centers of the atoms, yet the atoms are them-
selves moving with their thermal velocities. If we are dealing with a solid,
the centers of the atoms are vibrating about their mean positions. Ke there-
fore introduce a probability function I' for the center of the atom. Taking an
average over a time long compared with the period of thermal oscillation of
the atoms but short compared with the time during which scattering meas-
urements are made, we see that Eq. (22) becomes

5 = 1+ (Z —1)f"/Z'+ (f'/ZS) Q' Q' )f)II'c& cos k(x& —x„)dx,dx„(28)

where I)I = n/Z, the number of atoms involved.
Let us replace the x's in Eq. (28) by s's, and let s, now refer to the distance

of the center of the rth atom from the reference plane. Next, let the rth atom
oscillate about a mean position whose distance from the reference plane js g„.
Also let the displacement of the center of the atom from its mean position be
y„so that z„=x„+y„.The problem thus becomes similar to that in section IV
of this paper and the analysis is similar, excepting that in the case of an
amorphous solid it does not seem reasonable to assume that the probability
function for the displacement of the center of the atom from its mean position
js symmetrical about the mean position. However, if we do make this as-
sumption in order to simplify the analysis, the double integral of Eq. (28)
becomes

Jtj t I',I'„cos k(s~ —s )ds|dz„= II„II,cos k(x„—x,) (29)

II„may be called the temperature factor for the. rth atom. If, in additio~, we
make a second simplifying assumption that II is the same for all the atoms of
the solid, and if we write I" for fII,

5 = 1 + (Z —1)f"/Z'+ (I"/Z1V) g' g' cos k(x„—x,)

where x„ is now the Axed mean position about which the center of the atom
oscillates. The quantity I' is the atomic structure factor which includes the
effect due to thermal agitation, while f' in virtue of Eqs. (18), (19) and (20)
is related to the true atomic structure factor f according to
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Hence except when the probability function E„ is the same for each electron
in the atom f'(f It i. s unlikely that the probability function for a Eelect'ron
is the same as that for an L electron and therefore f' should be greater than
the true atomic structure factor.

The double summation in Eq. (31) has not been determined for an amor-
phous solid, but can be evaluated for a simple cubic crystal consisting of
atoms of one kind. This evaluation has been effected by Jauncey and Harvey
in the following paper in this issue of the Physical Review.


