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ABSTRACT

Cylindrical rods cut from two samples of stainless steel are excited to longitudinal
vibration in a magnetostriction oscillator and the resonant frequencies at which the
rods control the oscillator are measured by beating with a crystal oscillator of known
frequency. Many rods of each material are measured in order to test the theoretical
relation given by Lord Rayleigh between the natural longitudinal frequency and the
dimensions, in particular the effect of the diameter of the rod on its frequency.

Evidence is presented to show that, in general, the frequency measurements are
good t0 0.01 percent or better. The lengths of the rods are known to 0.02 percent or
better and the diameters to from 0.05 percent to 0.5 percent according to the size of
the rod.

A very brief theoretical discussion is given to show that if Rayleigh's frequency
equation for the “free-free” longitudinal vibration is sound then the theory of G. W.
Pierce for the magnetostriction oscillator leads to approximate frequency equation
of the same form but with slightly different constants for the case where the cyl-
inder is driven in a magnetostriction oscillator at resonance.

The relation between the measured frequencies and the dimensions is shown
graphically for each of the two kinds of stainless steel. On the same graphs are plotted
curves for the theoretical formula with constants chosen to give the best fit with the
experimental points. Agreement of 0.2 percent or better is obtained for one of the
samples and 0.1 percent or better for the other. It is pointed out that in all probability
a large part of this deviation from the theoretical curves is due to the lack of uni-
formity of consistancy in the alloys used.

HE magnetostriction oscillator, invented by Professor G. W. Pierce,’

offers a means of maintaining and accurately measuring the frequencies of
longitudinal elastic vibrations in bars and rods. The method is, of course,
limited to the ferromagnetic metals and only such of those as show strong
magnetostrictive properties, but the frequencies can be measured to one part
in ten thousand so that it has been interesting to change the dimensions of
a cylinder of stainless steel in small steps and determine its longitudinal
frequencies after each cutting. By this process it has been possible to
examine the nature of the dependency of frequency on the length and diam-
eter of the cylinder over a certain range of dimensions. It turns out, as will
be seen, that this relation between the frequencies and the dimensions is very
nearly that predicted for the “free-free” vibrations of a cylinder by elastic
theory.?

1 G. W. Pierce, Proc. Am. Acad. Sci. 63, (1928).
2 “Mathematical Theory of Elasticity” by A. E. H. Love. Cambridge University Press.
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EXPERIMENTAL

The apparatus used consisted of a magnetostriction oscillator with
one stage of amplification, a piezoelectric oscillator also with one stage of
amplification, and an audiofrequency meter with telephones. These three
pieces were connected together as shown in Fig. 1. The outputs of the
two oscillators were joined and connected to the input of the frequency
meter so that any audible beat frequencies could be measured.
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Fig. 1. Showing the arrangement of the apparatus.

The magnetostriction oscillator was of the type invented by Professor
Pierce and described by him in the paper referred to in footnote! below.
It was a commercial model manufactured by the General Radio Company, of
Cambridge, Massachussetts. In Fig. 2 the wiring diagram for this oscil-
lator and its accompanying single stage of amplification is reproduced
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Fig. 2. The wiring diagram of the magnetostriction oscillator.

from Professor Pierce’s paper. In as much as the oscillating circuit must
be tuned to a natural period of the rod to start it vibrating, any one pair
of coils (i.e. grid and plate coils) is useful only for frequencies falling within
a certain range which is determined by the range of the variable condenser.
For this research it was desirable that the oscillator be tuneable to any
frequency between five thousand and one hundred thousand cycles without
disturbing the rod in the coils. To effect this the grid and plate coils were
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made up of four coils each as is shown by the wiring diagram in Fig. 3. The
two four-point switches enable one to change the coil combination without
disturbing the rod. The method of mounting the rod by balancing it on a
narrow wooden support placed between the grid and plate coils is also shown
in Fig. 3. The plate winding is about the rod on one side of its center and the
grid winding on the other side.
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Fig. 3. The wiring diagram and mounting of the coils.

The circuit of the piezoelectric oscillator with its single stage of amplifi-
cation is shown in Fig. 4. The quartz crystal was one of the Cruft Laboratory
standards known as number 28. It maintained the frequency of the oscillator
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Fig. 4. The wiring diagram of the piezoelectric oscillator.

circuit at 28,067.51+0.2 cycles. This frequency was determined at the start
of the research by calibrating the piezoelectric oscillator in the manner
described on pages 18-19 of Professor Pierce’s paper “Magnetostriction
Oscillators.” Since it was found that other factors prevented the measure-
ment of the rod frequencies to better than one part in ten thousand this
accuracy was considered sufficient in checking the crystal calibration at the
close of the research. The crystal frequency was then found to be 28,069 +
2.0 cycles. The apparatus was mounted in a “constant temperature”
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room whose temperature did not change by more than two degrees centigrade
throughout the year and in as much as the temperature coefficient of fre-
quency for the crystal in the mounting used had been found to be about
one cycle in one hundred thousand per degree centigrade at 20°C. it was not
necessary to correct the crystal frequency for temperature to ensure accuracy
to one part in ten thousand.

The audiofrequency meter was identical with the one described on
page 22 of “Magnetostriction Oscillators.” The wiring diagram given there
is reproduced in Fig. 5. The instrument has three ranges covering fre-
quencies of from 500 to 5000 cycles and is equipped with a direct reading
scale.
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Fig. 5. The wiring diagram of the audiofrequency meter.

The rods measured were of commercial stainless steel. For the first
three series of measurements all the rods were cut from a single cylinder
which was 24.338 cm long by 1.8057 cm in diameter. For the first series
this piece was shortened by steps which became smaller as the rod grew
shorter. After each cutting the frequencies of all the modes of longitudinal
vibration that could be excited were measured. For the second and third
series two of the pieces left from the cuttings of the first series were reduced
in diameter a little at a time, frequencies being measured for each diameter.
The rods measured in the fourth and fifth series were all cut from a second
piece of stainless steel obtained from another source. At the start is was
machined to a length of 12.9837 cm and a diameter of 1.9050 cm. For the
fourth series of measurements the diameter was cut down in small steps and
for the fifth series the piece that remained was shortened in steps.

Stainless steel was chosen for these measurements simply because it
is easily obtained and works well in the magnetostriction oscillator. Each
of the samples was annealed and each rod was permanently magnetized be-
fore its frequencies were measured.

The machining of the rods was done as accurately as was possible in thz
shop of the Cruft Laboratory. The lengths of the rods were uniform over the
end faces to within some two or three ten thousandths of an inch so that the
lengths of rods that were longer than two inches were known to one part in
ten thousand or better. All of the diameters were uniform to within one half
of one thousandth of an inch and for most of the rods the uniformity was
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considerably better than this. The possible error in the value taken as the
diameter of any rod varied between one percent and one tenth of one percent
according to the size of the rod. Since changes in diameter have a much
smaller effect on the frequencies of longitudinal vibration than changes in
the length this accuracy was sufficient for the purpose of this research.

The method of procedure was as follows: The rod whose frequency was
to be measured was inserted in the coils and balanced on the narrow wooden
support (see Fig. 3). After time had been allowed for the rod to come to the
temperature of the surrounding air the magnetostriction oscillator was turned
on and tuned by means of the condenser till the needle of the plate circuit
direct current milliammeter “kicked,” showing resonance of the oscillator
with a mode of vibration of the rod. Then the crystal oscillator was turned
on and the magnetostriction oscillator readjusted so that the milliammeter
needle was at the peak of its “kick.” Finally the frequencies of the audible
beats between the two oscillators were measured with the audio frequency
meter. A record was kept of the beat frequencies, the condenser setting,
the positions of the switches on the grid and plate coils (see Fig. 3), the
temperature of the air surrounding the rod, and the dimensions of the rod.
In order to use these beat frequencies to determine the frequency of the rod
one must know beforehand the approximate value of that frequency. This was
was obtained by using the simple formula given by elementary theory,

namely
nf E\'?
=)

f =frequency, n=1, 2, 3, etc. any + integer.
! =length of the rod, E=Young's modulus
p density of the rod.

where

The density of each of the samples was measured and the value of E given
in Professor Pierce’s paper! for stainless steel was used.

With the exception of the lengths of the four longest rods all the dimen-
sions were measured with micrometer calipers. Enough readings were
taken in each case to determine the uniformity of the dimension in question.
The four lengths which were too long for the largest available micrometer
were measured by using a cathetometer and an auxiliary cylinder marked
with a fine scratch parallel to its plane ends.

Table I below is a sample of the data taken for the frequency measure-
ments on a single rod. The abbreviations heading the columns of this table
are to be interpreted as follows:

N refers to the mode of longitudinal vibration, N=1 for the fundamental,
N =2 for the next to the gravest mode etc.

P and G refer to the positions of the switches of the plate and grid coil
respectively i.e. the combination of coils being used in each case. Under
Cond. are the condenser settings. Under Temp. are the temperatures of the
air about the rod. The beat frequencies are tabulated under Beats. fheads the
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column of computed rod frequencies and in the next column these frequencies
are corrected to twenty degrees centigrade which was taken as the standard
temperature. The pairs of numbers in the last column refer to the harmonics
(produced in the vacuum tubes) of the rod and crystal frequencies that are
causing the beat frequency measured.

TABLE 1. Sample of data: Frequency measurements on rod No. 6 of the first series, beating with
crystal No. 28, f=28.067.6 March 13, 1929.

Data Results
N P G Cond. Temp. Beats f fat 20° C-R
1 2 2 28 23.5 1893 23,788 23,799 6-7
1 2 2 28 23.5 4275 23,793 23,804 1-1
1 2 2 28 23.5 2388 23,788 23,799 5-6
1 3 2 53 23.5 4280 23,788 23,799 1-1
1 3 2 53 23.5 2386 23,787 23,798 5-6
1 3 3 62 23.5 1898 23,787 23,798 6-7
1 3 3 62 23.5 4280 23,788 23,799 1-1
1 3 3 62 23.5 1420 23,786 23,797 17-20
2 3 3 23 23.5 1861 47,399 47,422 5-3
2 4 3 48 23.5 1898 47,412 47,434 5-3
2 4 4 94 23.5 1830 47,389 47,412 5-3
3 4 3 23 23.5 747 70,543 70,576 5-2
3 4 4 a5 23 s 744 70 541 70.574 5-2

In the above table are the data from just one of the sets of measurements
made on rod #6. Every rod was subjected to two or more independent sets
of measurements with intervals ranging from several hours to several days
between them. The temperature was often different at the times of these
repetitions so that the agreement of the frequencies found for the standard
temperature furnished a check on the value of the temperature coefficient of
of frequency used. (This coefficient was taken from Professor Pierce's
paper “Magnetostriction Oscillators.”') An examination of the complete
data shows that in many of the measurements two or more beat frequencies
were observed and recorded for the same mode of vibration of the rod and
with the same coil combination and condenser setting. An example of this
may be seen in the sample data above for the fundamental mode of rod #6.
Separate computations of the rod frequency from these beat frequencies
served as a check on the calibration and readability of the audiofrequency
meter. Furthermore, in many cases, a vibration-mode of a rod could be
excited with two or more different combinations of coils in the grid and plate
circuits of the oscillator. This may also be noted in the sample above. The
results of these measurements with different coils furnished a check on the
assumption that the frequencies might be considered peculiar to the rods
and the effects of the coils neglected.

With a very few exceptions, 19 in the 133 measurements made, all the
frequencies obtained for any one mode of any one rod under these different
conditions agreed to better than one part in ten thousand when reduced to
the standard temperature. The second gravest mode of rod #6 was one of the
exceptions to this as may be seen from the sample data above. This experi-
mental fact is the foundation for the statement that the frequencies could be
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measured to one part in ten thousand or better. In plotting the results the
mean of the several frequencies found for each mode of vibration of each rod
was taken as the frequency of that mode.

THEORETICAL

The equations for the elastic vibration of a “free-free” cylindrical rod
have been solved approximately by Pochhammer? and by Chree.* The
solution is approximate in that it does not satisfy the boundary condition
that the tractions or tangential forces on the ends of the rod must be zero.
As Love?® points out, the tractions on the ends introduced by this solution
are small if the radius of the rod is small compared to its length. The
frequencies of the rod are given by an equation in Bessel’s functions and their
derivatives but if one neglects the fourth and higher powers of #a/l one may
obtain the following expression for the frequency: (see Love, pages 289-290)

/ n ( E(l n?n"*’a?d?)>”9 0
AN 202

where f=frequency, n=1, 2, 3, etc. i.e. a positive integer, / =length of rod,
E=Young’s modulus, p=density of rod, ¢ =Poisson’s ratio, a =radius of
rod.

Lord Rayleigh® has obtained the same result much more simply by as-
suming the standing waves in the rod to be made up of plane waves normal
to the longitudinal axis. Under this assumption all the boundary conditions
can be fulfilled and the frequency is given by

n E 1/2

N —27 (1 n n'37r202a2)
f 2P

where the letters have the same meanings as above. This equation becomes
identical with (1) if (na/l)*is negligible with respect to 1.

Since the effects of “viscosity” in the rod have been neglected in what has
been said above, the resonance frequencies for “forced-free” vibration
will be given to the same degree of approximation by these same equations.
However, in this research the rods were not “forced” in the usual sense of
the word for the reaction of the vibrations of the cylinders on the oscil-
lator was an important part of the operation of the apparatus and may not
be neglected. Briefly, the changing magnetic induction in the rod due to
the changing current in the coils forces vibration of the rod, which vibration,
in turn, changes the magnetic flux in the rod and sets up E.M.F.’s in the
coils. When the electric circuits are tuned to resonance with a mode of

/ (2)

3 L., Pcchhammer, ]J. fiir Math., Crelle, 881, 324 (1876).

4 C. Chree, Quart. Jour. of Math. 21, (1886).

5 “The Mathematical Theory of Elasticity,” by A. E. H. Love, fourth ed., Camb. Univ.
Press.

8 “Theory of Sound,” by Lord Rayleigh, Vol. 1.
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vibration of the rod there is a sudden change in the impedance of the coils
due to the “motional” impedance of the rod. This sudden change in the im-
pedance of the coils produces a change in the average plate current and
therefore kicks the needle of the D.C. plate circuit milliammeter.

Now one can put into the equations of motion for the rod (assuming a
plane wave after Rayleigh,—see Love® page 428) terms to take care of the
forcing of the rod by magnetostriction as well as the magnetostrictive reaction
of the vibrations of the rod on the magnetic induction through the coils.
(see Pierce’s “Magnetostriction Oscillators”!). If the amplitude of the alter-
nating magnetic induction in the rod is small enough so that one may say
that the longitudinal “pressure” on a small piece of the rod is proportional
to the induction in that piece, i.e. p =¢B, where ¢ is a constant; and if the
strains produced in the rod are small encugh so tnat one may say that the
magnetic induction caused by them (longitudinal strains) is proportional
to them i.e. B’ =¢’(8¢/6x), where ¢’ is a constant and ¢ is the displacement
in the x direction which is along the longitudinal axis of the rod, then the
equation of motion is linear and the frequencies for resonance are given by

n E 1/2

- El— n*riola?
A1+ —)
22

which is the same as formula (2) except that E is replaced by E’ where
E =E+ ¢q¢.

Assuming that E’, p, and ¢ are the same for all the rods of the same material
this formula gives a relation between the dimensions and frequencies of the
rods that can be tested by the results of the measurements described above.
Actualy E and p may vary slightly from one rod to another because the
materials used were commercial alloys and the original cylinders may have
varied slightly in consistency. Furthermore the values of ¢ and ¢’ depend on
the magnetic polarization of the rod,” though less in the case of stainless steel
than in that of some of the other magnetostrictive metals that might have
been used for the research.® This polarization was not the same for the
different rods for they were all magnetized in the same field wherefore the
shorter ones were left with less residual magnetism than the longer ones
because of the demagnetizing effect of their ends.

It should also be pointed out that formula (3) applies only when the
surfaces of the rods are entirely free from forces. Actually, in these experi-
ments the rods were surrounded by the atmosphere and supported at their
midpoints on a narrow piece of wood. To test the effect of the air
about the rod the first four modes of rod #2 were measured both in the
atmosphere and with rod and coils inside a large brass cylinder in which
the pressure was reduced to five millimeters. The frequencies were found to

I (3)

7 Honda, Shimizu, and Kusakabe, Phil. Mag. 4, 459 (1902) and 537 (1902).
8 K. C. Black, Proc. Am. Acad. Sci. 63, 49 (1928).
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be the same to the limit of accuracy of the measurements i.e. one part in
ten thousand. This, of course, does not show that under certain conditions
of resonance of the rod’s frequency with a natural period of the air column
formed by the tubing on which the coils are wound the frequency of the rod
will not be affected. In connection with the support, it was found that
substituting two supports at the ends of the rod for the one at the center
did change the frequencies of the lower modes of vibration by several
hundredths of a percent while hanging the rod on a linen thread at its mid-
point did not change the frequencies. Furthermore it was noticed that if a
rod was slightly unbalanced so that one of its ends touched the wall of the
surrounding tube the frequency was not measureably changed.

For convenience the frequency equation (3) above may be re-arranged

to give
2/l / K /2
" 1 + C(n2a?/1?)
where
E m2?
K = and C = —
p 2

and since the theory on which this frequency equation is based assumes
plane standing waves in the rods one may call 2//n the wave-length in the
rod, whence

211

-— = wave velocity
n

and

na radius

—El— N wave-length .

REsULTS

The results of these frequency measurements are shown graphically in
Figs. 6 to 10. The ordinates in each case are the values of 2fl/n (the “wave
velocity”) while the abscissa are the common logarithms of 100 na/l. (na/lis
the ratio of diameter of the rod to “wave-length”).

In Fig. 6 are plotted the results for the first series of measurements in
which rod #1 (length 24.338 cm, diameter 1.8057 cm) was shortened in
fourteen steps to a final length of 3.2299 cm. In this series eight modes of
vibration could be measured for the longest rod, six for the second longest
rod, four for each of the next two in order of length, three for each of the
next three, and the fundamental mode only for the remaining shorter rods.
The numbers beside the points refer to the rods. For instance, there are
eight points numbered 1 which are the plottings of the eight modes of the
longest rod of the series. The curve drawn out in the figure is the graph of
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Fig. 6. Graph showing relation between the velocity of the standing wave components and the
ratio of diameter to wave-length for the first series.
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Eq. (4) with E’/p taken equal to 28.945 X 10" and ¢ taken as 0.30. It will be
noticed that the experimental values of 2fl/n fall within two tenths of a
percent of the values given by this curve.

In Fig. 7 are plotted the results of the second and third series. The
second series of measurements was made on a piece left from the cuttings
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Fig. 9. Graph showing the relation between the velocity of the standing wave components
and the ratio of diameter to wave-length for the fourth series.

of the first series (length 5.5946 cm) which was turned down till it became
too small to control the oscillator. The third series was made by turning
down a shorter piece (length 3.6995 cm) from the first series. The curve
drawn is the graph of Eq. (4) using the same values for the constants as
in Fig. 6.
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Fig. 10. Graph showing the relation between the velocity of the standing wave components
and the ratio of diameter to wave-length for the fifth series.

The method of obtaining the constants for plotting this curve of Eq.
(4) was to plot the points of the first three series all together and to a smaller
scale so that the best fitting curve might be drawn through them. (See
Fig. 8.) The coordinates of two points chosen at random from the opposite
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ends of this curve were substituted into Eq. (4) to obtain the constants for
plotting the theoretical curves shown in Figs. 6 and 7.

In Fig. 9 are plotted the results of the fourth series of measurement in
which a new sample of stainless steel (length 12.9837 cm, diameter 1.9050
cm) was turned down in sixteen steps to a diameter of 0.9588 cm. For most
of the rods of this series it was possible to measure the first four modes of
vibration the exceptions being cases in which the frequency of the third
mode was such that good audible beats with the crystal standard could not
be obtained. In this case the plotted points indicate clearly the path of the
experimental curve which was drawn in without replotting to a smaller
scale. (The solid curve in Fig. 9.) By trial it was found that putting E’/p
equal to 29.171 X 10" and ¢ equal to 0.30 made the graph of Eq. (4) fit this
experimental curve best. The two curves coincide except for the large values
of na/l, where the theoretical curve is shown by the dashed line. It will be
noted that for this series all the experimental points fall within one tenth
of one percent of the theoretical curve.

In Fig. 10 are shown the results of the fifth series in which the last rod
of the fourth series was shortened in six steps to a final length of 5.9375 cm.
The curve shown in the figure is the graph of Eq. (4) with the same constants
as were used for the theoretical curve on Fig. 9. Here again the experimental
points have ordinates within one tenth of a percent of the ordinates of the
theoretical curve.

The average density for the first sample of stainless steel (first three
series) was 7.65 grams per cc hence the value of E’ for this sample was
22.1X 10" dynes per cm®. The second sample (fourth and fifth series) had
an average density of 7.69 grams per cc and hence an E’ of 22.4 X 10! dynes
per cm?  These values for E’ are about what one would expect for the
Young’s modulus of steel showing that the product of the magnetostrictive
constants ¢ and ¢’ is small. (E'=E+qq’.)

SUMMARY AND DiscussioN oF RESULTS

The lower modes of longitudinal vibration of magnetized cylinders of
stainless steel have been measured with an accuracy of one part in ten
thousand. These cylinders varied in length from twenty four centimeters
down to slightly more than three centimeters and in diameter from nearly
two centimeters to less than three tenths of a centimeter. The lengths
were known to one or two parts in ten thousand and the diameters with
varying accuracy, but none to better than one part in five thousand. (Some
of the small diameters were not known to better that 0.5 percent.) The
product of frequency by length was therefore known to some two or three
parts in ten thousand. Nevertheless, the experimental values of 2fl/n
when plotted against log 100 na/! varied as much as one or two parts in one
thousand from the curve of the theoretical formula with values for the
constants chosen to give the best fit.

This theoretical formula (Eq. (3) above) is based on Lord Rayleigh’s
theory® for the longitudinal vibrations of a cylinder taking account of the
radial motion and G. W. Pierce’s theory! for the magnetostriction oscillator.
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As has been pointed out, it assumes the simple form presented above only
because of several assumptions beyond those ordinarily made in applying
the elastic theory. It was assumed that the standing waves in the rods were
plane and that the action and reaction between the alternating magnetic
field and the vibrating rod were small enough in magnitude that the relations
between them might be considered linear. Furthermore the cylinders were
treated as though free of all body and surface forces and of uniform con-
sistency throughout. The actual experimental conditions may have been
sufficiently different from these ideal ones to account for the deviations
of the experimental points from the theoretical curves. It is not possible
to say which factor or factors caused these deviations and all that one is
justified in concluding is that, for stainless steel cylinders of the dimensions
used, the frequencies are given by equation (3) to within one or two tenths
of one percent.

The fact that the first sample of stainless steel showed variations
from the expected curve of as much as 0.2 percent while the second sample
agreed with the theory to better than 0.1 percent may mean that the first
sample was not as uniform in consistency as the second and that therefore
a large part of the deviation is due to the fact that the samples were merely
pieces of the commercial alloy. This supposition is born out by the further
fact that density measurements made on two pieces cut from opposite ends
of the first sample differed by almost one percent.

There is no reason why other magnetostrictive metals subjected to these
same measurements should not yield as gocd agreement with the theory,
provided they come as near to being uniform, homogeneous, isotropic sub-
stances and provided the rods of different sizes are so magnetized that the
permanent magnetic polarizations in each will be nearly the same. This
last precaution was not taken in this research because of the small effect of
polarization on frequency for stainless steel reported by K. C. Black.? As
a matter of fact, when all the rods are magnetized in the same field as in
these measurements the first order effect due to the different permanent
polarizations will not change the form of the frequency Eq. (3) but only the
apparent value of Poisson’s ratio (¢). This is because the actual field in the
rod may be expressed approximately as a function of the ratio of the diameter
to the length.®

This research has also yielded values of the E’ and the ¢ of Eq. (3) for
the two samples of stainless steel. These constants are respectively Young’s
modulus and Poisson’s ratio, each with an added term or terms arising from
the fact that the rods are driven by magnetostriction and are mangneti-
cally polarized. It turns out however that these constants have values that
are very close to those of Young’s modulus and Poisson’s ratio for steel (as
far as we know) so that the added terms must be small.

The measurements described in this paper were carried out in the Cruft
Laboratory at Harvard University under the direction of Professor G. W.
Pierce.

9 J. C. Maxwell, Electricity and Magnetism, Vol. I.



