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ABSTRACT

It is shown that if H is the negative energy operator, and ¢ any function satis-
fying the boundary conditions of quantum dynamics and possessing the symmetry
properties characteristic of a given spectral series, then E = [¢*H¢dr is a lower limit
to the term-value of the lowest level of that series. If the integral is evaluated for
various ¢'s, the largest value obtained will be the best approximation to this term
value. The method is applied to various electronic configurations with satisfactory
results. The degree to which ¢ approximates the wave function of the state is not
determined, but it is shown to be likely that the approximation is not good at large
distances from the nucleus.

HE empirical interpretation of x-ray spectra has long been based on the

idea that each electron of an inner shell screens the outer electrons from
the field of the nucleus. The outer electrons are supposed to move in an
approximately central field, much as though the inner electrons were not
present and the nucleus had an effective charge less than its true charge.
Millikan and Bowen have also shown that this idea is applicable to many
optical spectra.

Quantum dynamics has furnished a qualitative justification for this
idea, but the effective nuclear charges have never been deduced from first
principles in any systematic way. It is true that L. Pauling! has obtained
numerical values for them which are in excellent agreement with observation,
but his calculation begins with the wave equation of a single electron moving
in the field of an artificial distribution of charges on spherical surfaces. This
amounts to assuming the general form of the result, and neglecting some of
the finer features of the problem. J. Frenkel? has used the method which
forms the subject of the present paper. He calculates the screening constant
for the normal state of helium-like atoms, but assumes it to be applicable to
any state. It was found empirically (cf. Section 5) that the method fails
miserably when applied to (1s)(2s) 2LS, but, remarkably enough, gives very
good results for (1s)(2s)2%S. This is shown to be a consequence of a definite
limitation on the method, which is applicable only to the lowest state of
any spectral series. (Section 1.).

The method is analogous to that first used by Ritz? to calculate charac-
teristic numbers. The Ritz method has already been used to solve problems

1 L. Pauling Zeits. f. Physik 40, 344 (1926).

2 J. Frenkel, Einfiihrung in die Wellenmechanik, p. 291. (Berlin, Julius Springer, 1929).
Also Guillemin and Zener, Zeits. f. Physik 61, 199 (1930).

3 W. Ritz, Journ. {. reine u. angew. Math. 135, 1 (1909).
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of quantum dynamics,* but the investigators have not adhered very closely
to the original procedure,’ and it appears that the deviations are largely re-
sponsible for the success of the calculation. They are all in the direction in-
dicated by the empirical theory of screening. In this paper, a theoretical
justification for them is given and the original Ritz procedure is abandoned®
entirely. This simplifies the calculations considerably without greatly
reducing the accuracy of the result. If higher accuracy is required, however,
the Ritz method may be superposed as was done by Kellner and Hylleraas.

It may be well to make a few general remarks about the various kinds
of screening constants’? (or effective nuclear charges). These numbers are
essentially parameters determining an average value of the electrostatic
field in which an electron moves, and there will be as many different ones as
there are different ways of averaging. The present paper will be primarily
concerned with that effective charge which is to be used in the wave function.
The approximate value of the main energy term is also obtained, from which
that screening constant called ¢, by Pauling could be calculated if it were
desirable. This latter is responsible for the “screening doublets”; the “spin”
screening constant is not calculated.

1. THE DIRECT METHOD OF CALCULATING CHARACTERISTIC
NUMBERS

The fundamental equation of a characteristic value problem may be
written

H«’n = ”/nwn, (1)

which is normally a partial differential equation, H being an operator, W,
the characteristic number, and ¥, a function of the coordinates. This equation
is to be solved subject to certain boundary conditions, and possesses solu-
tions satisfying these only for certain values of W,, say

Wiz Wz Waz - - @)

(In quantum dynamics there is always a greatest W if this letter denotes the
negative energy or term value.) For the following, it will be convenient to
use the letters ¢, ¢, ¢'’ - - -to denote functions which satisfy the boundary
conditions just mentioned, but are otherwise arbitrary. If the operator H
is hermitan the characteristic solutions ¥, of Eq. (1) may be normallized
so that

f ¢ﬂ¢’ﬂl*d7- = 6’1"& (4)

¢ G. W. Kellner, Zeits. f. Physik 44, 91, 110, (1927), E. Hylleraas, Zeits. f. Physik 48,
469 (1927).

5 Courant-Hilbert, Mathem. Methoden der Physik p. 157 (Berlin, J. Springer, 1924).

¢ This has also been done by V. Guillemin, Jr. and C. Zener, Zeits. f. Physik 61, 199 (1930);
C. Zener Phys. Rev. 36, 51 (1930).

7 For details, see L. Pauling and G. Goudsmit “Structure of Line Spectra,” pp. 61, 180,
188 (McGraw-Hill, 1930).
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and any of the functions ¢ may be expanded in a convergent series:

¢ = Za,, where a, = fdnl/,.*d'r (5)

If ¢ is itself normallized, i.e., if

f|¢l2dr=1,or2[a"]2=l (6)

then the integral
E = f ¢*Hopdr (7

possesses certain important properties. For convenience, it will be called
the variational integral and any normallized ¢ will be called a comparison
function.

On substituting the expression (5) for ¢ into Eq. (7) and making use of
Egs. (1) and (4), it follows that

E=3]a,]2W,.

It is immediately seen that if all the a’s are zero except one (¢ =y,) then
E =Wan; if ¢ differs only little from ¢ ., E will approximate W,. To inves-
tigate this approximation, it is necessary to study the difference

Wn—E= 2 |a|*Wn— W,). (8)

Because of the inequalities (2) the difference W;— E must always be positive,
since W;—W,20, and W, is therefore the maximum value assumed by the
variational integral for any comparison function whatever. If E has been
evaluated for various comparison functions, then the largest of these values
will be the best approximation to W,.

This reasoning applies only to the largest characteristic number, but if
the first m —1 coefficients of the expansion (5) are all zero, it will apply
equally to Wn. It is often possible to find comparison functions satisfying
this condition, even though the functions y, are not known exactly. A simple
example is afforded by an atomic system with two electrons. If x;, x, be
their cartesian coordinates (the spin variables are entirely neglected) it is
known that

Yi(x, 22) = ¥a(xq, 1)
and hence if
d(x1, ¥2) = — P(xg, x7)

it follows from Eq. (5) that ¢; =0. Any antisymmetric comparison function
will thus furnish a lower limit to the second characteristic number.
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Similarly, if M be the operator associated to the angular momentum of
the system and the comparison function be restricted by the equation

M¢ = L(L + 1)¢

where L=0,1,2, - - -, then the value of E obtained will be a lower limit
to the lowest (largest W) S, P, D, - - -, term, respectively.

These results afford a basis for a direct method of calculating those charac-
teristic values to which they apply. If comparison functions ¢, ¢’, ¢’ - - -
are known, which result in values ESE’'<E’"< - - -, it may be presumed
that this sequence of numbers will converge toward the corresponding W,.
The proof of this convergence will usually be difficult, and no attempt
will be made to construct one in this paper. Instead, a mode of reasoning
will be adopted which is much simpler.

It depends on the fact that there exists one comparison function which
has a certain theoretical justification:? if the operator H be written H'4+H"’,
it is known from perturbation theory that

‘//ﬂ=¢n+"‘

Wp=W.+W."+--- ©
where
H'¢p = Wi'¢n (10)
and
W, = fd),.*H”d),,d-r. (11)

The function ¢, is the first term of an infinite series and is generally accepted
as a “zeroth” approximation ot ¥,, while W,/+W,”" is the “first” approxi-
mation to W,. For physical purposes, they may therefore be taken as stand-
ards by which other approximations are to be judged—if IW,,—E I < IW,.——
W, —Ww," [ then E will be a good approximation according to this criterion.
The direct method immediately enables us to find a good approximation
whenever it is available and ¢, is known.

The operator H’ and the function ¢, will usually depend on a numerical
parameter Z (say the nuclear charge); if this parameter, whose true value
is a part of the given data, be allowed to assume arbitrary values a in ¢,,
then

E(Z,e) = [ 6.4 2)gu()ir (12
will certainly be a lower limit to W,. If E(Z) possesses a maximum for
a=Z, then it immediately follows that

W,—EZ,Z)=W,—E(Z2)=W,—- W, —W,".

8 The mathematician might not agree to the soundness of the theory, but it has the general
assent of physicists.
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Hence E(Z, Z.) is a good approximation according to the criterion adopted
above. This is the explanation of the recognised fact that the substitution
of effective charges and quantum numbers in formulas deduced from pertur-
bation theory usually improves their agreement with observational data.
It goes farther, however, and indicates when the process will certainly be
successful and when it is likely to fail; in the former case, the numerical value
of the “effective” parameter is determinate. It should be noted that E(Z,Z.)
depends on the true, as well as on the effective, value of the parameter. This
affords a theoretical clue to the use of “inner” and “outer” effective charges.

In the previous paragraph, only one parameter has been treated, but there
is no limit to the number which can be introduced into ¢, provided only
that its symmetry properties be left undisturbed. Any degeneracy in the
characteristic values of 2’ must be removed in determining ¢, by perturba-
tion theory.

2. APPLICATION TO THE CONFIGURATION (1s)?

The details of this method may most simply be illustrated by its applica-
tion to the configuration (1s)? (normal state of helium), and this case will
therefore be treated even though it has already been published by Frenkel.?

The operator H is

H=v24V2+ 2Z/r + 2Z/rs — 2/r1s (13)

where the indices denote the coordinates of the two electrons, which are
measured in units of ag=0.528A. The constant W is the negative energy,
measured in units of Rk cm™'=13.53v., and Z is the true nuclear charge in
units of e. These units and designations will be used throughout the follow-
ing. The operator H' is taken to be

H =v2+ V24 2Z/ri+ 2Z/r,
whose characteristic function for the (1s)? configuration is
o(Z) = u(Z, HYu(Z, 2)
w(Z, k) = (Z3/m)"? exp (— Zri.) (14)

A comparison function may be obtained from this in various ways, the
simplest being

$(a) = (e, Dula, 2); (15)
substituting this in the variational integral, one finds (cf. Section 7) that
E(Z,a) = 2[2(Z — 5/16)a — a?]. (16)
This expression has a maximum for a=Z,=Z—5/16 so that
E(Z,Z,) =222

is independent of Z in this case. The ionizing potential of the (1s)? state may
be calculated from this by subtracting Z2, the energy of the hydrogen-like ion.
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The values given by this formula are compared with those from other sources
in Table I.

TABLE 1. Ionizing potentials of (1s)2.

V= 14 |4
Atom 2Z2—2, (Calc. §6) (Observ.)
He I 1.70 1.81
Li II 5.45 5.50 5.564*
Be III 11.20 11.26 11.315*%
B 1V 18.95 19.00
CcC Vv 28.70 28.75

* B. Elden and A. Ericson, Nature 124, 688 (1929).

A somewhat better approximation would be obtained by using

d(a, B) = [u(e, Du(B, 2) + u(e, 2)u(B, 1)]/[2(1 + ¢»)]'" (17)

Q
il

f wla, Vu(, Vdry = 8a312872/(a + )°

as comparison function. The variational integral is then

E(Z,a,B) = 2Za+ 2(Z — )8 — (a + 2aB¢* + B82)/(1 + ¢?)

[ [ e, p12/risiriar,

8 [1 el 200 ] s
1+ G+ 1) (x4t el M

where

Il

o

Il

It is difficult to determine the maximum of this function analytically, but a
numerical approximation method yields a value of 5.755 for« =2.14,3=1.19
in the case of He I (Z=2). This corresponds to 1.755 for the ionizing poten-
tial—a value as good as Kellner’s fourth approximation.

The interest does not center on an accurate determination of this ionizing
potential, however: in the case of He I, it has been calculated very accurately
by Hylleraas (loc. cit.) and the others of this isoelectronic sequence may be
calculated more accurately by the indirect method explained in Section 6.
The comparison function of this configuration is of great interest, however,
for it enters into many of the other configurations considered later. The
relative simplicity of the function ¢(a), Eq (15), leads one to use it rather
than the more elaborate one.

3. AppricATION TO THE CONFIGURATIONS (15)(2p) AND (15)(3d)

The wave equation for these configurations is that of Eq. (13); the com-
parison function is to be taken as

d(a, B) = [ula, Nv(B, 2) £ u(e, 2)v(8,2)]/2' (18)
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where # is the function defined by Eq. (14) and in the case of (15)(2p),
v(B, k) = Y1-(8%/6)'/%(Br1/2) exp (— Bri/2) (19)

is the characteristic function of the (2p) state of a hydrogen atom with
nuclear charge 8; Y1 is a normallized surface spherical harmonic of order 1.
The upper sign is to be taken for the 1P, the lower for the *P level. The value
of the variational integral is found to be

E(Z,a,B) = 2Z — a)a + [2(Z — o) — B1B/4 (21)
where

o=1+7
and, with x= /8
1= /8 [ [{ite, vug, 1 /raldrin,
=1 — (6x 4+ 1)/(2x + 1)5
J = (4/8) f f {u(e, D)(8, Du(a, 2)(8, 2)/r1a} dridr,

= (7/3)6423/(2% + 1)".

The function E(Z, a, 8) has a maximum for the values of a and § which
satisfy the equations 0E/da=0, dE/98=0, or

a=272— (do/dx)/4
B=2Z— 00— xdo/dx.

(22)

(23)

(24)

These are readily solved by a semi-graphical method of approximation: o
and do/dx are plotted from the values of I, J, and their derivatives given in
Table II. As a rough approximation, (1—¢) and do/dx may be neglected,

TaBLE 11. Values of I, J, and their derivatives.

x I dl/dx J dJ/dx
1.3 0.9854 0.0302 0.0418 —0.0654
1.4 0.9881 0.0234 0.0358 —0.0556
1.5 0.9902 0.0182 0.0308 —0.0468
1.6 0.9919 0.0146 0.0265 —0.0396
1.7 0.9932 0.0118 0.0230 —0.0334
1.8 0.9943 0.0094 0.0200 —0.0292
1.9 0.9951 0.0077 0.0175 —0.0236
2.0 0.9958 0.0066 0.0153 —0.0204
2.1 0.9964 0.0051 0.0135 —0.0184

whencea=Z,8=Z—1. The values of ¢ and do/dx for these values are taken
from the graphs and substituted in Eq. (24), giving a better approximation
to « and B; continuing the process, the roots are soon found with sufficient
accuracy, and the maximum value of E is then calculable. The results of
such calculations are summarized in Table III, V being the ionizing poten-
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tial of the state in units of 13.53 v. The numbers in the last two columns
are the roots of Eq. (24).

TaBLE 111. Ionizing potentials of (1s)(2p).

V/(Z—-1).

Level Calc. Obs. a B
He I, 2P 0.245 0.2475 2.003 0.965
He I, 23P 0.262 0.2657 1.99 1.09
Li II, 2'P 0.245 0.250 3.007 1.94
Li II, 23P 0.261 0.263 2.98 2.16

To treat the configuration (1s) (3d) only slight changes are necessary:
the function # remains the same, while

v(B, k) = V.- (86%/1215)'/%(Bri/3)*-exp (— Bri/3),
E(Zr «a, B) = (22 - a)a + [2(Z - 0-) - ﬁ]B/Q;

c=1+7J,

1= (9/8) [ [ {iuta, 1068, 2) /ra}dridrs @)
=1- (120 + 1)/3x + 1),

J = (9/8) f f {u(a, )o(8, Dula, 2)9(8, 2)/r12}dridr,

= (4/5)-7292/(3x + 1)°.

In this case, ¢ is so nearly unity that « =Z and 8 =Z — 1 is a sufficient approx-
imation if only the center of gravity of the D and 3D terms is required.
Their separation may be calculated from J’: it is

AW = 4(Z — 1)J'/9 = (6)'Z3(Z — 1)/[5(4Z — 1)*].

The numerical values of this expression are compared with the observed
values in Table IV.

TaBLE IV. 33D—-3'D.

Calc. Obs.
He I 5.14 X108 3.68 X107
Li II 3.80X10 2.68 X107

4. TuE CONFIGURATION (15)2 (2p)

For this configuration, the energy operator is

H= (Wit +2Z/r) — 22(2/rvi)- (26)

k=1 (k.9
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Since two electrons are in the 1s state, the two ways of introducing variable
parameters discussed under Eqgs. (15) and (17) are available; the former is
much the simplest, so that it may be chosen:

o(e, B) = u(e, 1) [u(e, 2)v(8, 3) — u(a, 3)v(B, 2)]/2'7, (27
v having the significance of Eq. (19). The variational integral reduces to
E(Z,a,B) = 2[2(Z — 5/16) — ala + [2(Z — o) — BIB/4 (28)

with (cf. Eqgs. (22) and (23))
=2 —17.

The maximum value of this expression may be determined as already de-
scribed. The results are shown in Table V, the ionizing potential of the state
being obtained by subtracting 2(Z—5/16)? from the maximum value of E.
There are systematic differences between the calculated and observed values
of V/(Z—2)? but both sequences show a flat maximum near Be II. This indi-
cates that the method is capable of giving information even regarding the
finer features of the dependence of W, on Z. The systematic deviations could
undoubtedly be diminished if the more complex function (17) were used for
(1s)2.

TABLE V. Ionizing potentials of (15)%(2p).

V/I(Z-2) A
Atom Calc. Obs.* Z—at (Calc.) (Obs.)*
Lil 0.255 0.2605 0.31 1.98 2.019
Be II 0.258 0.2620 0.32 1.95 1.937
B III 0.258 0.2609 0.32 1.93 1.884
C IV 0.257 0.2595 0.32; 1.91 1.858
NV 0.257 0.33 1.89 1.838
O VI 0.256 0.33 1.88 1.816

* Millikan and Bowen, Phys. Rev. 27, 144 (1926). The observed values of Z—§ are taken
from the spin doublet separation, and are only qualitatively comparable with the calculated
values.

1 Cf. Guillemin and Zener, loc. cit.
5. THE CoONFIGURATION (1s) (2s)
This electronic configuration gives rise to two levels, 23S, 215, of which
the former is the lowest, the latter is the second term of its series. The method

may be expected to fail when applied to 2LS, and does so.
The energy operator is that of Eq. (13), and the comparison function is

¢ = [u(a, 1)2(8, 2)  u(a, 2)(B, 1)]/[2(1 £ %) ]'2, (29)
u being given by Eq. (14) and
v(B, k) = (B%/8m)'/2(1 — Bri/2) exp (— Bri/2), (30)

b= f (e, Do(B, dm = 22)2(x — 1)/(x + . (31)
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The variational integral reduces to
B(Z,a,8) = {[2Z — o) — ala+ [2Z — 02) — BIB/4}/(1 £ b?)
with
o= % (Z — B)o*x/(1 — x)
A+ [B—(Z—-a)b*/(1 — x)]
[#(1)2(2 1(4x+1 Sx+ 1 3 6x+1
Az_ff 1_I{<x+%>3—<.v+%>4+?m}
_ff u(l)v(l)u(Z)v(Z) x% 20x% — 30x + 13

—  drdry = — — ——— . 33
T1 T 7 (r—}—%)"’ ( )

The derivatives of the function E are too complex to be used in computa-
tion, and it is simpler to calculate E numerically for various values of « and
x, the maximum value being determined by graphical interpolation. The
numerical work was simplified considerably by first tabulating the values
of A, B, and b* (Table VI); this was also a saving of time, since these func-
tions also enter into the work on (1s)? (2s) and other more complex config-
urations.

TaBLe VL.

x b A B C
1.0 0.0000 0.8396 0.0876 0.00000
1.1 0.0025 0.8504 0.1044 0.00216
1.2 0.0079 0.8604 0.1220 379
1.3 0.0143 0.8692 0.1400 497
1.4 0.0205 0.8772 0.1564 582
1.5 0.0263 0.8848 0.1716 641
1.6 0.0312 0.8916 0.1844 681
1.7 0.0352 0.8980 0-1952 706
1.8 0.0381 0.9036 0.2040 719
1.9 0.0404 0.9092 0.2112 724
2.0 0.0419 0.9140 0.2164 723
2.1 0.0429 0.9184 0.2204 716
2.2 0.0434 0.9228 0.2232 707
2.3 0.0435 0.9268 0.2248 694
2.4 0.0433 0.9304 0.2252 680
2.5 0.0428 0.9336 0.2252

1
|
|
i

The values of the ionizing potential and effective charges as calculated
for 23S are given in Table VII. The ionizing potential calculated for 2.5

TaBLE VII. Ionizing potentials of (1s)(2s)23S.

Atom Calc. Obs. « — B
He I 0.334 0.350 2.01 1.53
Li 11 1.21 1.22 3.03 2.56

was in each case somewhat greater than that for 22S—in direct contradiction
to observation. It was attempted to improve matters by chosing 3=2—-5/16
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which makes the ¢ of Eq. (29) orthogonal to the approximate wave function
for 11S:

u(Z — 5/16, Vu(Z — 5/16, 2).
This reduced the calculated ionizing potential too much. Perhaps a method

of this sort might be worked out using the expression (17) for the wave func-
tion of 11S.

6. THE CONFIGURATION (15)2 (2s).
The operator H is that of Eq. (26) and the comparison function is

¢ = u(a, 1) [u(e, 2)v(B, 3) — u(e, 3)0(B, 2)]/[2(1 — %) ]'2 (34)

with v defined by Eq. (30) and 5? as in Table VI. The variational integral
reduces to
E(Z,a,8) = {[(2 = 0)(2Z — o) = 7la + [2(Z — o) — B18/4}/(1 — b?) (35)
where
¢6=21—B+8 —(z—1—a)b?/(x — 1) 36
T=5/4—2(z—1—=p8)b/(1 — x).

A and B have the values given in Table VI and

bt = §/4) 2
C = m— (b/8) ff { [u(1)] u(2)v(2)/712}dnd‘rg
(291(32% + 20 — B/ (3x + B!

is also given in that table.

TaBLE VIII. Ionizing potentials of (15)2(2s).

v

Atom Calc. Obs. Z—a Z—B
Lil 0.456 0.397 0.30 1.22
Be 11 1.41 1.34 0.30 1.16
B III 2.85 2.79 0.28 1.07

0.29 1.04

C IV 4.80 4.745

The maximum value of this function was again determined by plotting
it for various values of @ and x. The resulting ionizing potentials are all
too high, as is shown in Table V. This is because the value 2(Z—5/16)? is
consistently less than the energy of (1s)?; a better comparison with observa-
tion is obtained if the observed ionizing potential be subtracted from the
maximum value of E. The result should be a lower limit to the true energy
of (1s)2. The third column of Table I contains the values of the ionizing
potential of helium-like ions calculated in this way; the agreement with
observation is good. The values for B IV and C V are as good as any avail-
able, and are presumably about 0.05-0.06 units lower than the true values.
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7. FORMULAE USED IN EVALUATING THE FOREGOING INTEGRALS

The following is a brief summary of formulae, most of them well-known,
which were used in evaluating the integrals of the foregoing sections. The
functions # and v satisfy the equations

Au + 2au/r
AZy 4 28v/r = B/m?
n and m being integers. Each has the form X (r) ¥, (8, ¢), ¥, being a nor-
mallized surface spherical harmonic of order / (I is the aziumthal quantum

number). The X’s are also supposed normallized. From these definitions,
it follows that

atu/n?

I

fu[Wu + 2Zu/rldr = 2Z — a)a/n?
(x may of course be replaced by v if other appropriate changes are made);

f [V + vwW2u + 4Zu/r)dr

26{[}Z — B))/n* = [B(Z — &) |/m*} /(a — B),

b= ffuvd-r,

The quantity b will vanish unless the aziumthal quantum numbers of % and
v are equal.
If f and g are any functions independent of ¢ and 6, it may be shown that

ff {f(’l) [V i(6,, ¢1) ]Zg(h)/f’m}dﬁd‘ra

=f f(n)nf g(ro)ro2dradry (40)
r1=0 ro=0

+J

f(?'l)VlZf g(fz)rgdrgdf’l,
0

ro=r;

and

ff {f(n)Yz(ﬂl, $1)g(r2) Y 1(0,, ¢2)/1’12}de12

= {f f(fl)hklf 3(72)72l+2d”2d7’1
r=0 r=0

+f f("l)ﬁ”lf“ 3(72)721—ld72d71}/(2l +1).
ry=0 ra=0
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In evaluating the integrals with respect to 7; and 7, the following formula
is useful:

fmr”e—‘"dr = (n!/a™t) i(ar) k/kl. (42)

k=0

8. DiscussioN OF THE RESULTsS

The primary object of all calculations like the foregoing must be to
determine the functions ¥, approximately, or at least to approximate the
electron density which is defined by

D(1) = sz,,u, 2) | 2drs

in the case of two electrons. It may be hoped that an approximation will
be obtained if a comparison function is substituted in this integral and its
parameters are given the values determined as described.

While this paper was being written, two others dealing with the same sub-
ject were published by C. Zener? and J. C. Slater.”® These authors use com-
parison functions ¢ which are much simpler than those used in the present
calculations. This is presumably justified, for Zener has shown that the
first term of the parenthesis (1—B7:/2) in Eq. (30) has very little effect on
D. If thisis true only for that value of 8 which makes the variational integral
a maximum, then it is significant in the matter discussed in the preceding
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o
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L L L
r 1

Fig. 1.

paragraph: it indicates that the same D is obtained for two comparison
functions. But if the same is true for a wider range of 8, then the observation
merely means that this term may be neglected in evaluating D(or E), but
does not give any information regarding the invariance of D—the difference
between the two comparison functions is then trivially slight.

9 C. Zener, Phys. Rev. 36, 51 (1930).
10 J, C. Slater, Phys. Rev. 36, 57 (1930).
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The functions ¢(a), Eq. (15), and ¢(a, 8), Eq. (17), may be compared
in this respect. At first glance, they are widely different, but a closer examina-
tion shows that if 7, and r; are of the same order of magnitude and not too
large, ¢(a, B)~exp[—(a+B)(r1+7:)/2]. In this region the two are not
appreciably different, therefore, and the result of the comparison will be
open to much the same doubt as Zener’s. It is to be noted that the varia-
tional integral is a maximum for 2« =3.38 if ¢(e) is used, and for a+8=3.33
if ¢(a, B). In Fig. 1, the curve represents the D obtained from ¢ (), the cir-
cles, the values of 1.56 D obtained from ¢(c, 8). The relative values of D
obtained from the two functions are thus nearly the same in the region
r <1.5ax but their absolute values differ by more than 509,. The reason
for this becomes apparent on noting that D[¢(a)] approaches zero like
exp(—3.387) for large values of 7, while D [¢(e, 8) ] approaches exp(—2.38r).
The only rigorous conclusion is that the electron density calculated in this
way may be quite inaccurate at infinity. It seems quite likely, however,
that its behavior for small values of 7 is correctly given.

I wish to acknowledge my indebtedness to Mrs. Ardi’s T. Monk, who
performed many of the computations required for this work. Among other
things not so easily enumerated, Tables II and VI are due to her.

Note added in proof: The following considerations afford a means of
estimating the error introduced by the use of approximate wave functions.
Let ¢, be the true wave function of the lowest state of a series and ¢ an
approximation to ¥i; both will be supposed real and normalized. The
error introduced by using ¢ will generally be of the order of magnitude e,
where

e€=[(Y1—¢)dr
=2- 20, by Eq. (5) *%
The expression for E (Eq. 7)) may be written
E=aWi+Zs510. W,

<aW,+W, En>l a,? bY EQ- (2)7

=a? Wi+ Wy(1—as?) by Eq. (6);

hence

(W1—E)/(W1“W2) 21—012-': 1 —(1 —'62/2)2.
If € is not too great, this is equivalent to

ézé(Wr‘E)/(Wl— W2)- (44)
The values of W, and W, are known from experiment so that an upper limit
for € may be calculated, which probably does not differ greatly from the true

value.
Eq. (44) indicates that W, —E is proportional to the second power of e—
a result which was obvious anyway—and that the factor of proportionality is
not Wi but (W,—W,;) <W,. These two facts explain the remarkably small
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values of W;—E obtained above. They also show why the calculations of
Section 6 yielded better values for the ionizing potentials of (1s)? than did
those of Section 2.

In calculating other quantities than the energy, the error will be of first
order in ¢, which may therefore be taken as the probable fractional error.
This should be the case in calculating the density function D; for ¢(a) Eq.
(44) yields €<0.27 for ¢(a, B), €<0.19. The difference 50 percent in the
values of D obtained from the two functions is thus no greater than might be
expected.

In the case of Li II, 23P and Li I 22P, the values of ¢ for the functions given
in Sections 3 and 4 are <0.12 and =0.19 respectively. These functions have
been used elsewhere to calculate the relative displacements of Li (6) and Li (7)
lines because of the motion of the nucleus.!! The probable errors of these
calculations can now be estimated:

Li IT A\5485 Av=0.3274+0.031 cm™!
LiI \6708 Av=0.123+0.007 cm™!

The errors are small since only a part of the calculated value is affected by
the error in the wave function.



