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ABSTRACT

A method for obtaining the intensity distribution in a spectral line is derived from
Dirac's quantum theory of the radiation field. The calculations are carried out for the
case of emission from a first excited state (resonance line) and show that the intensity
of frequency v is, in this case, proportional to 1/[4@2(vo —v) + (A .2)'] were A is the rate
at which atoms are leaving the upper state and v& is the frequency of the transition.
The half-width is therefore 1/2m times the Einstein probability coe%cient for spon-
taneous transition to the lower state. The more general case where the lower state
has a finite life time is not treated.

A general method for the treatment of radiation problems, which is essentially
Acyl's modification of Dirac's method, is brieRy described.

A NY theory of radiation predicts a finite width for emission lines, even
under experimental conditions which eliminate Doppler effect and

pressure broadening. Classically this "natural width" is attributed to the
damping of the atomic oscillations which must accompany an emission of
energy, and in the quantum theory a similar result is to be expected from'

the correspondence principle, the rate of damping being the total rate at
which atoms are leaving the upper state. The calculations of the present
paper confirm this expectation for the case of a resonance line, ' and a formula
is derived for the structure of the line. The method of treating the radiation
field, which is that of Dirac as modified by Weyl, is brieRy described, and
appears as a very natural extension of the usual procedure of wave mechanics.

THE RADIATION FIELD

If the configuration of a dynamical system can be described by any
number of variables and the equations of motion written in the Hamiltonian
form, the methods of wave mechanics are applicable. If the system is a
radiation field the number of variables is infinite; nevertheless, if questions
of' mathematical rigor are disregarded, it seems possible to set up a wave.
equation and interpret its solutions in the usual way when these variables
form a denumerable set, such as the development coefFicients of the 6eld
vectors in a system of orthogonal functions.

Consider an electromagnetic 6eld inside a cubical inclosure whose di-
mensions will eventually be allowed to become infinite. It can be completely
speci6ed by the values of a vector potential A at all points inside the in-

' Regarding the generalization to other cases see the note at the end of this paper.
~ P. A. M. Dirac, Proc. Roy. Soc. A114, 243, /10 (1927); H. W'eyl, Gruppentheorie und

Quantenmechanik, Leipzig (1928) p. 89.
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closure, provided A satisfies the relation g A=O. The fields are then E
= —(1/c) (BA/Bt), H =qXA and the total energy ls

1 f 1 BA
+ (7 X A)' fu.

c'-' ct,

The "equations of motion" are then the Maxwell held equations, but they
may be replaced by the single equation

which is completely equivalent to them. It is readily shown that this equation
gives a set of ordinary equations for the development coefficients of A.' If
a Fourier development is chosen the variables have a direct physical signifi-
cance; we therefore write, for the field within a cube of length L,

A = ga, exp 2s i k, r, a , = a, * (3)

where a, =a,~+a,2 is a complex vector, r a real vector from the center of the
box, and k, is the vector with components r~/I, rm/I, r3/I. The in.tegers
v~, v2, v~ take on all positive and negative values. The condition p A=0
is fulfilled by taking a, perpendicular to k„and a, is then specified by only
two components.

Substituting Eq. (3) in Eq. (2), regarding the a, as functions of the time,
gives the equations

d Br
+ 4x2c'k, 'a, = 0

dt2

which are the equations of motion for a system of independent linear oscil-
lators with frequencies u, ' = c'k, '. On substitution of the solutions in Eq. (3)
the held is represented as a linear superposition of plane-polarized, progres-
sive waves, so that classically the a, are the amplitudes of such waves.

The Eqs. (3) may be put in canonical form with the Hamiltonian

where b, =i, is the "momentum" conjugate to a, . It is easy to show, by
substituting Eq. (3) in Eq. (1), that, independently of any boundary con-
ditions,

Therefore II(I'/ .4s)cE, and the Hamiltonian is the energy of the in-
closure, except for a constant factor.

For the purpose of quantization it is preferable to have real, scalar
quantities for the variables instead of the complex vectors a„and to have
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the Hamiltonian equal to the energy. This is accomplished by using a
slightly different representation of A. Let I,&'&(a =1, 2) be two unit vectors
chosen in some definite way in the plane perpendicular to Ir, (plane of polari-
zation), and a, &~& (» = 1, 2) be the components of a, i and a,m in these directions.
Then, on making use of the reality condition a, =a, Eq. (3) may be written

(&) (1) (&)
A = 2 g(r& ~ 0)a„ I, cos 2&rIr, r —a, 2

I&'& sin 2&re, r
r

(&) (2) (2) (2)+ a, ~ 1, cos 2+k, r —a, 2 1, sin 2m', r

if one of the integers, 7.~, is restricted to positive values. It is therefore seen
that any real vector A satisfying the condition p A=O can be written in
the form

2 2

p=l

where q„, replaces +2a„( ) and the A,„are orthogonal vector functions
into which, for convenience, a constant factor 2c(2 &r/L')"' has been intro-
duced; explicitly they are

A, i, = 2c(27&/L')'"I, cos 2&rIc, r,
(~)

A, 2, = 2c(27r/L')&&2I, sin 27rI& r

The constant factor has been so chosen that the energy is simply the Hamil-
tonian

K = IIa —— Q(ri & 0) [-',p'„, + 2&r'v, '&I„,'],

where P„.= j„,. The index 7. determines the frequency and direction of a
plane wave component, p distinguishes cosine from sine terms, and 0 gives
the direction of polarization.

For simplicity the vector potential may accordingly be written

A= +&I A
a

(6)

where n stands for v, p, 0. The Hamiltonian for the radiation field is then

IIa = Q-'p '+ 2&r'v 'q '

where g„and p are real.

WAVE MECHANICS OF AN ATOM IN A RADIATION FIELD

Suppose an atom, represented for simplicity as a single electron (mass
p, charge —e, momentum~) is placed at the center of the box. The classical
Hamiltonian for the system "atom plus radiation field, " neglecting spin
and assuming &&'/c' ((1, can then be written
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1
H = —~+ —A + U+Hg

2p c

where U is the potential energy of the electron in the field of the nucleus and
A and Hs are the functions of q, p given by Eqs. (6) and (7). The corre-
sponding wave equation is II/+(h/27ri)8$/Bt where H is the operator ob-
tained by making the substitutions p=(h/2+i)p, P =(k/2')8/Bq and f
is a function of the time t, the atomic coordinates s, and the variables q
which specify the field. This wave equation may be written

h Bp
(Ho + V)f(t, r, q ) + —= 0

2m'i

with V=Ill+II~, where

h'
»'+ U+ Q — — +2 '.'q ')

8m'p Sm' Bq '

eh
Hg= gqA V'

2' itic

g2

Hp = Qq qpA Ap.
2pC tz p

(10)

(The operators A and g are commutative when p A =0.)
Such a wave equation divers from those usually encountered only in the

fact that the number of variables is infinite. It may be treated by regarding
V as a perturbation and using the method of variation of constants. This
gives the solution in the form

(f) u (])e
—(2»el h)ra&

a

where $ =r, q&, q2, , and the u. are the normalized characteristic func-

tions of the unperturbed problem. The c are determined by the differential
equations

h. g V (&f )~
—(2» i I h) Ea (&

2x1

where U(ab) is the perturbation matrix

V(ab) =
Jl u. *Vutd&

In the ease of the present wave equation the characteristic functions of
the unperturbed system are

u. = ug(r) IIu. (q.)



where Ni(r) is the k-th characteristic function for the atom alone, and ur, is
a Hermite orthogonal function, since the operator in IIO that involves q
is simply that for the energy of a linear oscillator (of unit mass). The cor-
responding characteristic value of the energy is

E. = Ek + Q(«. + —,') hv .
a

A state of the unperturbed system is thus represented by a complex of
quantum numbers a =—(k; ri, ri, .

,) and the c, may be given the customary
probability interpretation (which is also a consequence of the general trans-
formation theory). That is, ~c($, k; ri, r2, , ~' measures the probability
of 6nding the atom to have the energy EI, and the 0.-th radiation component
to have the energy (r +-,')ki, if the interaction between the atom and field
is suddenly destroyed or becomes vanishingly small at time I,. The energy
of a field component in its lowest state r =0 is still (1/2)hi; this "zero-
point energy" must be regarded as undetectable in the form of radiation.

PROPERTIES OF THE PERTURBATION MATRIX

The quantities ~V(ah) ~' eventually measure transition probabilities
from state b to state a, and certain of their formal properties are of im-
portance. Using Dirac's notation for a matrix element we may write V(nb)
= (k;r„,~Hi ~l; s„,)+(k; ri, , ~H, ~l; s„,). A given element
of H, =(eh/27«inc)A g is of the form

~a~i; , s
eh

) = g I~*A 7'uidv
27ri pc

Since fg,u„u,gq is the (r, s ) element of the coordinate matrix of a linear
oscillator it is diferent from zero only when s =r + i. Thus the only ele-
ments of II~ diR'erent from zero are those corresponding to transitions in
which the quantum number of only one radiation component changes by
+1, those of the others remaining constant. Inserting the well-known
expressions for the coordinate matrices of the linear oscillator and the values
of A given in Eq. (5) the non-vanishing elements of H, may be written

(k «i, «« l&iIf «i,

(k;r, , r.
~

H, (f;«„

where

hr
r —1, . - .) = ——f . P (kl).— (12)

7l P p I.
h(r +1) '~' e 1

r +1, ) = —I . P (kl) — (13)x'v, p. I.

h f' cosP„.(kl) =
~)

2m.k, rgi~V'Nidv
2xi ~ sin

t|'&os for p = 1
(14)

(sin for p = 2
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Elements of the first kind correspond to transitions of the atom from state
l to state k accompanied by emission of radiant energy, those of the second
kind to the same atomic transition accompanied by absorption.

It will be seen at once that for radiation components of not too short
wave-length P (kl) reduces to the (kl) element of the atomic momentum.
This will be the case when the trigonometric factor may be replaced without
appreciable error by its value at the nucleus. In general this means v

=c ~k
~

( (10 cm, so that for visible light

P„,(kl) = p(kf) = 27ripv(kl)r(kf)

P,i.(kl) = 0.
(14a)

As will appear later the most important matrix elements for spontaneous
emission are those of the form (k; 0, , r =1, 0, , ~H, ~l; 0, ),
which may be abbreviated to (k1 ~H& l0), if it is understood that all quantum
numbers not specified are zero. Their squares

refer to transitions of the atom accompanied by "emission of one quantum"
of a definite frequency, direction and state of polarization specified by o..
In their dependence on frequency and direction as specified by 7 they are
continuously variable in the limit J = ~, and may be regarded as point
functions defined at the points with rectangular coordinates ri/L, r2/L,
rs/L, in a three dimensional "k-space. " The volume element dki dk2 dks
in this space is 1/L. It is more convenient, however, to use a system of
spherical coordinates, as in this case v/c= ~it

~

represents distance from the
origin. If dQ is an infinitesimal solid angle in the direction of k we may
write for the volume element

dk, dk, dk3 ——(v'/c')dvdQ.

Direction and frequency are now specified by continuous variables v and
fl = (8, it ) which replace the index r so that

h e p2

(k 1 u I
H~

I
N) I' = ——

I
I (v fl) P.(kf; v, 0) ~' dvd0—

X'P p,

It will be convenient to replace sums of such elements over 7 by integrals
over v and Q.

The matrix elements of H2 ——(e2/2yc')A A, on the other hand, are of the
form

e'
(k' ri ' ' '

I
Hi I

I' si ' ' ') = g j"A Asm&*uidv
2pc ~ p



For optical frequencies they will vanish except when 0 =/, i.e. when the state
of the atom does not change; at the same time two radiation components
can change their quantum numbers, again by +1. These elements are
responsible for direct scattering of light (Dirac's true scattering) but are
unimportant for spontaneous emission. Since they are of the second order
in (1/I.')"' they are negligible when added to elements of H~.

SPONTANEOUS EMISSION OF A RESONANCE LINE

The usual method of solving the variation equations (11) is to substitute
in the right hand members the values of the c.at time t =0. Integration then
gives an approximation which is valid for a short time —in general short
compared to the life-time of an excited state. On re-substitution, higher
approximations may be found. By proceed'ing in this way it is possible to
obtain all of Dirac s results for emission, absorption, and dispersion. In
fact, the present equations differ from those of Dirac only in that the c's

give the probability of finding a system in a given stationary state, . while
his give the probability of finding a given distribution of a number of systems
among the various stationary states.

This method of solution is inadequate, however, if we wish to investigate
the structure of a line within its natural width, as may be seen by appealing
to the uncertainty principle. As applied to energy and time this states that
any limitation At in the time of an energy measurement will introduce an
unavoidable uncertainty in the energy of amount AE=k/At. For a com-
ponent of the radiation field E=hv, and hence

1
hv

It is well known that the natural width of an emission line is approximately
1/T, where T is the life-time of the upper state. Hence a solution of Eqs.
(11) which is valid only for t & (T cannot predict the result of a frequency
measurement of accuracy greater than d,v=1/T. Actually, as Pauli has
shown, ' Dirac's results give only the total probability of finding a light
quantum in a given range of stationary states extending over the natural
width.

It is possible to obtain, however, a solution of the variation equations
which is valid for any value of t much greater than the life-time. This will

not be subject to the foregoing restrictions, and we shall see that it gives a
reasonable formula for the shape of an emission line.

Written explicitly the Eqs. (11)are

~I&i~f;ri, r + 1, )

e(2x i / A) (Ek—El+ ft &~) tc() ~

+ terms in H2

r +1

~ Probleme der Modernen Physik, Leipzig, 1928, p. 30.
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where the + sign means inclusion of both terms in the sums. If we are
interested only in the solutions for large values of the time it will be legitimate
to retain on the right only those terms which are constant or vary slowly
with the time, since the effect of those which vary rapidly and periodically
will average out. The "resonance" or "secular" terms are those for which
EI, ——E&+hv is zero or very small, so that they are just those which cor-
respond to transitions in which the total energy is conserved.

To describe spontaneous emission we wish a solution for initial conditions
such that at time t =0 it is certain that all atoms are in an excited state m,
while all radiation components are unexcited. Ke therefore suppose only
e(m; 0, ), is initially diferent from zero. From the infinite set of equa-
tions it is then possible to discard any sub-set containing only c s which are
not coupled with c(m; 0, ) since such a set will have only the trivial
solution that all the c s which it contains remain practically zero. Terms in

II2 may also be neglected compared to those in IIj as they are of the second
order in (1jI.')'12. At the same time we may retain only the resonance terms.
If this process of elimination is carried out consistently for thespecialcase
that m is the 6rst excited state of the atom, so the only state of lower energy
is the normal state k™=n the only equations which survive are the following:

h——c(nl ) = H~(a0)e ' ""o " "e(m0),
27ri

h
c(mD) = H, (Oa)e' "" ' "c(e1 ).

2' i
(17)

where (E E„)/h= vo —and H~(a0) is put for (n1 ~K ~mO).

A solution of these equations which is valid when only c(m0) is initially
different from zero may be obtained in the following manner: From Eqs.
(16),

2xi p t

e(nl ) = ——H~(a0) il e ' ""o " "e(m0)ds

and substituting these integrals in Eq. (17) gives toe integral equation

2~ 2

e(mO) = — — Q ~
Hi(aO) i

'e"'("~ "a"-
h

j e-' '("o-"I"c(m0)ds
0

for c(mO) as a function of the time.
The sum with respect to 0. may be partly replaced by an integral, since,

as already explained, ~H&(a0) ~' is a continuously varying function of v and
0 in the limit I, =' Oe . From Eq. (15) it is seen to be of the form

~
H, (a0) ~' = fp, (v, Q)vdvdQ,
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h e
f„(v, 0) = — —~1(0) P,(nm; v, 0) ~'.

mes Ju

Eq. (18) then becomes

t.—-& —&.(.o)d'Id'.
0

(The integration with respect to 0 is only over a hemisphere because of
the restriction r'&0.)

It will now be shown that Eq. (18) has a solution of the form c(mO)
= Ce ", and z will be determined. Substituting this expression in Eq. (18)
gives

K

v —vo+ t-
27r

2%. 2 1 f f' ~2% i(vs—v) t e
—«t

xe"= — — p Id0JI f,. vdv7 2.; „ . J (21)

The integral with respect to v may be written

I = JlF(v)
f.2~i(vs —v) t

K

v —vo+ z—
2Ã

e Jt F(v)
V —Vo

dv

K+e e "JI—F(v)2' dv,

(. —..) +(—")'

where F(v) =vf„The thr.ee integrals may be evaluated without difhculty
when it is assumed that z is vanishingly small compared to ve and that F(v)
vasnishes for large values of v in such a way that the integrals converge for
high frequencies. The first assumption is certainly valid, since, as will be
seen, 2K is the transition probability; the second has not been rigorously
proved, but has been assumed by Dirac in his calculations, and is plausible
because F(v) contains factors of the form f cos 2nk ru„'I de which vanish
for high frequencies. The limits of integration may then be extended from
0 to m, and F(v) replaced by F(ve), since, because of the resonance when
v=vo the contribution to the integral near the resonance point is the pre-
dominant part. The first integral may be extended to a closed path in the
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complex plane and by Cauchy's theorem its value is =2zrz F(vo)e "' T.he
second vanishes because of the factor vo —v, while the last may be reduced
to the form f d("/(P+cz') = zr/zz and contributes zzrt(vo)e " He. nce

I = —zrivof„, (vo, Q)e "',

and Eq. (18) is satisfied with

1 27r
vo Q Jj

deaf,

.(v,„, 0) .
2 h

(22)

The solution of the set of differential equations is completed by sub-
stituting c(mo) = c '(mo) e "' in Eqs. (16) and integrating, which gives

27/ 1

c(zzl ) = c'"0'(zzz0}—-IIz(u0)—
h 2zrz(vo —v.) + zz

c(zzz0} = cz" (zzz0)e

(23)

Turning to the physical interpretation of the results just obtained, it
is seen from Eq. (24) that the number of atoms in the upper state m falls
off exponentially with the time, since ~c(m0) ~' is the total probability of
finding the atom in state rn. This number is proportional to e '"~', so that
x=(1/2)A, where A is the Einstein probability coefficient for spontaneous
transition. (It will be shown presently that the value of A given by Eq. (22)
coincides with that derived from the correspondence principle. ) From Eq.
(23), on squaring, we obtain the total probability of finding the a'" radiation
component to have the energy hv . For t) )1/x this is

)
c(zz1 ) )

z
(

c(o)(m0)
~

4zr-'(vo —v )' +
2

which gives the final energy distribution in the line. (For sufficiently large
values of the time the atom and field can certainly be regarded as uncoupled. )
On summing over all values of n it can be shown that the total energy is

~co(m0) ~'hvo, as it must be. Since, for v =vo, ~II, (n0) ~' can be regarded
as independent of cz, and since, in the limit L =' ~, ~II, (cz0) ~' is proportional
to dv, the intensity I(v) per unit frequency interval is

J(v) = const

4zr'(vo v) +
2

(25)

This is just the intensity distribution calculated from the Fourier analysis
of a classical oscillator with damping constant (1/2)A. Since this damping
of the amplitude of the virtual oscillator is just what is required to preserve
the energy balance when the atoms leave the upper state, according to
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Einstein s law, at rate A, it is seen that Eq. (25) gives the result to be ex-

pected from the correspondence principle. ' The half-width (width at half
maximum is readily seen to be (1/2r)A, or (1/2') times the reciprocal of the
lifetime of the upper state.

In conclusion it will be shown that the value of x given by Eq. (22) is
actually ~ the usual expression for the probability coe%cient;

(2nvo)4 2~'
A(mn) = 2

~
r(mn) ~'

hvp 3c

derived from the correspondence principle on the assumption that only
dipole radiation need be considered. Under these conditions (not too short
wave-length) the factor Z, ~1, P, (~ OQ) ~' occuring in Eq. (22) becomes simply
4r'y~o' ~f. r(mn) ~' (Cf. Eq. (14a)). If the space degeneracy of the atom is
not removed by an external field the cos' in the scalar product may be
averaged over all orientations of the atom, introducing a factor of 1/3 and
removing any dependence on the direction of polarization (o) and Q. With
this simplification it is readily seen that x is 1/2 the value of A (mn) given
by Eq. (26). For short wave-lengths the factor cos 2rk r in P cannot be
regarded as unity. It can be shown, however, that in this case z is still
one half the rate of emission of radiant energy calculated classically from
the Schro*dinger charge and current density associated with the transition,
the trigonometric factor taking care of the retardation.

The method which has been used for emission lines is obviously capable
of extension to the case of absorption under various conditions, and the
results will be discussed in a future paper.

Note added in proof: Since the above article was sent to press a paper has
been published by Keisskopf and signer* on the natural widths of emission
lines.

Comparison with their results showed an error in the author's generaliza-
tion of the above results to the case of lines other than a resonance line. A
paragraph dealing with this generalization has therefore been deleted in

the proof. Keisskopf and signer arrive at the important conclusion that
the half-width in the general case is 1/2 times the sum of the total proba-
bilities of spontaneous transition from the upper and lower states. Their
method is similar to that of the present paper and gives, of course, the same
result for a resonance line. Equations equivalent to those on which they base
their treatment of other cases can be derived from Eqs. (11) above.

' Cf. W. Pauli, Handbuch der Physik, Vol. XXIII, p. 70.
* Zeits. f. Physik 53, 54 (1930).


