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ABSTRACT

The statistical method of Fermi and Thomas of calculating atomic potential
distributions has been extended to include positive ions. A table of potentials for
any positive ion is given. The results have been applied to the calculation of (a)
ionic radii, (b) successive ionization potentials, (c) deviations from the Mosely law
in optical spectra.

I. THE THEORY

ERMI' and Thomas' have considered the electrons in a neutral atom as a
completely degenerate electron gas under the influence of the Coulomb

field of the nucleus. Assuming radial symmetry, and using Poisson's equation,
the Fermi-Dirac statistics permitted a calculation of the distribution of poten-
tial for neutral atoms. The present work provides a generalization of the
method to include all positive ions also.

Fermi and Thomas obtained the differential equation

1 d 1 dv 2 13/2~2yg 3/2/5/2
= —4~p = ~3/2

r dr r dr 3h'

with the boundary conditions

Ze/r near r = 0, or lim vr = Ze (2 o)

v(~) = 0 (2. 1)

which determine the solution for the neutral atom uniquely. The additional
condition

pdT = —Z8

is simultaneously satisfied.
Introducing dimensionless variables

0 =v/V; V=
213/3~4/3~g3Z4/3

(4)

' E. Fermi, Zeits. f. Physik 48, 73 (1928).
' L. H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1927).
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then Eq. (1) becomes

32/3h2x=r p;
2 &3/3g 4/3pgg2g& /3

de 2 dp
p8~2

dx x dx

Substituting P=Px, we have

and Eqs. (2) and (3) become

and

@3/ 2

y/ I

~1/2
(6)

(7')

(& 1)

P'"(x)'"dx = 1.
0

For the positive ion having s electrons and the atomic number Z, which
we shall call an ion of order 0 (0 = zjz), we have, in place of Eq. (3),

and, in place of Eq. (8),

J
g'"x"'dx = z/Z = o.

0
(10)

Since Eq. (9) is not fulfilled by the former solution, it follows that the
boundary condition, Eq. (2.1), must be modified, since Eq. (2.0) must remain
the same. A suggestion of how this is to be done may be obtained by a com-
parison of Eq. (3) with the equations

d2$ 2 dp+ Pn
dX2 X dX

which have been extensively studied by Emden' in connection with the dis-
tribution of matter in polytropic gas spheres. Emden found that for certain
values of n, and certain boundary conditions, there are solutions of Eqs. (11)
describing gas spheres of finite radius. This suggests that Eq. (3) may also
have such solutions if the boundary conditions are modihed.

Fermi' and Razetti' have used the approximate potential

e r
v = ——1+ (Z —1)y

r p

' Emden, "Gaskugeln, " Leipzig, 1907.
4 E. Fermi, Zeits. f. Physik 49, 550 (1928).
' F. Razetti, Zeits. f. Physik 49, 546 (1928).

(12)
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(where p is evaluated for Z —1), for a singly ionized atom. This is obtained by
considering the ion of nuclear charge Z as a neutral atom of nuclear charge
Z —1 plus an extra proton in the nucleus. This approximation neglects the
"packing eoect" that the added proton will have upon the electron cloud. It
is not possible to generalize this result for much higher ionizations, for then
the neglect of the packing effect becomes serious. The present method is

designed to remove this difficulty. '
Ke propose a model of the positive ion having a finite radius x, beyond

which the charge density is zero. The solution P. of Eq. (6), representing a
positive ion of order o, must obey the boundary condition

(13)

instead of Eq. (7.1). We find that P. then fulfills the extra condition of Eq.
(10). For the neutral atom x„=~, Eq. (13) reduces to Eq. (7.1), and Eq.
(10) reduces to Eq. (8), as required.

Fig. 1.

In Fig. 1 are displayed the possible forms the solution of Eq. (6) may take
if the boundary condition of Eq. (7.0) is satisfied. The curve Q& is the only
solution for which P(~) =0, and is that already obtained for the neutral

' The two dimensional analogue of Eq. (5) is

1 df——+ ——=f
dx' T dr

the solution of which is any cylinder function Z&(ix). The only cylinder function which has the
required logarithmic behavior for x =0, and which vanishes for x = oo, is the Hankel function
of the first kind H0'(ix). As this function becomes asymptotically equal to e~ jx&, it can only
represent a neutral two dimensional atom. The corresponding fact is true for Eq. (5); there
is no solution of Eq. (5) which satisfies the conditions of Eqs. (2.0) and (2.1) other than the one
obtained by Thomas and Fermi for neutral atoms. This can also be shown by a direct method
of inequahties. This remarkable property of Eq. (5) made necessary the linking up of two solu-

tions as described above.
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atom by Fermi and Thomas. For this solution we have found the starting
slope 4 i'(0) = Bi=——1.588558.

Since the diB'erential equation is of the second order, a particular value
of the initial slope —B.at x = 0 uniquely determines a single solution passing

f.4.
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Fig. 3.

through @=1, x=0. All solutions with 0) —8 )— are single valued in

@, and no two cross each other.
A11 solutions with 0) —B.)—Bi have each a single minimum, the coordi-

nates of which (Q.„„x ) are monotonous functions of B.(see Fi8. 2), so that
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the locus of minima (see Fig. 3) is monotonous in both x and Q. The ordinates
at the minimum range from $~„=0 to $, =1, for values of 8, from B~ to Bp
respectively. These solutions describe any positive ion (0&a &1) as far as
the minimum, which is the boundary of the ion; beyond that point the Cou-
lomb field requires a straight line parallel to Q =0, and a distance 1 —0 above
it, corresponding to a solution of I.aplace's equation, which joins at the
minimum a solution P. of Eq. (8). The value of 0 which belongs to a solution
P„having a starting slope —8„is thus determined by numerical integration
from @= 1, x =0, P' = —8, to the minimum, and by th're assigning the value
1 —0 to the ordinate @, . The value of a is known to characterize the straight
line 1 —0 =P, which is the solution of Laplace's equation for the region outside
of an ion of order o. This condition expresses the fact that the potential of
a positive ion must be

for large values or r.
All solutions of Eq. (8) with —8,) B.)—~—lie below P& and terminate

abruptly at /=0, so that they do not represent negative ion distributions.
Negative ions, as a matter of fact, will not find a place in any theory which
assumes radial symmetry.

Since x=O, $= 1 is a winding point with $ infinite, it is not possible to
integrate from there using Taylor's series. Instead the expansions

4 2 1 3 2
y = 1 —Bx+ —x3~2 ——Bx5~2 + —x3+ —B~x~~2 ——Bx4

3 5 3 70 15

4 2 1

63 3 16

3 8
@' = —B + 2x'" —BS'~' + x' + —B'x"' ——Bx

20 15

2 2 1
+ ——+ —B3 x»+

7 3 16

(14)

obtained by a method of successive approximations, are used, since they are
rapidly convergent near /=1, x=O. Starting with an arbitrary value of
8,, the integration is carried out to the minimum by an extension of the
method given by Khittaker and Robinson' for equations of the first order.
The results must be given in a bivariate table, with values of P for each value
of x and B.or 0.. Th~s would be very extensive, were it not for the fact that,
for each particular value of x, the values of both P. and @.', from one curve to
another, depend linearly upon 8,. By means of the formulae:

g, ' = k'(B. —8„) + gp'

'%'hittaker and Robinson, "The Calculus of Observations. "

(16)

(17)
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and Table I, we may easily find the values of Q, and P, ' for each value of ir,

at the values of x given in the table. For intermediate values linear interpola-
tion is sufFiciently accurate. The constants k and k', being functions of x,
are also tabulated, as well as the values B„,@„and Q„' of the reference solu-
tions. The values of B. and @, are also listed; they are the initial slopes and
minimal ordinates, respectively, of the solutions having their minima at the
given value of x. Since P, = 1 —0, this part of the table is used to 6nd the
initial slope B., needed in Eqs. (16) and (17), corresponding to the given
order 0 of the ion. This may also be done using Fig. 2. In Fig. 3 values of

are plotted against x„, and from this, since P, = 1—0, we may find the
radius x of an ion of order 0.

Values are listed from x=0.10 to X=14.88. For values of x(0.10 the
series in Eqs. (14) and (15) may be used.

II. Ioxzc RADrr

Herzfeld' has given a summary of some fourteen different methods of
determining ionic radii, most of which are experimental, or semi-experi-
mental. It may be seen from his collection of data, that the radius of any
particular ion has a wide range of values, according to the method of deter-
mination. This uncertainty is not experimental, but lies in the variation of
meaning of the radius with the method. It is consequently quite useless to

0.10
0.11
0.12
0. 1,3
0.14
0.15
0.16
0.17
0, 18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.38
0.42
0.46
0.50
0.54
0.58
0.62
0.66
0.74
0.82
0.90
0.98

0.880448
0.870539
0.860832
0.851358
0.842103
0.833053
0.824201
0.815535
0.807046
0.790574
0.774731
0.759471
0.744751
0.730535
0.716792
0.703492
0.690609
0.666003
0.642812
0.620895
0.600134
0.580427
0.561684
0.543825
0.526781
0.49490
0.46561
0.43858
0.41352

0.10126
0.11159
0.12197
0.13240
0.14287
0. 15342
0. 16401
0.17464
0.18418
0.20576
0.22761
0.24971
0.27208
0.29473
0.31765
0.34089
0.36447
0.41251
0.46193
0.51275
0.56505
0.61888
0.67434
0.73146
0.79031
0.91345
1.0443
1.1833
1.3310

T vm. ~:. I.
8„=1.60.

—CB~, 8.) p
—k

1.0077
0.9826
0 ' 9587
0.9362
0.9151
0.8948
0.8758
0.8576
0.8402
0.80745
0.7772
0.7492
0.72315
0.69875
0.67585
0.6544
0.634)5
0.5968
0.5633
0.5330
0.50545
0.4803
0.4572
0.4360
0.41645
0.3816
0.35125
0.3250
0.30225

—k'

1.0306
1.0362
1.0410
1.0449
1.0511
1.0548
1.0610
1.0665
1.0728
1.0861
1.0985
1.1115
1.1255
1.1391
1.1540
1.1698
1.1856
1.2184
1.2523
1.2887
1.3264
1.3659
1.4069
1.4492
1.4935
1.5882
1.6851
1.7913
1.9052

0.62221
0.65170
0.67901
0.70399
0.72935
0.75166
0.77453
0.79592
0.81678
0.85655
0.89248
0.92596
0.95746
0.98658
1.01434
1.04059
1.06513
1.11013
1.15018
1.18639
1.21892
1.24839
1.27500
1.29916
1.32216
1.35972
1.39155
1.41856
1.44136

0.97950
0 ' 97636
0.97316
0.96999
0.96650
0.96320
0.95958
0.95597
0.95130
0.94355
0.93577
0.92779
0.91957
0.91133
0.90283
0.89419
0.88556
0.86808
0.85060
0 ' 83298
0.81546
0.79804
0.78084
0.76388
0.74715
0.71444
0.68329
0.65326
0 .62467

' K. F. Herzfeld, Jahrb. der Radioakt. und Electronik 19, 259 (1922).



EDWARD B. BAKER

TABLL I. (continued)

1.06
1.14
1.22
1.30
1.38
1.46
1.54

0.39017
Q. 36836
0.34789
0.32859
0.31037
0.29308
0.27662

—(Bqs/Bx) „
0.2819
Q. 2639
0.24825
0.2341
0.22175
0.21075
0.2006

—k

1.4882
1.6551
1.8325
2.0212
2.221{}
2.4347
2.6612

—k'

2.0239
2. 1502
2.2866
2.4293
2.5827
2.7470
2.9547

Bm

1.46072
1.47728
1.49143
1.50362
1.51414
1.52328
1.53210

+pt

Q. 59744
0.57148
0.54684
0.52339
0.50112
0.47987
0.45732

1.649
1.822
2.014
2.226
2.460
2.718
3.004
3,320
3.669
4.055
4.482
4.953
5.474
6.050

0.28827
0.26312
0.23878
Q. 21538
0.19305
0.17180
0.15167
0.13266
0.11472
0.09776
0.08165
0.06619
0.05105
0.03587

0.1546
0.1361
0.1186
0.1027
0.08866
0.07616
0.06515
Q. QSS60
0.04748
0.04069
0.03S12
0.03081
0.02758
0.02537

Bp =1.589

2.9889
3.5600
4.2678
5.149
6.250
7.649
9.367

11.62
14.38
18.21
23.26
30.11
38.90
50.63

3.1213
3.4885
3.906
4.408
5.027
5.764
6.572
7.701
9.085

10.79
12.74
15.32
18.56
22. 61

1.53939
1.55001
1.55863
1.56569
1.57136
1.57579
1.579133
1.581780
1.583774
1.585230
1.586243
1.586989
1.587515
1.587878

0.43653
0.40192
0.36839
0.33540
0.30327
0.27286
0.24410
0.21656
0.18986
0.16640
0.14577
0.12673
0.10883
0.09268

6.686
7.389
8.166
9.025
9.974

0.04672
0.03817
0.03029
0.02286
0.01565

0.01340
0.01108
0.00932
0.00806
0.00723

B~= 1.5886

66.60
88.40

118.2
159.3
216.3

28. 12
34.24
42.37
53.19
66.97

1.5881234 0.07846
1.5882763 0.06679
1.5883801 0.05629
1.5884485 0.04699
1.5884921 0.03900

11.02
12.18
13.46
14.88

0.01716
0.01252
0.00802
0,00341

0.00434
0.00373
0.00335
0.00319

8„=1.58857

296.0
408.0
563.0
782.0

85.30
107.6
136.7
171.4

1.5885191 0.03218
1.5885353 0.02666
1.5885454 0.02182
1.5885514 0.01798

expect quantitative agreement of the radii determined by this theory, which
themselves have little real meaning, with his values. Never-the-less, they do
correspond in order of magnitude, and show the same general variation with
atomic number. The class of ions considered by Herzfeld is a restricted class,
having values of s equal to Z—q, where q is the valence of the element Z.
When their radii are plotted against Z, a Lothar Meyer curve is obtained. We
have made a similar curve, Fig. 4, of the values found from Fig. 3, but only
for elements having positive ions.

I II. SUccEssIvE IoNIzATIoN PoTENTIALs

Milne' has applied the Fermi-Thomas theory of the neutral atom to the
calculation of the total potential necessary to remove all of the electrons from

' E. A. Milne, Proc. Camb. Phil. Soc. 23, 794 (1927).
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a neutral atom. Since our theory also gives a description of positive ions, the
natural extension of the work of Milne is the calculation of the successive
ionization potentials of atoms, or the successive potentials necessary to re-
move the electrons from an atom one at a time, further "stripping" the atom
at each step.

The method of calculation consists in ending the total potential X=
X(0', Z), necessary to remove all of the electrons from each kind of a positive
ion that an element of atomic number Z may have, including the neutral atom.

q 1C&+

0 5 10 $5 2025 30 3540 45 50 55
Atomic numbe r

Fig. 4.

Successive differences of these quantities give the desired successive ionization
potentials.

Milne considered the total electrostatic potential U to consist of two parts,
Ze/r due to the nucleus, and v(r) due to the charge cloud. At the nucleus
v(r) takes the constant value vo, the "back potential" of the charge cloud, and
this he showed proportional to the starting slope of $1, which is —Bl. There is
a charge Ze at the nucleus, and at any other point a charge pv. The total
electrostatic potential is then

W = Z-,'ev = —,
' jf pvdr + —,'Zevo, (18)

and the total energy is half of this.
The integral in the first term of Eq. (18) he showed to be proportional to

8&, which becomes 8 for the ion. His result may be written:

X(1,Z) = —13.118,Z"' volts.

He obtained his value of B~ from Thomas' calculations of @1near x =0, which,
however, are slightly in error. Using our value of 8& ———1.588558, we obtain

X(1,Z) = 20. 824Z"' volts (20)
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which does not agree as well with experiment as Milne's

X(1,Z) = 17Z"' volts. (21)

This agreement must be regarded as accidental.
For the positive ion of order 0 we obtain

X(0, Z) = —13.11B.Z'" volts. (22)

If the approximation of Fermi and Razetti is generalized for ions of any
order we obtain

7 6
Xp(&r, Z) = —13.11B~——a+ 1 Z~" volts,

13 7
(23)

since s must be used for the evaluation of v in the first term of Eq. (18). In
successive differences only the term in Eq. (23) containing 0 gives a contribu-
tion.

Volt, s
-2000

1000

Xb Zb
2

b 8 b b
X4 X$ Xf X7

Fig. 5. Successive ionization potentials of oxygen. Z =S. Circles
represent Hartree's Values.

In Figs. 5 and 6 we have plotted such differences of X(B, Z) for the ele-
ments oxygen and iron. The broken curves are the semi-experimental values
of Hartree. ' As with most results of this statistical theory, a smooth curve

'o D. R. Hartree, Proc. Camb. Pkil. Soc. 22, 473 (1924).
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running through the jagged experimental one is obtained. Differences of X
according to (23) give a curve of successive ionization potentials having a
negative slope and going from the upper left hand corner to the lower right
hand corner of the diagrams 5 and 6.

Volt5
20,000

- i0,000

X2~
0

0- shell

5 IO 15

I I I I I I

2G 26
20 25

Fig. 6. Successive ionization potentials of iron. Z =26. Circles
represent Hartree's values.

IV. APPLICATION TO THE BEHAVIOR OF OPTICAL TERM VALUES

IN THE LIMIT OF VERY HIGH FREQUENCIES

Sommerfeld has shown that x-ray terms may be represented by the semi-
empirical term formula

(24)
T Z —d(e l j) ' n 3——= [Z/e —a(Z, n) —b(e. l) ]' + a' + ~ ~

R n — j+2 4

Laporte" has shown that this same formula may be used to represent
optical terms, though the number a(Z, e), which represents the screening of
the outer electrons, is zero for optical terms, and b(e, I) is a function of Z,
except for very high ionizations (8« I). For low ionizations its dependence
upon Z may be expressed as the series

B(e, I) C(e, I)
b(e, I, Z) = A(e, I) + + +

Z Z2

so that

lim b (n, I, Z) = A (n, I) .
~~on

(26)

It is possible to calculate the quantity A(n, I), by means of the present
theory, for hydrogenic ion series like Na I, Mg II, Al III, etc. It is also

» 0. Laporte, "Sommerfeld Festschrift, " Leipzig, 1928, p. 128.
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possible to derive this from the experimental values of the line frequencies for
such isoelectronic series. Ke shall be interested erst in the latter problem.

Combining Eqs. (24) and (25) we have:

T Z B(n , l) . C(n, l).4(n 1)+ + +
E n

'
Z Z'-

'2 —d(n, , l,j ) [' rr, 3

2

(27)

Terms in n' and higher powers of o.' represent the "relativity ' correction, and
if we subtract them from both sides of Eq. (27), we obtain the "reduced"
term values k, thus

Z B(n, l) C(rz, 1)
A(n, l) + '—+—' —+

'g Z Z'

9'e wish now to be able to calculate A(n, l) from observed values of l.
This may be done in at least two ways.

The erst is to take the square root of the absolute values of both sides
of Eq. (28), obtaining:

(
t '~'-' Z

'1 (P'll t)
R 'pl

8(n , 1) C.(n, 1)
+

Z Z'
(29)

which shows that the Moseley law holds for large values of Z. If we form the
difference

(
l(l ) r/2 l(l ) 1/2 1

[.l (n, 1,) —A (rz, 1.) ] + —[B(n, lr) —B(rz, lz) j (30)
E R Z

and gq to the limit for very large Z, we obtain the quantity

lllTl — —— =;1 N, ty —.'1 9Z, lz (31)

This quantity may be directly calculated from the experimental term values
of an isoelectronic sequence, it being the asymptotic value tha'; the quantities
in Eq. (30) seem to approach for the heavier elements in the sequence. Such
quantities have been calculated by AVentzel" and Uns'ld, "on the basis of a
model of the atomic core composed of concentric spherical surface charges.
This quantity has the disadvantage that the absolute term values must be
known in order to calculate it.

The second quantity which may be used as a medium of comparison of
theory and experiment is the asymptotic value of the first differences, for

'2 G. g'qntzel, Ana. d. Physik 75, 803 (1925).
'" A. Unsold, Zeits. f. Physik 33, 843 (1925).
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n eighboring elements in the isoelectronic sequence, of the line frequencies
themselves. We may form this quantity from Eq. (28). It is

v(lz, lz, Z + 1) v(l. , l „Z)Jz.
' t(n, lg, Z+ 1) t(n, tz, Z+1) t(n, l„, Z) t(n, l, , Z)

lim ——— —— — —
I

(32)
g-+ zzzz E R R R
2= —[;1(n, l,) —2 (n, lz) ],

which is just. 2/n times the quantity in Eq. (31).
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These two quantitites, in Eqs. (31) and (32), have been calculated by
means of this theory, and have been compared with the experimental values
Of Bowen and Millikan" for the series Na I, Mg II, etc. , and Li I, Be II, etc.
in Figs. 7, 8, 9, and 10.

~~Sf (&p-
Q.125

L1I Be Tr g~ CR N V OXO. iOO

Fig. 9.

Cm
0.30

0,2~82

(sg'-Ap) ~ -l0.20

(v )*

0.15

O, f405

—- - —
~
—- -—0.10

0.05

0.00
Na I ~gIj AlIII 5i 9/ P V 5E

Fig. 10.

The use of the present theory to calculate these values involves the
Schrodinger perturbation theory, since we are only interested in the energy
values for large values of Z (s nearly 0). KVe consider the core as a perturba-
tion of an "hydrogenic" atom, writing the perturbation energy as

(33)

' I. S. Bowen and R. A. Millikan, Phys. Rev. 25, 299 (1925), 27, 145 (1926).
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where f is the wave function of the unperturbed hydrogenic atom, and P(r)
is the perturbation function of the core. We proceed to construct P(r)

Consider an ion of nudear charge Z, with z electrons in the core, and one
valence electron in addition. The potential energy of the valence electron in
the field of the nucleus plus core is

(34)

where P, is the generalized Fermi function for an ion of order 0. The net
charge of the ion is (Z —s —1).

The potential energy of the valence electron in the field of the nucleus
alone (of charge Ze) is

Ze"

If we add and subtract Eq. (35) to Eq. (34), we still have the potential
energy of the valence electron in the field of the nucleus plus core as

(36)

The quantity Ci =Ze'/r[1 —@,] may be split into two parts 4» and C2, such
that

4 = 4I for r & r

4 =4gforr&r„,
where r „is the radius of the core. If r &r, then

so that

Ze ze'
4g = —(1 —1 + s/Z) =

We may rewrite Eq. (36) in the form

(Z —s) e-'

+ P(r) (38)

P=0 for r ) r

where P is a function defined by

P = CI —Ze'-r for r ( r
(39)

Now, if Z is very large, we may think of the valence electron as being
primarily in the field of a point charge (Z —s)e, and then being perturbed by
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another system, with the perturbation energy P(r). So, without the pertur-
bation we have an hydrogenic atom with nuclear charge (Z —z)e (i.e. the
quantity z is the first approximation to the screening number b(n, l, Z) ).

If Z) )z (o nearly 0), we may use the series approximation of P, given
in Eq. (14), since x is also nearly zero. By means of the analytical expressions
of Eqs. (14) and (15) we are able to find an analytical expression for B.
as a function of cr. To do this we notice that at the minimum

{) g+ 2x I/2 gx 3&2+ x 2+ (40)

Since both 8 and x are small, all terms after the first two are of lower order,
so that, approximately,

B = 2x '"' x "' = B/2 x = B'/4 (41)

Then, substituting in Eq. (14), we have

4 2= 1 —o = 1 —B(B'/4) + —(B/2)' ——(B/2)'+
3 5

= 1 —B'/12 —B'/80 +
or, to the same approximation as in Eq. (41),

B'/12 = o" B = (12o)"'

(42)

(43)

which is the required function. If we eliminate B from Eqs. (14) and (43),
we obtain @.in terms of x and 0' explicitly. Thus

4 2
@, = 1 —(12 )l"x + —x'" ——(12o)'"x'" +

3 5

and therefore

Ze2 4 2
4'g = (12o')' x ——x~ + —(12a)'~ x ~

r 3 5

= Ze
(12o)"' 4 r"' 2 r3/2

+ —(12o )'" +
p 3 p3" 5

(45)

(120)'" 4 r'" ze'
P(r) = Ze'

p 3 p
) re

r

P(r)=0;r~r

Finally, we may write our perturbation function as

(46.0)

(46. 1)

If we introduce the dimensionless variable

r
p = 2

rp
rp

Nap
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where Ze = the real nuclear charge

(Z —z)e=the nuclear charge of our hypothetical hydrogenic atom
e& =the normal radius of the hydrogen atom
n= the principal quantum number,

we have the perturbation function

Q(p) = 2'(r) = a+ fp'"+ e/p, (48)

with

Ze'(12o)"' Ze' 8Z'"

a 3'/3m'/3

(49.0)

4Ze' aon Ze2 32n'/'

3p'" 2(Z —z) ao 9z (1 —o)"' (49.1)

2ze'(Z —z)

gon
(49.2)

r 2r (Z —z) ~2/334/3~2/3
p-=2 —= = (1 —o)

~G nQo 4e
(49.3)

and e take the form

Pnz

Q(p) 0'(p) p'd p
aJ 0

~ 4'( )pp'dp
0

(50.0)

since Q(p) =0 for p) p„.
The limiting forms of Eqs. (49) fora'=0 are

Z e2 32
f ].=o ———

ao
(50.1)

(50.2)

7f 2/334/3S2/3

p ].=o = ——
4n

(50.3)

%e have passed to the limit several times during the process in order to
simplify the calculations. The asymptotic form of the perturbation energy is

Zee„= —I.(e, 1, z) (51)
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If we were to extend the calculation for c near the limit, we would find"

[ —LZ + iU + X/Z +
e'-'

Qo
(52)

The energy of the unperturbed hydrogenic ion, of nuclear charge (Z —s) e,

e'-'(Z —sl
'-'

loPE

e'-'

——(Z' —2sZ + s')
2Ll os

and therefore the sum

e"
E,„=E + e = ——[Z'-' —2(Z —u 'L)Z + ('-s'- —M) —X/Z +

2Qo'pz
(54)

is the energy of the perturbed ion. From this the reduced term value is seen
to be

1——= —[Z'-' —2(: —n'L)Z + (r'-' —3I) —X/Z +
pz'

j (55)

In order to compare this with Eq. (28) we must place the square root of the
right hand side under an indicated square. Thus

(Z 1
~ ———( —Pl L)
& m n

.V —2z pz'I. —pE'I. '-'

(56)

Comparing Eqs. (56) and (28) we may make the following identifications:

1
.4(s, I) = —(: —s'L)

pz

(57.0)

M —2s pz"-L —pz'I. "
8(n, I) —— — — etc.

2 Pl.

(57. 1)

From Eqs. (57.0) and (51) we may calculate quantitites such as those of
Eqs. (30) and (31).

The quantitites of Eq. (30), which WVentzel introduced, must be calcu-
lated from "reduced" absolute term values. They are practically insensitive

"Since the perturbation function has the form of Eq. {48), the perturbation integrals
reduce to sums of integrals of the type

V

I(p, v) = x& 'e dr

which are known as "incomplete 1'-functions. " They are special cases of the "confluent hyper-
geometric functions. " Tables of these functions have been prepared by K. Pearson ("The
Incomplete F-function" ), but interpolation is very laborious. However, since we encounter
only whole or half integral values of p, it is much simpler to reduce the integrals to polynomials
(integral values), or to polynomials plus Gauss error functions, by partial integration.
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to relativity corrections, but the absolute term values are only known by
somewhat approximate calculations from line frequencies. The unreduced
values of Bowen and Millikan are plotted in Figs. 9 and 10.

The quantitites calculated according to Eq. (31), though found directly
from line frequencies, are very sensitive to relativity corrections, which are
difFicult to estimate accurately for s terms. Instead, in Figs. 7 and 8, the ac-
tual "unreduced" values are plotted for each of the doublet lines, to give an
idea of the error involved in not reducing them. The lines on the right hand
margin indicate the theoretical asymptotes.

In conclusion I wish to express my appreciation to Professor H. M.
Randall, Director of the Physics department, for courtesies shown me during
my graduate study at the University of Michigan. I am indebted to Pro-
fessor 0. Laporte for suggesting this problem to me, and for his constant
advice. I also wish to thank Professors D. M. Dennison and E. A. Milne for
valuable advice and criticism.


