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ABSTRACT

In analogy with the method of Zener for the atoms from Li to F, simple rules
are set up giving approximate analytic atomic wave functions for all the atoms, in
any stage of ionization. These are applied to x-ray levels, sizes of atoms and ions,
diamagnetic susceptibility, etc. In connection with ferromagnetism it is shown that
if this really depends on the existence of incomplete shells within the atoms, rather
far apart in the crystal, then the metals most likely to show it would be Fe, Co, Nj,
and alloys of Mn and Cu (Heusler alloys).

T IS often extremely useful to have simple approximations to the wave

functions and energy levels of atoms and ions. Zener! has derived such
functions for the atoms up to F, fixing the values of his parameters by varia-
tion methods. In the present paper, the functions are tentatively extended
to the other atoms. The shielding constants and other parameters are not
fixed by variation methods, but adjusted merely to get agreement with
empirical values of stripped atom and x-ray energy levels, sizes, etc., so that
the values do not have the certainty of Zener’s calculations. It is to be hoped
that eventually a variation calculation can be made here too; but we may
anticipate that the figures given in this paper will be substantially verified,
and in the meantime, an approximate set of functions is much better than
none. The principal set of shielding constants which now exists is that of
Pauling,? and it is believed that the present set is simpler, more general,
and more accurate. The density functions derived from the present shielding
constants agree fairly well with those found by Hartree’s method, in cases
where that has been carried out.

THE WAVE FUNCTIONS

The nodes in the wave function are found by Zener to be unimportant,
and a glance at Hartree’s distribution, say for Rb*, shows that they come
much nearer the nucleus than for hydrogen wave functions, and are there-
fore less important. Consequently we neglect them entirely, taking as the
radial part of the wave function of one electron simply

yn*—1lg—((Z—s)/n*r) ,

the asymptotic form at large distances for a hydrogen-like wave function of
quantum number #* in the field of a nuclear charge (Z—s). Here Z is sup-
1 C. Zener, Phys. Rev. 36, 51 (1930); Guillemin and Zener, Zeits. f. Physik 61, 199

(1930).
2 Linus Pauling, Proc. Roy. Soc. Al114, 181 (1927).
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posed to be the actual charge on the nucleus, and s is a screening constant.
We assign values of n*, the effective quantum number, and Z —s, by simple
rules, to the electrons in each shell in each atom or ion, and so have a com-
plete set of one-electron wave functions. The method of combining such
one-electron wave functions into functions for the whole atom has been
described elsewhere.?

The values of #n* and (Z —s) are given by the following rules:

(1) »* is assigned by the following table, in terms of the real principal
quantum number #z:

for n=1,2,3,4,5,6
n*=1, 2, 3, 3.7, 4.0, 4.2

(2) For determining Z —s, the electrons are divided into the following
groups, each having a different shielding constant: 1s; 2s, p; 3s, p,; 3d; 4s, p;
4d; 4f; Ss, p,; 5d; etc. That is, the s and p of a given n are grouped together
(as Zener has done), but the d and f are separated. The shells are considered
to be arranged from inside out in the order named.

(3) The shielding constant s is formed, for any group of electrons, from
the following contributions:

(a) Nothing from any shell outside the one considered.

(b) An amount 0.35 from each other electron in the group considered
(except in the 1s group, where 0.30 is used instead).

(c) If the shell considered is an s, p shell, an amount 0.85 from each
electron with total quantum number less by one, and an amount 1.00 from
each electron still further in; but if the shell is a 4 or f, an amount 1.00 from
every electron inside it.

As a first example, we take C, Z=6. Here we have two 1s electrons, four
2s, p electrons. For effective nuclear charge, Z —s, we have
1s: 6—0.30=5.70 (Zener has 5.6875)
2s, p: 6—3(0.35)—2(0.85)=3.25 (Zener has 1.59X2=23.18)

As a second example, we take Fe, Z=26. There are two (1s)’s, eight
(2s, p), eight (3s, p), six @3d), two (4s). The effective nuclear charges are

1s: 26—0.30=25.70

2s,p: 26—7(0.35) —2(0.85) =21.85

3s, p: 26—7(0.35) —8(0.85) —2(1.00) =14.75

3d: 26—5(0.35)—18(1.00) =6.25

4s: 26—1(0.35) —14(0.85) —10(1.00) =3.75.
Finally we take Fe, lacking a K electron, so that there is only one (1s),

but otherwise it is as before. Then

1s: 26.00

2s,p: 26—7(0.35) —1(0.85) =22.70

3s, p: 26—7(0.35)—8(0.85) —1(1.00) =15.75

3d: 26—5(0.35)—17(1.00) =7.25

4s: 26—1(0.35) —14(0.85) —9(1.00) =4.75.

3 J. C. Slater, Phys. Rev. 34, 1293 (1929).
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THE ENERGY VALUES

The total energy of an atom or ion—the negative of the energy required
to remove all electrons from the nucleus to an infinite distance—is found by
Zener to be accurately given by the sum of the quantities— ((Z —s)/n*)? for
all electrons of the atom (This is the significance of his connection of the
shielding constant with the empirical “mean effective charge”). This is
very reasonable. If we take as an atomic wave function a product of one-
electron wave functions of our type, for each electron, then allow the energy
operator to act on it, the result will consist of several parts, as one can readily
verify: (1) the sum of — ((Z—s)/n*)? for each electron, times the function,
coming from the second derivative in the Laplacian operator; (2) terms
in 1/7, and higher powers, times the function, coming from the Laplacian;
(3) terms in 1/7, times the function, coming from the potential energy.
For the correct wave function, (2) and (3) will cancel each other, leaving
just terms (1), a constant times the function, so that Schrédinger’s equation
will be satisfied. It seems very reasonable that, in a wave function which
is a good approximation, this will be nearly the case too. But thisleavesas
the energy just the sum which we have mentioned. We therefore take that
as giving the energy of an atom or ion, saving ourselves by this simple
rule from the necessity of computing the energy by the usual method of
integrating H. This of course gives the energy in terms of the Rydberg
energy.

As a first example, we take the energy required to remove all the L
electrons from C. We have

normal atom: —2(5.70)2—4(3.25/2)?= —64.98—10.56 = —75.54

atom with L electrons stripped off: —2(5.70)?= —64.98

Difference =energy of removal=10.56=10.56X13.56 volts
=143.2 volts (correct, 145.2; Zener has 142.7)

As a second example, we take the energy required to remove any

electron from the Fe atom, We have

normal atom: —2(25.70)2—8(21.85/2)2—8(14.75/3)2—6(6.25/3)2—2(3.75/3.7)*
= —2497.2

atom lacking one 1s electron: —1(26.00)2—8(22.70/2)2—8(15.75/3)2
—6(7.25/3):—2(4.75/3.7)*= —1964.6.  Difference =3532.6; observed
K absorption limit =524.0

atom lacking one 2s, p electron: —2(25.70)2—7(22.20/2)2—8(15.60/3)2
—6(7.25/3)2—2(4.75/3.7)= —2437.7. Difference=59.4; observed L ab-
sorption limits, Lu = 61.9, L21 = 534, L22 =524

atom lacking one 3s, p electron: —2491.1; difference=6.1; observed My,
= 707, Mz], M22=4.2

atom lacking one 3d electron: 2496.4; difference =0.8; observed energy of
removal of 3d electron from Fe atom, by Moseley law in optical spectra,
0.8

atom lacking one 4s electron: 2496.3; difference =0.9; observed energy of
removal of 4s electron =0.58
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It is interesting to notice in this example how the so-called “outer shielding”
of the x-ray terms comes about, by the decrease of the shielding constants
of the outer electrons when an inner electron is removed. Itisalso interesting
to see how this rearrangement of shielding constants brings it about that
the 3d electrons, although much further in than the 4s, still require about
the same energy for their removal.

As a final example, we take the ionization potential of the alkalies:

normal Lii: energy of K shell — (1.30/2)2=energy of K shell —0.423
ionized Li: energy of K shell; difference =0.423; observed ionization poten-
tial =0.397.

We observe that we can get these ionization potentials directly, without
considering the inner shells. Thus we have for the ionization potentials:

Na (2.20/3 )2=0.537, observed =0.378
K (2.20/3.7)2=0.354, observed =0.319
Rb (2.20/4.0)2=0.302, observed = 0.307
Cs (2.20/4.2)2=0.274, observed =0.287

The examples which we have worked out are a fair sample of the
energies obtained in general from the scheme; one sees that they are quali-
tatively accurate, though by no means to be trusted in detail. The principal
criterion used in setting up the rules for the shielding constants has been
to make the energy check fairly well with experiment.

S1zEs oF AToms AND IoNs

The maximum of the radial charge density for one of our shells comes,
as we immediately find by differentiation, at (n*)2/(Z—s). Thus our shield-
ing constants permit us to compute the sizes of atoms and ions. For example,
the radius, as defined in this way, of the outer, 4s shell of Fe is (3.7)2/3.75
=3.65=1.95 Angstroms. The radii of the outer shells, defined in this way,
can be brought into interesting connection with the internuclear distances
in valence compounds and in metals, in which the substances exist in the
atomic state. For binding, we should expect that the electrons forming the
bond would wish to have the maximum possible overlapping, which would
come if the internuclear distance were the sum of the radii so defined, so
that the maxima of density lay together. As a matter of fact, this is closely
the case, when the valence electrons are p electrons; but when both valences
are s electrons, the distances are smaller, about 2/3 of this. In any case, the
correlation is quite good, and should be useful in predicting approximate
internuclear distances where they are not known. We give, in Table I, the
atomic radii so derived, and in Table II a number of internuclear distances,
as observed in band spectra and crystals, together with the sum of the
theoretical radii for comparison, and the ratio of the two. These ratios are,
as we stated, about 1 when one or both valences are p electrons, but about
2/3 when both are s electrons. In a few cases, such as the hydrogen halides,
where one might suppose the substances to be ionic rather than valence
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compounds, the excellent agreement with our rule gives us confidence that
the valence bond essentially describes the situation.

TaBLE 1. Alomic radii (Angstroms).
(These radii are the radii of the values for maximum radial density in the charge distribu-
tions of the outer shells of the neutral atoms, computed from the effective quantum numbers and
effective nuclear charges by the formula (n*)2/(Z —s).

H 0.53
Li 1.63 Na 2.17 K 3.32 Rb 3.86 Cs 4.25
Be 1.09 Mg 1.68 Ca 2.56 Sr 3.00 Ba 3.30
B .82 Al 1.37 Sc  2.43 Y 2.8 La 3.12
C .65 Si 1.15 Ti 2.32 Zr  2.71 — =
N .55 P 1.00 Voo2.22 Nb 2.60 Ta 2.86
0 .47 S .88 Cr 2.12 Mo 2.48 W 2.73
F .41 cr .78 Mn 2.02 2.36 2.60
Fe 1.95 Ru 2.28 Os 2.51
Co 1.87 Rh 2.18 Ir  2.40
Ni 1.80 Pd 2.10 Pt 2.31
Cu 1.73 Ag 2.02 Au 2.22
Zn 1.67 cd 1.95 Hg 2.15
Ga 1.46 In 1.71 TI 1.88
Ge 1.29 Sn 1.51 Pb “1.66
As 1.16 Sb 1.35 Bi 1.48
Se 1.05 Te 1.22
Br .9 I 1.12

TABLE I1. Internuclear distances in valence compounds (Angstroms).

(Observed internuclear distances, observed from band spectra or crystal structure. Band
spectrum data are taken from Report of National Research Council on Molecular Spectra in
Gases, pp. 222-232, except for the following: BO, Jenkins, Proc. Nat. Acad. Sci. 13, 496, (1927);
NO, Guillery, Zeits. f. Physik 42, 121 (1927), recalculated by Birge; OH, Report as above, but
corrected by Birge; H,O, Debye, Polare Molekeln, Hirzel, 1929, p. 85; HI, Czerny, Zeits. f.
Physik 44, 236 (1927), calculated by Birge; H,, Birge, Proc. Nat. Acad. Sci. 14, 12 (1928);
Na., Loomis, Phys. Rev. 32, 223 (1928); MgH, Watson and Rudnick, Phys. Rev. 29,413 (1927).
Data on crystal structure are from Landolt-Bornstein, Tables, 5th Ed., Erginzungsband.

The columns are as follows: (1) substances; (2) observed internuclear distances; (3) sum of
atomic radii for outer shell, as given in Table I; (4) ratio of observed distance to sum of radii;
(5) sum of atomic radii for inner incompleted shell, in substances which might be ferromagnetic;
(6) ratio of observed distance to sum of radii of inner shells. Substances are divided into four
classes: (a), molecules with one or both valences p electrons; (b) molecules with both valences
s ellectrons;)(c) crystals with one or both valences p electrons; (d) crystals with both valences
s electrons.

Part (a): Molecules with one or both valences p electrons.

(1) (2) ®) O
Substance Distance observed Sum of radii Ratio obs/cake

BO 1.21 1.29 0.94
CH 1.13 1.18 .96
CN 1.17 1.20 .98
CO 1.15 1.12 1.02
NO 1.15 1.02 1.12
N 1.21 1.10 1.10
0, 1.20 .94 1.28
OH .98 1.00 .98
H,0 1.07 1.00 1.07
AlH 1.66 1.90 .87
AlO 1.62 1.84 .88
SiN 1.56 1.70 .92
I, 2.66 2.24 1.19
HF .92 94 .98
HCl 1.28 1.31 .98
HBr 1.42 1.49 .95
HI 1.62 65 .98
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Part (b): Molecules with both valences s electrons.

(1) . (2) 3) 4)
Substance Distance observed Sum of radii Ratio obs/calc
H, .76 1.06 N
Na; 3.08 4.34 .71
CuH 1.47 2.26 .65
AgH 1.63 2.55 .64
AuH 1.54 2.75 .56
MgH 1.74 2.21 79
CaH 2.01 3.09 .65
ZnH 1.61 2.20 .73
CdH 1.78 2.48 .72
HgH 1.76 2.68 -6

Part (c): Crystals with one or both valences  electrons.

(1) (2) 3) 4
Substance Distance observed Sum of radii Ratio obs/calc

C (diamond) 1.54 1.30 1.18

(graphite) 1.43 1.30 1.10

(ethane C—C) 1.55 1.30 1.19
C—N (KCN) 1.15 1.20 .96
Al 2.86 2.74 1.04
Si 2.35 2.30 1.02
Ge 2.44 2.58 .95
As 2.51 2.32 1.08
Se 2.35 2.10 1.12
In 3.24 3.42 .95
Sn (diamond lattice) 2.80 3.02 .93
Sn (white) 3.02 3.02 1.00
Sb 2.87 2.70 1.06
Te 2.87 2.44 1.18
Tl 3.36 3.76 .89
Pb 3.48 3.32 1.05
Bi 3.10 2.96 1.04

Part (d): Crystals with both valences s electrons.

(1) (2) (3) (4) (5) (
Substance Distance Sum of Ratio Sum of radii Ratio obs/calc
observed radii obs/calc inner shell inner shell

Li 3.03 3.26 .93

Be 2.23 2.18 1.02

Na 3.72 4.34 .86

Mg 3.22 3.36 .96

K 4.50 6.64 .68

Ca 4.97 5.12 .78

Ti 2.93 4.64 .63 2.62 1.12
\% 2.63 4.44 .59 2.22 1.18
Cr 2.51 4.24 .59 1.93 1.30
Mn 2.52 4.04 .62 1.71 1.47
Fe 2.50 3.90 .64 1.53 1.63
Co 2.51 3.74 .67 1.38 1.82
Ni 2.50 3.60 .69 1.27 1.97
Cu 2.54 3.46 .73

Zn 2.67 3.34 .80

Zr 3.18 5.43 .59 4.00 .79
Mo 2.72 4.96 .55 2.94 .92
Ru 2.64 4.56 .58 2.33 1.13
Rh 2.70 4.36 .62 2.11 1.28
Pd 2.73 4.20 .65 1.93 1.41
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Part (d): Crystals with both valences s electrons— Continued.

1) (2) 3) (4) ) . (6)
Substance Distance Sum of Ratio Sum of radii  Ratio obs/calc
observed radii obs/calc inner shell inner shell

Ag 2.88 4.04 .71

Cd 2.96 3.90 .76

Ta 2.83 5.72 .50 3.95 .72
w 2.73 5.66 .48 3.44 .79
Os 2.71 5.02 .54 2.72 1.02
Ir 2.70 4.80 .56 2.47 1.09
Pt 2.77 4.62 .60 2.25 1.23
Au 2.87 4.44 .65

In studying valence, we are interested in the size of the outer shell, but
for ferromagnetism the essential, as the writer has shown in an earlier paper,*
is the existence of an inner shell in process of formation, small enough so
that the distance of separation is relatively great compared with the size
of the shell. To see what metals should show ferromagnetism, if this idea
is correct, we also give in Table II the radii for the d shells in process of
formation in the transition groups, and the ratio of internuclear distance
to twice this radius. This ratio is greater for Fe, Co, and Ni than for any
other element, so that these would be most likely to be ferromagnetic. We
might suppose that as two such shells were moved apart, the interaction was
nonferromagnetic (the terms of lowest multiplicity lying lowest) out to about
1.55 times the sum of the radii; there the interaction would change sign,
passing through a critical region (suggesting the fact that Mn sometimes
shows magnetic properties, usually not). The first element beyond the
critical region, Fe, would show the greatest ferromagnetism. As the inter-
nuclear distance still further increased, the exponential dropping off of the
wave function would make the interaction less, resulting in weaker effects
in Co and Ni. These conclusions are made much more reasonable by con-
sidering the Heusler alloys. Here Cu takes the place of Mn in an alloy
with Al or other substance, and the alloy is almost as ferromagnetic as Fe.
Now if Cu can replace Mn, it is presumably in a form with two 4s electrons,
nine 3d’s so that it has an open shell of d electrons, which is even smaller
than for Ni (radius=1.17/2A). This very small radius, added to the large
radius of Mn, gives a sum of 1.44A, and a ratio intermediate between Fe and
Co, suggesting a strong ferromagnetism, although Mn by itself is too big,
Cu too small (and in ordinary Cu undoubtedly the 3d shell is closed anyway)
to show ferromagnetic properties.

In ionic compounds, the atoms exist as ions, which have closed shells;
and the interionic forces are repulsions (except for the electrostatic attrac-
tions), and account for the hardness and impenetrability of the structures.
These repulsions become large, as has often been shown, as soon as the outer
shells begin to overlap, and the internuclear distances in ionic crystals should
be the sums of radii representing, not the radius of maximum density in the
shell,but a considerablylarger radius atwhich the chargejust begins to become

4 J. C. Slater, Phys. Rev. 35, 509 (1930).
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appreciable. It appears that the appropriate radius is roughly one at which
the radial density becomes 10 percent of its maximum value. By solving the
problem numerically, we find that for the density function we have used,
this radius is a numerical factor times the radius of maximum density, this
factor being 3.38 for n*=1, 2.49 for n*=2, 2.25 for n*=3, 2.01 for n*=3.7,
1.96 for n*=4.0. Thus, finding the radius of maximum density, now for the
ion rather than for the atom, and using these factors to get radii of 10 per-
cent density, we get the ionic radii given in Table III. They should be com-
pared with the ionic radii of Wasastjerna, which are to be added to give
grating spaces, and which are also tabulated. It is seen that the agreement
in general is decidedly good. This renders it highly probable that the
atoms really exist in these compounds as ions, as has been supposed. Com-
puted values are included for the inert gases, and these should be the radii
of these gases, as derived in the kinetic theory. The latter of course vary over
a considerable range, but our values seem to lie well within this range in
each case. For example, for He, Jeans in his “Dynamical Theory of Gases”
gives values from 0.99A to 1.10A, as determined by various methods; our
valueis 1.05A.

TasBLE 111. Ionic radii (Angstroms).

(Observed radii as given by Wasastjerna; see for instance W. L. Bragg, Phil. Mag. 2,
258 (1926); the sum of these radii gives the interionic distance in ionic crystals. Calculated
values are for radius where density is 109, of its maximum value. This equals constant times
(n*)?/(Z —s), where the constant equals 3.38 for n*=1, 2.49 for n*=2, 2.25 for n*=3, 2.01 for
n*=3.7,1.96 for n*=4.0)

Ion Observed Calculated Ion Observed Calculated

H- 2.57 Se= 2.34

He 1.05 Br~ 1.92 2.02

Lit 0.76 .67 Kr 1.77

Be** (.3) .49 Rb+ 1.50 1.58
Srt+ 1.20 1.43

(0 1.32 1.37

F- 1.33 1.09 Te= 2.66

Ne .91 I~ 2.19 2.30

Nat 1.01 77 Xe 2.02

Mg*+ .75 .67 Cs* 1.75 1.80

A1:++ E.SS) .60 Bat+t 1.40 1.62

Sit .3) .54

S- 1.69 2.16

Cl- 1.72 1.79

A 1.52

K+ 1.30 1.33

Cat+ 1.02 1.17

We can get a valuable check on the size of atoms by using the diamag-
netic susceptibility, which is proportional to the mean value of Z72. From
our wave functions, by integration we find this quantity for one of the
electrons to be (n*)? (n*+1/2) (n*+1)/(Z —s)2. For the inert gases, we have
the following values:

computed observed
He 2.07 2.34
Ne 7.08 8.31

A 23.37 22.6



