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ABSTRACT

The ~~ave equation for a stream of electrons passing through a uniform magnetic
field is solved and the characteristic functions discussed. The motion at right angles
to the field is found to be corvpletely quantized.

The current density is investigated, and the mean square and mean fourth power
radii of curvature found for each quantum state. The mean square radius of cur-
vature is found to l;e the same for all quantum states of the same energy and iden-
tical ~~ith that predicted by the classical theory.

The mean radius of curvature is determined by interpolation and is found to
be less than that predicted by the classical theory. Therefore values of e/hatt cal-
culated by means of the classical formula from measured values of the mean radius
of curvature should be too large. The error is estimated and found to be of the
same general magnitude as the discrepancy between the results of deflection ex-
periments and those of spectro copic measurements.

'N his review of the probable values of the general physical constants,.- Birge' gives for the best values of the ratio nf charge to rest-mass of the
electron:

e/p= (1.769+ 0.002) (10)' ahs e.m. u. from deflection experiments,
=(1.761+0,002) (10)' " " " from Zeeman eRect,
=(1.761+0.001) (10)' " ' '' from H and He spectra.

The discrepancy between the value obtained from deHection experiments
on the one hand and those obtained from spectroscopic evidence on the other
is four times the probable error of the former, indicating that the difference is
real and not merely the result of accidental errors. Now the value of e/y ob-
tained from deflection experiments is calculated on the classical electrodyna-
rnics, whereas the others are based on quantum theory. Therefore it is im-
portant to examine the Schr&idinger theory of the motion of a stream of elec-
trons in a uniform magnetic Beld in order to ascertain whether or not it
introduces a correction into the classical formula for the radius of curvature r
of the circular path of the electrons about the magnetic lines of force. This
problem has been investigated by Alexandrow' on the basis of Dirac's theory.
His second order wave Eq (10) differs from the Schrodinger equation which
will be used in this paper only in the value of one of the constant coefficients-
a difference which is quite negligible f ir the large energy values which are to
be considered. Alexandrow obtains a solution of the wave equation which is
ev where finite and vanishes at infinity, and concludes that the motion is

. T. Birge, Phys. Rev. Sup. I, 47 (1929).
Alexandrow, Zeits. f. Physik 56, 825 (1929).
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not quantized, all values of the energy being allowed. His solution (11)
however, contains the factor

k k
e""""'&~+'z) = r""' cos —8+ i sin —0

2 2

in plane polar coordinates. Now, one of the requirements of the wave me-

chanics is that a solution, to be allowed, must be single valued. Therefore it
would seem that k/2 in Alexandrow's solution must be an integer, and con-

sequently the energy, which is a linear function of 0, can assume only discrete
values, indicating that the motion is quantized. In fact it will appear that
Alexandrow s solution is just one of a multitude of characteristic functions
corresponding to a stream of electrons of assigned energy.

SOLUTION OF THF KVAVE EQUATION

The wave equation' for electrons moving through a magnetic field is

h-' e& e Q2 h
a v'P+ P+ ———= 0

8~'p 2~pie 2pc'- 2+i Bt

where a is the vector potential. If the field is uniform and in the X direction

a = —j—',EEz + k-.', H v,

and if we introduce cylindrical coordinates r, 8, x the wave Fq. (1) becomes

e'B'-h
+ —r'P+ —= 0

Spc"- 2m i c3 t

(7)

Putting

g ( &)g(r) e
—

& s& 8&
—2xi(w(( ) (

where m must be an integer in order that the solution may be single valued,
we are led to the two ordinary differential equations

O'X 8+'p
+ — tI .X = 0,

d i' h'

O'-'E 1 dE 8m'-'p'. 2m. eEE I" 1 2m eJE '-

+ — + — H', , —— m ———— —r~ Z=O, (4)
v df h' hc r'-' 4 hc

W, being the energy associated with the motion along the lines of force and
8',g that with the motion in the plane at right angles to the magnetic field.

Equation (3) admits a continuous manifold of allowable solutions repre-
senting a uniform current parallel to the field. Our interest being confined to

' Condon and Morse, Quantum Mechanics, p. 28.
' Condon and Morse, p. 42.



the motion in the plane at right angles to the field, we may put 8', =0,
S;&=8'without limiting the generality of the solution. Our problem, then,
is to find the allowed solutions of (4).

If we put

2meII
r'

hc

4m pc
8',

heP

(4) simplifies to

d'E 1 dR m2

+ — + w —m ————p' 8=0.
p2 4

Making the substitution

pme —p /4V(ii)

in (5), where we are supposing m to be positive, we get

d'V 2m+ 1 dV
+ —p + (w —2m —1)V = 0.

dp p dp
(6)

This equation can be simplified by changing the independent variable
from p to x where x=—p'. Then

d'V dV
4x + 2{2(m + 1) —xI—+ {w —2m, —1I V = 0.

Zx dx

Assuming a series solution of the form

we find on substitution in P)
4p(p + m)A„= {2p —w + 2p44 —1IA„ i.

Therefore the two independent solutions of the differential equation are
ascending series starting with x' and x ~, that is, with p' and p

' . The second
is inadmisssible since it makes R infinite at the origin. Therefore we have to
consider only the series which starts with a. constant term. The successive
coefficients are related by the equation

2p —m+ 2m —1
Ay

4P(P + m)

If the series fails to terminate, this relation may be written

1
A„= —A~ i

2P
'

for large values of p. Hence the function V approaches infinity for x infinite
in the same way as
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—+ —-+.
pf p + 11

making R become infinite of the order e& ".Consequently the only allowable
solutions are those for which the series terminates. Ke see from (8), then,
that.

m =2s+1,
where s is a positive integer equal to or greater than ~n. The motion, there-
fore, is completely quantized, the energy values being

s+ —':, s = 0, 1, 2.

The last factor in (10) is just the frequency of revolution about the lines of
force predicted by the classical theory.

Putting (9) into (8)

='1p =

It is more convenient to express the wave functions in terms of the
quantum numbers s and k where k—= s—m, in place of s and m. The energy
is a function of s alone, and for a given s, k may have any of the values 0,
1, 2 . .s. For k=0 the polynomial V is a constant, for k= 1 it consists of
two terms, and so on. In terms of s and )'i (11) becomes

k —p+ 1
c4 p

2p(s —fi + p)

giving

( —1)"x"

,=0 2&p!(k —p)!(s —k + p)!
k =0, 1, 2 s, (12)

k = 0, 1, 2. s.

Alexandrow's solution of the wave epation is R, , ,e-'".

THE V PQLYNoMIALs

(13)

Denote di8'erentiation with respect to x by D. Then by differentiating
(12) we find

~ s, k 2D~ s, lr+I ~

Next we easily prove

1
x—(s—ki~z/-Dk [xse—z/'-']' s, k
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which we can p«t in neater form if we write

X, —= x'e x'-'
~

Then (15) becomes

1
x'X, ID~X, .

k!'s!
(16)

From (14) and (15) we get the recursion formula

[2(s —k) —x j V, , g ——2(k + 1)V, g.~, + xV, , (,

The erst four V polynomials are

(17)

s.

1
V, , = ——[x —2s[,

2s!

1
V, ~

————[x' —4sx + 4s(s —1) ],2'2!s!

V„3 —————
[ x' —6sx'- + 12s(s —1)x —Ss(s —1)(s —2) J .

2'3!'s!

On account of (15) the zeros of V, ~ between 0 and ~ are the zeros of
D" [x"e "]. The latter function vanishes at 0 and ~ for all 0's less than s.
Now x'e " has one turning point (maximum at x=2s). Consequently
D [x'e "]has one zero between 0 and ~, and as it vanishes at both limits,
it has two turning points. This requires D'[x'e *"]to have two zeros and
three turning points and so on. Consequently V, k has k zeros between 0
and ~ for any k less than or equal to s. This means that all the roots of the
equation V, &=0 are real and positive.

THE RADIAL FUxcTToN

In terms of the quantum numbers s and m the differential Eq. (5) for
Ris

d'E 1 dR m'-1
+ — + 2s —m+1 ————p~ g = P.

dp2 p dp p2

If we put u—=p'" 8 this becomes

1 —4m' 1
i~" + 2s —m+ 1+ — -- ——p' u = 0.

4p' 4

Denoting solutions for the same value of m but diA'erent values of s by
u,„and u„,

2(S2 S|) [ Q~(14,, 24p = 0
0
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showing that the I functions are orthogonal.
To normalize these functions we must determine the arbitrary coeS-

cient A, , ), in (13) so that

J
2

0 0

where x, as before, stands for p'. Squaring (13) and using (15)
2

xa—('~—z/2U U Dk [xs~—z/2]
k!s!

(20)

Integrating by parts, with the aid of (14),
()0

2

&„dx = I U, ,
D" [x'e */-']dx

0 k!s! &0

To satisfy (20) it is necessary that

1
A, , ( —— —(k!s!)'/'

2 (s—k) /2

and the normalized radial f'unction is

(k (g () 1/2

gs —k/2e —z/4P'
2(s—k) /2

2s—k+1
a—A, k.

k!s!

(21)

Also

&
—(r —),')/2/ z/4DA [xs/, r/'&]—

2 (s—() /2(k )g )) 1/2

E, , /.„—— U, , /,D' [x'e-" ] .
2s—k

THE CURR.ENT

(23)

The quantity actually measured experimentally is the deHection of the
current of cathode rays or electrons. The current density' is given by

eh e'-j = Qvp —pep) — app-
4xpz pC

1 + 2m — —jR'rOI

where 8I is a unit vector at right angles to r in the direction of increasing 8.
It is clear from the form of this expression that the current lines are circles
about the lines of force for all values of the quantum number nz. The cur-
rent between cylinders of radii r and r+dr is

eh s —k
j, , kdr = —— 1 + 2 R, , kdx

Sxp, x
' Condon and Morse, p. 30.

(24)
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in terms of the quantum numbers s, k and x=—p'-'.

Smce the constant factor appearing in (24) is of no significance for our
purposes, let us consider the function

1
' s —kJ i- = —x'" 1 + 2- — R 1„.

2 x

1 s —k
V„f„,D'X,

2s—1+1 x
!25)

and

1 s —k
J, , kd(x)'i' = —-1+ 2 R, , idx

4 x

1 s —k

28 0+2
~ ~1 + 2-- — V, , I,.D'X,dx.

x
(26)

First we will calculate the total current

s —kJ A(r)"' = —i R, , Ax + I
—V, gD'X, dr

2s—Ir+1 g

corresponding to each normalized quantum state. The value of the first
term on the right is 1/2 from (20). To evaluate the second we note that if
we integrate by parts with the aid of (14)

V, f,. pD'X, dx =
p

1

2'-&s' (27)

provided p is an integer greater than zero and less than k, Now, from the
recursion formula (17),

s —k+1 x
t s, k &'.

, k-i ——(V. .~-i + 1'., a- )
k 2k

(28)

Consequently

r"1
Jl

—Vs, I,D~Xsdx =
p x

s —k+ 1 f" 1—Vs I, gD'X dx
k &p x

But

s(s —1) (s —k+ 1) !'"1—D~X,dx.
k!s! p x

(29)

r" 1 r" 1 f 00

J
—O'X,dx = ll

—D' 'X,dx = . . = k'
i

x' ~—'e ~"dx
p x p X p

= k!(s —k —1)!2' (30)
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2s—k

s —k
(31)

Therefore the total current corresponding to each normalized quantum
state is

(32)

independent of the quantum numbers s and k.
Ke are primarily interested in the radius of curvature r in the magnetic

field of a current of electrons of kinetic energy W'. From the defining equa-
tion for x=—p' and (10) we have

r2 = 2pc'-' lf x

e'lI' 2s + 1
(33)

which is to be compared with the formula

2pc'-'lV

e'-'ll'-'
(34)

of classical electrodynamics. In the experiments of Wolf, ' which Birge consid-
ers to be the most accurate for the determination of e/p by the deflection
method, s is of the order of magnitude of (10)'. Hence we are concerned only
with states for which s is very large.

J., o AND J, , i.

Let us examine more closely the current densities J, , p and J„& of the
first two states of energy corresponding to the quantum number s. The
first of these is

(35)

Its only zeros are at x=o and x= ~. It has one maximum, at x=2s.
The radius of curvature of the maximum current density, then, is given by

2pc N 2$

e'lI'-' 2s + 1
(36)

agreeing almost exactly for large s with the classical value (34). The maximum
current density is

21 /2

(1 ) $8+1 /'&r —8

s.
(37)

and in the neighborhood of the maximum we have approximately

Js, o

(J8,0) max

' F. KV011, Ann. d. Physik S3, 849 (1927).



for large s. Consequently the current density falls to 1/e'" of its maximum
value at a point Ax=2(2s)'" to either side of the maximum. For s= (10)'

21/2(10) —4

&max S

showing that the peak is extremely narrow.
The current density of the next state is

1 s —1
J, , i = — --- 1+ 2 (x —2s)'x' '/'e ".

2s+2 x
(39)

I

Qs+P 2s
Fig. 1.

Zeros occur at x= 0, 2s, and ~ . There are two maxima, at approximately
x= 2s+ 2 (2s)' "+1. The maximum current densities are approximately
the same and equal to

23/2

(J ) — &a+1/2/, —(s+1)
5!

The graphs of the two functions, J, ,p and J„1are sketched in Fig. 1
for large s, the origin being a great distance to the left of the center of the
figure.
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Evidently the zeros of J, ,& between 0 and ~ are identical with those of
V, ,~. Thus J, .I, has k zeros in this interval.

MEAN RADII OF CURVATURE

While the mean radius of curvature of each current cannot be evaluated
easily on account of radicals appearing in the integrand, the mean square
and the mean fourth power radius of curvature are readily obtained. From
(26) and (32)

p' = x = 4 II Ix+ 2(s —k) }R,2dx
0

1= (s —k) +,I xV, , 2D"X,dx,
2s—ttt+2 g

(41)

and

1 2
p4 = x' = —t Ix'+ 2(s —k)xjR, , 2dx

4 0

$ —k f' fl QO

xV, , 2D'X, + I x'V, „D'X,dx.
2'—le+1 J 0 2s—2+2

0

(42)

To evaluate the integrals involved, we have, if we integrate by parts with
the aid of (14),

kp

j x'V, , 2D2X,dx = —
I x"V, , 2X,dx —

I x'—'V, ,X,dx
22 22—11 l g

k(k —1)p(p —1)+ x' 'V. X.dx—
2"-'2 I

(43)

For positive integral values of p the series consists of a 6nite number of
terms. Thus for p= 1,

QO f QO

xV, , 2D"X,dx = —
I I xV, , 2

—2kV, , l j X,dx
"o 2'"0

1 f QO 00

(k + 1) I x'+'e *"dx —2ks x'e *l'dx (44)
2 "$. 0 0

= 2' 2+2[(k + 1)(s + 1) —ks] = 2' "+'(s + k + 1).
Hence (41) becomes

p' = x = (s —k) + (s + k + 1) = 2s + 1

independent of the quantum number k. Putting this in (33) we find

2pc'W

e'H'

(45)

(46)
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which is identical with the classical formula (34). Hence we conclude that
the mean square radius of curvature is the same for all quantum states of
the same energy and identical with the square of the radius of curvature given

by the classical theory.
Next we shall evaluate (42) for the mean fourth power radius of curvature.

In this case we need in addition to (44) the integral (43) for P= 2. The latter
is

~
~

QG rs ac

x'V ID'X,dx = —
~

[x'V, , o
—4kxV, ,|+ 4k(k —1) I, [ X,dr

1 lt' 3 1

[ 1+—k + —k'
il

x'+'e "'dx —-2ks(k + 1) il
x'+'e "-'d.r

0
(47

+ 2ks(k —1)(s —1) Jt x'e 'i'd x

= 2" "+'-' [(k+ 1) (k+ 2) (s+ 1)(s+ 2) —2 k (k+ 1)s(s+ 1)+ ( k —1)k (s —1)s ] .

Consequently (42) becomes

p' = x' = 2(s —k) [(k + 1)(s+ 1) —ks]

+ [(k+ 1)(k + 2) (s+ 1)(s+ 2) —2 k(k+ 1)s(s+ 1) + (k —1)k(s —1)s ] (48)

= (2s + 1)' + 2(2k + 1)(2s + 1) + 1.

The mean fourth power of the radius of curvature, therefore, increases
with increasing k and is greater than the square of the mean square radius
of curvature for all quantum states of a given energy. If we average over all
k's form 0 to s we find

p' = x'- = 8s'-' + 10s + 4. (49)

DrscUsszoN oF REsULTs

The usual experimental method of measuring the defIection of a stream
of electrons by a magnetic field involves the determination of the mean
radius of curvature rather than the mean square. On account of the slit
or slits used to define the stream, we should expect the greatest number of
electrons to be in'the states for which k is small, for the increase of spread of
J with increase in k would prevent electrons in the higher quantum states
from passing through the slit system. In the absence of knowledge of the
effect of slit width on the distribution of the electrons, no exact quantitative
correction to the classical formula can be given. Certain qualitativeconclu-
sions may be drawn, however.

To obtain an estimate of the order of magnitude of the mean radius
of curvature of the current for quantum number k we can make use of the
known values of p', p' and p'. Putting S=—2s+1, X=—2k+1 we have from
(32), (45) and (48)
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p'-' =,8',

1+ 2—
5

1
+ 5'-

If the current distribution were perfectly sharp, we would have

log p" = .-'1 1l. (S0)

If E is small compared to S, the values of p', p' and p' show that the spread
of the current is small. Hence we can determine the first order correction
to (50) by writing

log p" = .1n + Bn'-

and determining the constants A and 8 to fit the values found for the three
means. This gives

Ii1+2—
5

Consequently interpolation gives for the mean radius of curvature

p =5»2

-5i /„

I 1
2—+ —„5 5'-

1 A".

4 5

As this is less than (2s+1)'" the square of the mean radius of curvature
is less than the mean of the square. Hence, as e/p varies inversely with r'

the calculation of e/1s by means of the classical formula will give too large
a value of the specific charge of the electron. Therefore the error indicated
by theory is of the right sign to explain the discrepancy between the results
of deflection experiments and spectroscopic measurements.

To estimate the magnitude of the error we need the mean value of X
for the electrons passing through the slit. The spread of the current is given
by

The quantity Dp measures the eAective distance of the current either
side of its mean position. It seems reasonable to infer that half the current
passes through the slit when hp/p is equal to the ratio of the half width of
the slit to the radius of curvature. Now the ratio of the half width of the
slit to the radius of curvature in Wolf's experiments was 0.04 and s was
approximately 1.7(10).' So when

I A= 0.04 ()r —= 0.0032
p 2 5



half the current passes through the slit. Putting S=3.4(10)', X=10.9(10)'
or k=5.4(10)'. Consequently the ratio of the magnitude of each partial
current to that of the next of lower index may be taken to be

(s) 1 I 5.4(10)~

The mean value of K, then, is

1 + 3a + 5a' . . + (2s + 1)n'
E =—

1+a+0.' + a'
2sn'+'

= 1.56(10)'.
1 —a

The error in e/ts is that in 1/ps, that is, (1/2)Z/5. Hence the order of
magnitude of the error is

1 K——= 0.0023.
2 5

As the actual discrepancy between the results of Wolf's deflection ex-
periments and of spectroscopic observations is 0.0045+0.0011, me conclude
that the error indicated by theory is of the correct order of magnitude as well

as of the correct sign to account for the observed discrepancy In view. of the
very rough calculation of the mean E, the numerical value obtained above
cannot be considered as more than an estimate of the magnitude of the error.
The agreement with the observed discrepancy is therefore as good as the
method of calculation warrants.

The results of this investigation indicate that in measuring e/ts by the
de8ection method the classical formula is applicable only if (a) the ratio of
slit width to radius of curvature is very small, or (b) the method is one in
which the mean square of the radius of curvature is measured. In the latter
case it makes no difference in what quantum states the electrons may be,
for the mean square of the radius of curvature is the same for all states of
the same energy and the value of e/tis sgiven correctly by the classical for-
mula.


