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ABSTRACT

It is shown by the discussion of the wave equation for a diatomic molecule in
a crystal that the motion of the molecule in its dependence on the polar angles 8 and

p may approach either one of two limiting cases, oscillation and rotation. If the
intermolecular forces are large and the moment of inertia of the molecule is large
(as in I2, for example), the eigenfunctions and energy levels approach those cor-
responding to oscillation about certain equilibrium orientations; if they are small (as
in H&), the eigenfunctions and energy levels may approximate those for the free
molecule, even in the lowest quantum state.

It is found in this way that crystalline hydrogen at temperatures somewhat below
the melting point is a nearly perfect solid solution of symmetric and antisymmetric
molecules, the latter retaining the quantum weight 3 for the state with j=1 as well as
the spin quantum weight 3. This leads to the expression

S = —n~R log ng —(1 —n~) R log (1 —n~) + ngR log 9 + S~„

in which S&, is the translational entropy, for the entropy of the solid at these tem-
peratures. At lower temperatures (around 5'K) the solid solution becomes unstable
relative to phases of definite composition, and the entropy falls to

S = n4R log 3+ S&„,

the entropy of mixing and of the quantum weight 3 for j=1 being lost at the same
time. Only at temperatures of about 0.001'K will the spin quantum weight entropy
be lost.

Gradual transitions covering a range of temperatures and often unaccompanied
by a change in crystal structure, reported for CH&, HC1, the ammonium halides, and
other substances, are interpreted as changes from the state in which most of the
molecules are oscillating to that in which most of them are rotating. The significance
of molecular rotation in the interpretation of other phenomena is also discussed,

I. INTRQDUcTIQN

HE calculationof the difference in entropyof gaseous molecular hydrogen
and crystalline hydrogen has recently been made by Giauque and John-

ston. ' At temperatures between the melting point (14'K) and about 10'K the
heat capacityof the solid is well represented by a Debye function with Pv = 91'.
Assuming the validity of extrapolation to O'K by means of this function, it
is found that the difference in entropy of the solid at O'K and the gas at
standard conditions is 29.'?+0.1 E. U. The molal entropy of the gas at
standard conditions is given by the Sackur-Tetrode equation as 34.00 E. U. ,
usIng the band spectrum value of the moment of inertia, and taking into ac-
count the symmetry number term (—R log 2), the entropy of mixing of sym-

~ W. F. Giauque and H. L. Johnston, J.A. C. S.50, 3221 {1928).
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metric and antisymmetric molecules, present in the ratio of 1:3(—1/4 R log
1/4 —3/4 R log 3/4), and the nuclear spin quantum weight of the antisym-
metric molecules (3/4 R log 3). Thus the molal entropy of ordinary crystal-
line hydrogen (the metastahle mixture of symmetric and antisymmetric
molecules in the ratio of 1:3) at temperatures somewhat below the melting
point is found to be 4.3+0.1 E. U. in addition to the translational entropy.
In the attempt to account for this deviation from the value zero to be ex-
pected from the third law of thermodynamics, it was found necessary to
carry through the quantum mechanical discussion of the motion of mole-
cules in crystals.

Before proceeding with this task, it may be illuminating to mention the
concept of the motion of a molecule in a crystal which we would form on the
basis of classical mechanics. All but six of the degrees of freedom for the
molecule can be assigned to represent relative motions of the atoms within
the molecule, corresponding to internal oscillations. The six remaining de-
grees of freedom can be represented by the three coordinates x, y, s of the
center of mass of the molecule referred to an arbitrarily chosen set of axes,
and the Eulerian angles y, 0, y determining the orientation of the molecule
with respect to the same axes. In case the forces between atoms in a molecule
are much stronger than those between atoms in different molecules, a crystal
of the substance may be considered as a first approximation to be a collection
of rigid molecu)es held in a regular arrangement by the rather weak inter-
molecular forces. Each molecule will remain in the neighborhood of its
equilibrium position, the coordinates x, y, s varying through only a small
region of values about xo, yo, so. Similarly, there will be one or more sets of
values of p, tI, x for which the potential energy is a minimum, corresponding
to equilibrium orientations of the moIecule. There are two types of motion
then possible for the molecule. If the potential energy for values of y, 0, y
in the neighborhood of yo, 60, xo is very sma11 compared with that for other
values, the difference being much larger than kT, the average molecule at
the temperature T will carry out only small vibrations about its equilibrium
orientation. This may be spoken of as oscillation about the equilibrium orien-
tation. But if the potential energy undergoes a total variation smaller than
k7, the kinetic energy of the average molecule will suffice to carry it into
any orientation, so that the molecule will undergo non-uniform rotation,
speeding up as it passes through the equilibrium orientations and slowing
down as it goes over the potential maxima. A molecule with a given amount
of energy and acted upon by a given potential would according to the classi-
cal theory assume a succession of orientations corresponding either to one or
to the other of these possibilities, oscillation or rotation.

The introduction of the quantum mechanics does not require this picture
to be changed essentially. The allowed states of the system can approximate
either of two extremes, oscillation and rotation, or can lie between these
extremes, approximating neither more closely than the other. For with the
quantum mechanics, in contradistinction to the classical theory, the transi-
tion from one extreme to the other is unbroken.
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II. THE DIATOMIC MOI. ECULE IN' A CRYSTAL

In Fig. 1 there is shown the structure of the orthorhombic crystal iodine

as determined with the use of x-rays. ' The atoms are joined in pairs to form
molecules by strong shared-electron-pair bonds, and the molecules are

Fig. 1. The arrangement of atoms in one layer in a crystal of iodine. It is seen that the
atoms are in groups of two(the molecule= I.) which are oriented by the intermolecular forces.

grouped together in such a way that the figure a~is for each assumes a definite
orientation. This is the equilibrium orientation, with the polar angle 0=0,
say. The symmetry of the molecule requires that there also be another
equilibrium orientation at 9=x.

Let us consider a diatomic molecule in such a crystal. As a first approxi-
mation we may neglect the translational oscillations of the molecule under
consideration and both the translational and rotational motion of the other
molecules in the crystal. The wave equation then may be written

Sm'I
~ 11'+ (lV V)P = 0

h'

in which I is t.he moment of inertia of the molecule a«V= V(~), w) i» po-
tential function representing the averaged interaction of the molecule with
surrounding molecules. The simplest form that can be given this function
and have it represent a diatomic molecule with two equilibrium orientations
1s

V = Vo(1 —cos 2g), (2'1

Fig. 2. The potential function V= V0 (1 —cos 20).

in which Vo is a constant. This potential function is shown in Fig. 2. The
wave equation then becomes

1 cI BP 8~-'I
+ sin8 —+ (/V —Vo + V&~ cos 28)/=0. (3)

sin'-0 8$2 sin 0 80 Bg h'-'

'4 P. 3I. Harris. E. iMack and F. C. Hl~kf I. A. C;. S. 30, 1583 (1928).



ROTATIONAL MOTION OF MOLECULES 433

The characteristic value equation in 0 obtained from this has not been solved

except for limiting cases. The corresponding problem in a plane has, however,
been fully treated. If the molecule were restricted to motion in a plane the
wave equation would be

d+ Sx'I—+ (W —Vo+ Vo cos 28)P = 0
(/0' h'

or, writing

27r'f
n = —(H' —l'o)

h'-'

7r'-'I t'o

2h'

d2$—+ (4n + 16' cos 28)P = 0.
do'

4,0

3.0

1.5

i.0

0.5 l.o f..5

Fig. 3. The characteristic values for the six lowest Mathieu functions.

This equation is Mathieu's equation in the usual form.
The requirement that P be periodic in 8 with the period 2~ leads to the

functions known as Mathieu functions. ' These are usually designate/ by
the symbols ceo, se&, ce&, se&, ce2, etc. The functions and the corresponding
characteristic values of n as functions of q have been evaluated by C~oldstein. '

The energy values for the five lowest states are shown in I'ig. 3. It js seen

3 E, Mathieu, Liouville's Jour. 13, 137 (1868}; Whittaker and watson, "Modern Analy-

sis, " pp. 404—428. E. U. Condon, Phys. Rev. 31, 891 (1928},pointed out that the Mathieu
functions of even order are the eigenfunctions for the plane pendulum.

4 S. Goldstein, Trans. Cambridge Phil. Soc. 23, 303 (1927}.
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that for g=0 Eq. (5) reduces to the equation for the plane rotator, with

energy levels W = (m'k'/gs'I). For g large the eigenfunction f is appreciably
different from zero only for values of 8 close to 0 and m, and approximates
a. combination of Hermite orthogonal functions, the eigenfunctions for the
harmonic oscillator. The energy levels for this case are (n+1/2) hvo, in
which vo=h(2g)'"/s. I. Each energy level shows two-fold degeneracy, the
corresponding eigenfunctions being approximately

I P—.0/Oo + 4.(0 —s)/9o I and j4.9/Ho —4.(8 —s)/O' I,
2 /-' 21/2

in which f (8/Oo) and f ((8 —s)/8o) represent Hermite orthogonal functions
of the indicated arguments, and 80 is given by the equation hvo/2= U,e,'.

This can be used as the basis of a perturbation treatment of the problem,
using the method of variation of constants, ' as in the treatment of aperiodic
phenomena.

' It is found that in case it were possible to carry out an experi-
ment to determine whether the molecule were undergoing vibrations about
0=0 or about 0=x, with the use of a method of investigation involving an
interaction unsymmetrical in the two atoms composing the molecule, the
probability of observing the molecule in one orientation rather than the pther
would vary ~n a way corresponding to the molecule's changing end for end
with a frequency given by the separation of adjacent energy levels (ce, and
se„re~ and se2, etc) divided by h. Reference to Fig. 3 shows that this fre-
quency is very small for q large, justifying the interpretation of the corres-
ponding states as oscillational states, the molecule oscillating about an equilib-
rium orientation and changing end for end only rarely. But for q small this
frequency becomes large, approaching the principal frequency of motipn pf
the molecule; then we say that the molecule is rotating, its rotatipn being
made somewhat non-uniform through interactions with other molecules.
The energy levels in this case approximate those for the free plane rotator,
and their behavior for small values of q can be conveniently followed by per-
turbation methods using the rotator eigenfunctions as zero'" order eigen-
functions.

These considerations, involving a hypothetical investigation of the orien-
tation of the molecule, are, while illuminating, not essential to the discussion
of the type of motion of the molecule. We can dehne the motion of the mole-
cule in a, given state as oscillational in case the eigenfunction for that state
can be closely approximated by a combination of Hermite functions and the
energy of the state is given approximately by (n+1/2) hvo. For rotational
motion the eigenfunction and energy level should approximate those for a
free rotator. This definition is equivalent to that given above: the study of

oldstein's Fourier series representation of the Mathieu functions shows
that the transition of the eigenfunctions from approximation tp I-Iermjte

I P. A. M. Dirac, Proc. Roy. Soc. A112, 661 (1926); J. C. Slater, Proc. Nat. Acad. 13, 7
104 {1927);M. Horn, Zeits f. Physik 40, 172 (1926).

' See the c1ear exposition given the process of radioactive decomposition by
Zeits. f. Physik 58, 306 (1929).
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functions to approximation to sines and cosines takes place rather sharply
at the value of g where the separation of adjacent energy levels becomes ap-
preciable. A similar treatment can be applied to the spatial rotator with two
potential minima. The discussion of the qualitative course of the energy
levels and the nature of the eigenfunctions is similar to that given above,
and a detailed treatment is not needed for our purposes.

III. ROUGH CRITERIA FOR OSCILLATION AND ROTATIONAL MOTION

Let us tentatively assume that the motion is oscillationa. Then we can
approximate the lower part of V(8) = Vo(1 —cos 28) by a pars, bola by ex-
panding in powers of 8 and 8 —m' obtaining —2 V06' and —2 Vo(8 —s.)' as the
expansions in the neighborhood of 8 = 0 and 8 =~. These correspond to
energy levels

8'„= (n + 1)hvo, n = 0, 1, 2, 3

for the two-dimensional harmonic oscillator, with

(6)

In case that W = (n+1) hv, is less than 2Vo, the top of the potential hill
separating the two-valleys, the molecule will change orientation only rarely.
(The exceptional case with Va and n small for which there is a large probabli-
ity of the molecule turning end for end even when its energy is not su fficient
to carry it over the hill, is discussed later). But for W„ larger than 2V, the
motion will be rotational. Thus we obtain the following criteria:

2x(IVo) "'
~ + ] ( — — —, oscillational motion,

h

2x(IVO) "'
rotational motion.

h

The uncertain quantity of these expressions is Vo. A rough value for it
can be obtained from the observed heat capacity of the solid. If the molecules
oscillate about equilibrium orientations the molal heat capacity would be
given as a first approximation by the sum of a Debye function of parameter
Pv, corresponding to the translational oscillations, and twice an Einstein
function of parameter Pvo =hvo/h, with vo the characteristic frequency of Eq.
(7). It is found that such a curve does not give a very close 6t with observed
heat capacities since the model is too greatly simplified; but the heat capac,
ity curve does show that Pv and Pvo are nearly the same for many substances-
and a rough value for them can be obtained by taking three times the
temperature at which the heat capacity reaches 5 cal/mole degree; that
is, half the high-temperature value for five degrees of freedom. v Values of

7 This procedure is based on the fact that an Einstein function reaches half its maximum
value at the temperature 0.33Pvo.
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TABLE I.

Molecule

I2
Ng
02
CO
CH4
HCl
HBr
HI
H2

75'
65'
70'
75
55'

160'
125'
105'(135

0.053'
2.33'
2.06'
2.65'
8.5'

14.9'
11.9'
9.2'

82' p

Plp+ 1

350
7.0
8.5
7. 1
1.6

10.7
10.5
11.4

&0.4

Vp

cal/mole
25000

450
600
500
90

1700
1300
1200
&56

Heat of fusion
and transition

cal /mole
4000

222
306
354
242
760
803
897

28

Pzo for several substances' are given in Table I, together with the character-
istic temperature for rotational degeneracy, 0, which is related to the
moment of inertia I (obtained from band spectral data) by the equation

h'-o=—
8~'I k

The heat capacity of solid hydrogen provides no information regarding
Pz, for Hz. An upper limit for Pz& can, however, be found in the following

way. It is seen that for many substances the total heat change accompanying
transitions and fusion is about equal to Vp/2 (compare columns 6 and 7 of
Table I). Assuming this to hold for Hz, we find V, = 56 cal/mole, which, from

the trend of the ratio Vz/AII with molecular weight, can be accepted as a
maximum value. This corresponds to Pz, (135'. The approximate constancy
of Pv, in the series I„Oz, Nz suggests a value of this order of magnitude for

H. also; it and derived quantities are included in Table I.
In terms of Pzo and H the criteria g become

zz + 1 & p~, /4() oscillational motion,

zz + 1 & p„,/4() rotational motion.

The transition from oscillational to rotational motion should occur for
n=no, with

PVO
Ão +

40

Values of no+1 are given in Table I. There are also included data for un-

symmetric molecules such as HCl. For these a reasonable potential function

8 Since these calculations were made some direct verification of them has been provided

by the cwork of L. Vegard (Nature 125, 14 {1930))who has obtained spectra from solid nitro-

gen at very low temperatures involving an electronic transition, a change in oscillation within

the molecule, and an additional energy change corresponding to frequencies of 40 cm ' and

69 cm 1 which he interprets as oscillational jumps for the molecule in the lattice, One oi these
frequencies probably is the frequency of rotational vibration of the molecule. 40 cm ' and

69 cm ' correspond to Pvp =57' and 99' respectively, the first of which is in good agreement
with the rough value 65' of Table I.
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is V= Vo(1 —cos 8), corresponding to an electric dipole in a uniform field.
This leads to a transitional value np given by

PVp
np+1 = ——

0 (12)

For C() it is doubtful as to whether 11 or 12 is more nearly applicable; the
former has been used.

The value np+1 (0.4 found for H~ shows that e&en in the loosest state the
molecules are rotating freely, the intermolecular forces producing only small
perturhations from uniform rotation. Indeed, the estimated Pvp(135 cor-
responds to Vp & 28 0, which is small compared with the energy difference 164 k
of the rotational states j=0 and j=1, giving the frequency with which
the molecule in either state reverses its orientation. The perturbation treat-
ment shows that with this value of Vp the eigenfunctions and energy levels
in all states closely approximate those for the free spatial rotator. '

The other extreme is provided by I., for which the transition from oscil-
lation to rotation takes place at about n = 300. At the melting point the mole-
cules are in states with n= 10 or 15, so that there are no rotating molecules
in this crystal. This agrees with the fact that equilibrium positions for the
atoms have been found by x-ray methods.

The remaining substances form intermediate cases, the molecules in
lower states oscillating and in higher states rotating. whether the transition
to rotational states takes place in the main before the crystal melts will be
considered in Section V.

IX'. CRYSTALLINE HYDRO( EN AND ITS E,NTROE'Y

In ordinary crystalline hydrogen there are three molecules with j=1 for
every one with j=0. The eigenfunctions for these molecules approximate
those for free molecules, namely

j = 0, li() = 1/(4~)"'-

j = 1, p, = (3/4w) '~'-' cos 8, (3/4~) "-' sin fj cos @, (3/4vr) "' sin 9 sin &f, (13)

in te~~s af angles 0 and P relative to an arbitrary coordinate system. These
rotating molecules interact with each other as though they were nearly spheri-
cally symmetrical. " Hence we expect the crystal to have a close-packed
structure —cubic close-packed, say, with molecules at 000, 02&, &0&, 220.
I his agrees with the known cubic symmetry of crystalline hydrogen. " The

' &t 1s worthy of especial mention that in the state with j=0 the molecules are to be con-
»dered as rotating when l'0 is sufficiently small (less than the separation of the levels j=0 and
j= &) even though the energy of the state ( 1'0) is not sufficient to carry the molecule over
the potential maximum (21'o). This is sho~~ n by the close approximation of the corresponding
elgenfun«ion to the lowest tesseral harmonic and by the high frequen;y of end-for-end in-
««hange given by the perturbation treatment, starting with oscillational eigenfunctions."The forces holding the rotating molecules result from interpenetration of the molecules,
as for the noble gases.

e observed density 0.0808 at &1'K corresponds to a unit with a =5.46A, the distanc
between adjacent molecules being 3.86A.
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x-ray investigation of the crystals should not lead to the determination of
atomic positions, but only of molecular positions.

In cubic close-packing each molecule is surrounded by twelve others,
whose interaction with the central molecule can be represented by a potential
function of cubic point-group symmetry in case that the twelve molecules
are spherically symmetrical or oriented at random. The energy change pro-
duced by this potential function, f say, is

W' = JtJt /fit sin 8d8dg,

which is easily shown by the consideration of the symmetry off to be the same
for all four eigenfunctions. Thus a molecule of symmetrical hydrogen, with
j=o, has in a crystal the same energy as a molecule of antisymmetrical
hydrogen, with j= 1. As a result the two forms of hydrogen should form a com-

plete series of nearly perfect solid solutions, and, moreover, the energy con-
tent of the crystal, aside from rotational energy„should be independent of
the composition. This has been verified by the measurements of Clusius and
Hiller, "who found symmetrical hydrogen to have the same heat capacity
and heat of fusion as the 1:3 mixture.

Additional experimental verification that molecules of hydrogen in con-
densed phases are in states approximating those for free molecules is provided

by the Raman effect measurements of McLennan and McLeod. ". A com-
parison of the Raman frequencies found by them and the frequencies cor-
responding to the rotational transitions j=O~j = 2 and j= 1~j= 3 (Table I I)
shows that the intermolecular interaction in liquid hydrogen produces only a
very small change in these rotational energy levels.

Transition

2= i~j=3~1 in intramolecular oscillation

TABLE II.

Raman e6ect

354cm '
588
4149

Band spectra

347cm I

578
4159

These considerations permit a calculation of the entropy of crystalline
hydrogen at temperatures somewhat below the melting point. Ordinary
crystalline hydrogen, consisting of the symmetrical and antisymmetrical
forms in the ratio of I:3, has an entropy of mixing of —(I/4)R log (I/O)
—(3/4)R log (3/4), for the solid solution can be considered ideal. The sym-
metrical molecules have a quantum weight 1 in the normal state, with j=0,
and the antisymmetrical molecules a quantum weight 9, corresponding to
the three rotational eigenfunctions for j= 1, each of which is associated edith

any one of the three spin eigenfunctions. This gives a predicted total entropy
of the solid at temperatures just below the melting point of

~Ha = —(~)R»g(~) —(~)RIog(4) + (-')Rlog9+~~. = 4 39K U +~i., (I4a)
"K. Clusius and K. Hiller, Zeit. f. phys. Chem. B4, 158 (1929).
"J.C. McLennan and J. H. McLeod, Nature 123, 160 (1929).
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in which S~, is the translational entropy. This value is in excellent agreement
with the experimental value 4.3+0.1+5&, of Giauque and Johnston. " In
general. a mixture containing n& mole-fraction of antisymmetric molecules
would have

5 = —e~R log nz —(1 —m~)R log (1 —n~) + N~R log 9 + 5&„. (14b)

At very low temperatures a separation of the three rotational levels with

j= 1 will take place. This is a second-order effect, depending on the mutual
orientation of two or more molecules. As an illustration, let us assume that
we could obtain a crystal of pure antisymmetric hydrogen. At temperatures
not too near O'K the molecules would be in cubic close-packing, and an
arbitrary molecule could be represented by any one of the three eigenfunc-
tions with j=1. But there are possible states of the crystal somewhat more
stable than those in which the three rotational eigenfunctions with j=1 are
represented by random molecules. Thus if each molecule were in the state
with j=1, m=0, corresponding to the eigenfunction (3/4s. )'" cos 0, with 0

referred to trigonal axes which for the various molecules are oriented as are
the figure axes of CO2 in crystals of this substance, then the energy of the
crystal would be less than that of a crystal in which the three eigenfunctions
with j=1 were represented at random. In crystalline CO2 each molecule is
surrounded by twelve others, of which the six in the equatorial plane point
towards the central molecule, bringing six oxygen atoms to within 3.25A,
while the other six molecules place oxygen atoms 4.12A away. As a result
the stable orientation for the central molecule is along the trigonal axis. The
distribution function +=3/4s. cos'0 for a hydrogen molecule with j=1 and
m =0 shows a tendency for the molecule to line up parallel to the axis 0=0,
leading to the decreased energy of the CO2-similar structure described above.
Since this is a second-order effect the energy decrease will be considerably
smaller than Vo, of the order of magnitude of Uo/5. With Vo equal to about
28 k at the most, the temperature at which this structure would become
stable relative to the random one would be of the order of magnitude of 5'K.

Kith other simple ratios of symmetric to antisymmetric molecules other
structures might become stable at very low temperatures. Since the energy
change depends on the interaction of two antisymmetric molecules, which
would drop off very rapidly as the molecules were separated, crystals con-
taining only a small fraction of antisymmetric molecules would be unstable,
breaking down into two phases, pure crystalline symmetric hydrogen and
crystals with n~ (the mole-fraction of antisymmetric molecules) equal to
1, 1/2, or some other simple fraction. This process, involving diffusion of the
molecules, might take some time, so that care would be necessary to insure
equilibrium in the study of mixtures with n& small.

The entropy change accompanying this transition is predicted to be

'4 The possibility of the expression of the entropy of hydrogen as the sum of these terms
was first noted by Giauque, who observed that it indicated the formation of nearly ideal solid
solutions between symmetrical and antisymmetrical hydrogen and the retention of the quan-
tum weight 9 for the latter.
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5 = —««gal log «!g —(1 —«zg) R log (, 1 —«zg) +

««gal

log 3 (15)

corresponding to the restriction of each antisymmetric molecule to one of the
three rotational states with j = 1, and to the removal of the entropy of mixing
of the solid solution existing above the transition temperature. " The entropy
of the crystals then becomes

5 = ngR log 3 + 5:,
The discovery of a transition which we identify with this has been re-

ported by Simon, Mendelssohn, and Ruhemann, " who measured the heat
capacity of hydrogen with n.&

=1/'2 down to 3'K. They found that the heat
capacity, after following the Debye curve down to about 11'K, rose at lower
temperatures, having the value 0.4 cal/'deg. , 25 times that of the Debye
function, at 3'K. The observed entropy of transition down to 3'K, at which
the transition is not completed, was found to be about 0.5 E.U. That pre-
dicted by Eq. (15) for the transition is 2.47 E.U.

In crystals for which no is large, such as iodine, the lowest symmetric
and the lowest antisymmetric state have practically the same energy and
properties, and each corresponds to one eigenfunction only. As a result a
mixture of symmetric and antisymrnetric molecules at low temperatures v ill

behave as a perfect solid solution, each molecule having just its spin quan-
tum weight, and the entropy of the solid v ill be the translational entropy
plus the same entropy of mixing and spin entropy as that of the gas. This
has been verihed for I& by Giauque. " E)nly at extremely low temperatures
will these entropy quantities be lost.

V. Tl IE TRANSITION FROWY ()ASCII.I.ATIOXAL TO ROTATIONAI. MOTION

A consideration of the values of ng for t"H4, N„O., and the hydrogen
halides indicates that these molecules oscillate at low temperatures but go over
mainly to rotational states before the melting point is reached. This process
should be accompanied by thermal phenomena, as is shown by the following
argument. V'ith n &no the eigenfunctions in 0 and P change only slightly as
n is increased; the probability function Pp, with maxima in the neighborhood
of the equilibrium values of |I and P„ falls off rapidly from these maxima, and
increase in n causes only some spread, corresponding to larger amplitudes of
oscillation. But a radical change takes place as n goes through the transition
value. The eigenfunctions change completely in nature, becoming much more
nearly constant, as may be verified by a study of the Fourier series coef-
ficients given by (goldstein for the Mathieu functions. This change increases
the repulsive forces between mo1ecules, and tends to spread the crystal lattice

1. The entropy sE.&A' log 3 arising from the three spin eigenfunctions for antisymmetrical
molecules v, ill be lost only at temperatures of the order of magnitude of 0.001'K, at ~vhich the
very small nuclear interaction energy xaoulcl become appreciable. It may be pointed out that
the magnitucle of the interaction energy ~vith other molecules for the three states v,'ith j= 1

as compare&1 v ith the spin-rotation interaction energy is such as not to permit coupling of
i a»cl the spin moment to form a resultant.

'6 F. Simon, K, AIendelssohn, and M. Ifuhemann, Xaturv iss. 18, 34. I&~30}.
Personal communication.
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as soon as an appreciable number of molecules have begun to rotate. But
spreading the lattice decreases the forces betv een molecules and decreases

Ppp and Vo, so that more molecules can rotate. The effect builds up to give a
transition, which often is not accompanied by an essential change in the
structure of the crystal. The transition is usually not sharp, but covers a

range of temperature of several degrees, and is foreshadowed on the low

temperature side by an abnormal increase in heat capacity.
Such a tr.ansition is shown by methane. " The heat capacity rises rapidly

from 18'K to a very sharp maximum (over 48 cal/mole deg. ) at 20.4', and
then drops sharply to 4.6 cal/mole deg. at 22.8'. The temperature of transi-
tion agrees with the low value (about 1) predicted for nI;. A methane crystal
between 20' and 90.6 K (the melting point) would be described as consisting
of rotating molecules in cubic close-parking;" belov 20' the tetrahedral
molecules oscillate about equilibrium orientations. It v.ould be very in-

teresting to have Raman effect or infrared spectral data for solid methane;
above 20' the lines should very closely approximate the rotation lines for the
gaseous molecules, and below that temperature should show pronounced

changes, the frequencies of the lines increasing and tending to become con-
stant as the motion approaches harmonic oscillation.

The course of the heat capacity curves also indicates that the transitions
shown by N~ and O~ at 35.4' and 43.76' respectively are accompanied by the
setting in of rotation of the molecules. This is supported by the known

crystallographic symmetry of the high temperature forms; nitrogen «ubic

(indicating cubic close-packing of N& molecules) and oxygen hexagonal (in-

dicating hexagonal close-packing).
The gradual transitions shown" by Hcl (at 98'K), HBr (at 89', 113',

and 117'K), and HI (at 70' and 126'Ii) are to be given a similar interpreta-
tion. " Each of the successive transitions in HBr and HI may be connected
with incipient rotation about one crystal a~is and the expansion of the crystal
along that a~is alone. In every case freely rotating molecules would assume
a close-packed arrangement (cubic close-packing of molecules has been
found v.ith x-rays by Simon and Simson'"- for the high temperature form of
HCl); on cooling belov' the temperature at which oscillation sets in the mole-

cules may merely orient themselves, giving a structure similar to that of
CO2, for example, or the orientation may be accompanied by a change of
position of molecular centers. That this takes place for HCl is indicated by
the low symmetry of the low-temperature form shown by Simon and Sim-
eon's pov"der photographs.

'8 K. Clusius, Zeits. f. phys. Chem. B3, 41 (1929).
"J.C. McLennan and W. G. Plummer, Phil. A'lag. 7, 761 (1929), have found that powder

photographic data indicate cubic close-packing of the molecules.
"O'. F. Giauque and R. XViebe, J. Am. Chem. Soc. 50, 101 (1928); 50, 2193 (19?8),

51, 1441 (1929).
(ilauque and 9, iebe suggested essentially this explanation, writing "The results suggest

the following possibility: the transition starts as a changing thermal equilibrium betv een

energy states of the hydrogen iodide molecule, both in the same crystal lattice, but when a
su%cient concentration of the higher energy state has been reached, the system becomes un-

stable and changes to a new crystalline form. "
"F.Simon and C. v. Simson, Zeits. f. Physik 21, 168 {1924).



LINUS PA ULING

It is predicted that the dielectric constants of solid HC1, HBr, and H I
at temperatures just below the melting points will be very high and de-
pendent on the temperature, the values being given by Debye's theory of the
orientation of electric dipole molecules; while the low-temperature forms will

have low dielectric constants nearly independent of the temperature.
In general it is to be expected that rotational motion of molecules and

complex ions of sufficiently low moment of inertia will set in below the melt-
ing point of the crystals. This condition of low moment of inertia is satisfied
by complexes containing hydrogen atoms and one heavy atom. Thus the
forces orienting the tetrahedral ammonium ion in an ammonium salt are
much stronger than those acting on a methane molecule, so that the ion will

oscillate until a much higher temperature than 20'K is reached; but this

temperature of transition to rotational motion is still considerably below the
melting point.

The transitions have been observed. Simon" and co-workers found from
heat capacity measurements that ammonium chloride, bromide, and iodide
show a gradual transition covering about a 10' range in the neighborhoood
240'K, the nature of the phenomenon not depending essentially on the
anion. '4 X-ray studies showed the crystal structure to be the same before
and after the transition, which is accompanied by a small volume change,
less than 1%. These investigators attribute the transition to the ammonium
ion, but make no other suggestions as to its nature. The observed phenomena
are just those expected to accompany the transition from oscillation to
rotation of the ammonium ion, however. Th@ increase in the transition
temperature in the series NH4I (—42.5'C), NH4Br ( —38.0'C), NH4Cl

(—30.4'C) further shows the expected effect of increasing interionic forces
accompanying decreasing anion radius. '~

The rotation of the ammonium ion in salts at ordinary temperatures
provides justification for the customary treatment of the ion as spherically
symmetrical in the theoretical discussion of the structure of ionic crystals.
Further, the rotation of molecules such as NH3 and H&O about symmetry
axes accounts for the fact that these molecules occupy positions in crystals
with symmetry elements not compatible with those of the non-rotating
molecule. Thus in Ni(NH8)6Clq the NH3 molecules lie on four-fold axes, and
in alum the H20 molecules on three-fold axes. The rotation of the molecules,

"F.Simon, Ann. d. Physik 68, 263 (1922); F. Simon and C. v. Simson, Naturwiss. 38,
880 (1926); F. Simon, C. v. Simson, and M. Ruhemann, Zeit. f. phys. Chem. 129, 339 (1927).

'4 A very small hump in the heat capacity curve at —30' was also found for ammonium
Huoride; the interpretation of this is uncertain (the structure of this crystal is not the same as
that of the other ammonium halides).

'~ Small maxima in the heat capacity curves of organic compounds are probably often due
to the transition from oscillational to rotational motion of a part of the molecule. Thus the
maxima shown by o-xylene, m-xylene, and hexamethylbenzene (reported by H. M. Huffman,
G. S. Parks and A. C. Daniels, J.A.C.S., 52, 1547 (1930) would be attributed to the rotation
of the methyl groups, which have a low moment of inertia and can rotate about the single
bond holding the group to the rest of the molecule. p-xylene shows no maximum, indicating
that the orienting forces on the methyl group are larger, raising the transition temperature
above the melting point.
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however, gives them an effective infinite symmetry axis, which is compatible
with these positions.

The possibility of rotation introduces considerable uncertainty in the
conclusions reached by Hendricks" in regard to the nature of the aliphatic
carbon chain. From the x-ray study of crystals of the mono-alkyl sub-
stituted ammonium halides he found that in a number of these crystals the
alkyl ammonium ion lies on a four-fold axis of symmetry, a result which
apparently excludes the usual staggered chain of carbon atoms, and which
caused him to suggest that the chain really is straight. But the moment of
inertia of a staggered chain about an axis along the chain would be very
small, and we would expect rotation about this axis at ordinary temperatures,
giving the chain an effective infinite symmetry axis, which is compatible with
the x-ray data. Accordingly, Hendricks' investigation does not require that
the staggered aliphatic chain be given up."

It has been found by Lyons and Rideal that solid unimolecular films on
water of long chain hydrocarbons with polar ends exist in two possible forms,
one with an area of 20.6A' per molecule, and the other, stable at higher
temperatures, with an area of 26.2A' per molecule. " These authors suggest"
that in the more compact form the staggered chains are interlocked, and fit
together more closely than at higher temperatures when interlocking is not
effective. This explanation is made somewhat more precise by the application
of the considerations discussed in this paper. At low temperatures inter-
locking does take place, the molecules oscillating about certain equilibrium
orientations. Kith increasing temperature rotation sets in, and th" film ex-
pands; in this state the molecules would be well represented as ."ircular
cylinders with a radius equal to the maximum radius of the staggered chain.
The phenomenon is exactly analogous to that giving rise to gradual transi-
tions in crystals.

In molecules C2X6, such as ethane, C~H6, there exists the possibility of the
two ends of the molecule rotating or oscillating relative to each other. In
case that X is a large atom, as in C~I6, the interaction of the two ends of the
molecule will be large, and they will carry out small oscillations about the
relative orientation in which the atom groups fit closely together, the six
atoms X defining the corners of an octahedron. But in C2H6 the interaction
of the two ends of the molecule will be small, and they will rotate freely about
the single bond connecting the carbon atoms, with a frequency which is
simply related to the rotational frequency of the entire molecule about its
figure axis. The determination of the energy levels characteristic of this
motion for molecules of this type, by means of Raman effect or infrared
measurements, would permit the evaluation of the potential energy of the
molecule as a function of the relative orientation of its ends.

I acknowledge wi. th gratitude the inspiration and assistance received
through conversations with Professor XV. F. Giauque of the Cheroistry
Department of the University of California.

'6 S. B.Hendricks, Zeits. f. Krist. 67, 465 {1928);68, 189 {1928);additional paper
~' Dr. Hendricks has informed me that he agrees with this conclusion.
~8 I am indebted to Professor J. W Mc Bain for directing my attention to this w
~' C. G. Lyons and E. K. Rideal, Nature 125, 455 {1930}.

ress.


