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ABSTRACT

The intensity of a spectral line may be calculated in the new quantum mechanics

by evaluating the integral of the product of the electric moment and the wave func-
tions of the initial and of the final states. The complete wave function may be written
approximately as a product of a nuclear wave function and an electronic wave func-
tion. Furthermore, the electric moment can be approximately written as the sum of a
function of the nuclear coordinates only and a function of the electronic coordinates
only. For symmetrical diatomic molecules the term in the electric moment which
is a function of the nuclear coordinates only is zero so that the intensity integral
reduces to a double integral which may be written as a product of an electronic inte-
gral and a nuclear integral. The electronic integral is constant for all the lines cor-
responding to the same electronic transition and the integrand of the nuclear integral
consists only of the product of the radial wave functions for the initial and the final

states. The integration of the nuclear integral is carried out using harmonic oscillator
wave functions whose origins are shifted due to the change of the nuclear separa-
tion during the electronic transition,

A comparison is made between the intensities calculated in the above manner
and those obtained by experiment. In the case of Na2 good quantitiative agreement
is obtained between the experimental and the calculated results. Accurate values
of the moments of inertia in the initial and final states are not known for K2 but it
is possible to show that if a value of the change in the nuclear separations during
the transition is assumed, agreement is possible for all of the lines corresponding to
low quantum numbers. Good qualitative agreement is obtained for 12. Calcula-
tions are made for the absorption spectra and the 3'8 —2'S emiss'. on band system of
H2 but the agreement in these cases is not as good as for Na~ and K~.

I . INTRoDUcTIoN

N THE basis of the old quantum theory Condon' was able to show that

~ ~

~

~

~ ~

in connection with a given electronic transition in a diatomic molecule
certain transitions were more probable than others. His calculations were
based upon Franck's' assumption that during an electronic transition nuclei
which are originally in a non-vibrating state remain momentarily fixed be-
cause of their large masses compared with those of the electrons. Since the
equilibrium distance between the nuclei is altered due to the motion of the
electrons, the nuclei acquire a potential energy with respect to the new equili-
brium points and begin to vibrate. The amplitude of the vibration acquired
after the transition is approximately equal to the change in the equilibrium

' E. Condon, Phys. Rev. 28, 1182 (1926).
' J. Franck, Trans. Faraday Society (1925).
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separations, therefore it is possible for the most probable nuclear transition
to be calculated.

If the nuclei are vibrating in the initial state then almost any amplitude
in the end state is possible. A calculation similar to that mentioned above can
be employed except that instead of focusing our attention on the equilibrium
position in the initial state, we focus our attention on the positions in which

the nuclei spend most of the time. These positions will naturally be the turn-

ing points of the vibratory motion. Kith potential energy diagrams to deter-
mine the turning points of the vibration Condon was able to show that the
positions of maximum intensities in the well-known double entry tables lie

along a parabolic path and agree fairly well with experiment. As Condon's
theory is essentially only one of transition probabilities the distribution in the
initial state is not included.

In a second paper Condon4 showed that the ideas expressed above on the
basis of the old quantum theory could be carried over into the new quantum
mechanics. In the new quantum mechanics the intensity of a spectral line

may be calculated by evaluating the integral of the product of the electric
moment and the wave functions of the initial and final states where the inte-
gration is carried out over all of the coordinates of the electrons and the
nuclei. Thus a measure of the intensity is given by the expression (following
Con don):

T = Jt J
3T(x, r)p, „(x, r)p, „"(x,r)dxdr,

where M is the instantaneous electric moment, P. „and P,"„are the wave
functions of the initial and final states, x and r are total coordinates of the
electron and of the nuclei respectively and e and n are electronic and vibra-
tional quantum numbers. According to the work of Born and Oppenheimer'
the complete wave function f,„ca benapproximately expressed as a product
of an electronic wave function 4, (x) and an oscillatory wave function
4',,„(r). The latter function corresponds to the motion of the nuclei moving
under an eRective force arising from the moving electrons and the repulsion
of the nuclei. KVe may write our integral:

The electric moment is defined as the vector sum of the coordinates of
the electrons times their charge and the coordinates of the nuclei times their
charge. This may be approximately expressed in the following way:

M(x, r) = .4(x) + B(r)

because during the transition of the electrons the nuclei remain practically
fixed and the first term (representing the vector sum of the electronic charges

' Cf. G. Herzberg, Zeits. f. Physik 49, 761 (1928).
' I:. Condon, Phys. Rev. 32, 858 (1928).
' 'M. Born and Oppenheimer, Ann. d. Physik 84, 457 (1927).
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times x) will be a constant over the integration of the electron coordinates.
The second term (representing the vector sum of the nuclear charge times r)
will be a function of only the nuclear coordinates because the heavy nuclei
cannot respond immediately to the changes in the electronic arrangement.
Ke have therefore:

I = Jf A(x)4', (x)4', (x)dx J @, ,„(r)4', „(r)dr+ JI 4,. (x)4 „"(x)dx

The integrals involving the electron coordinates will be constant for a given
electronic transition so that

I = C& Jf 4 „„(r)4„„(r)d"r+ C& J"8(r)4, „(r)4 „"„(r)dr

This integral cannot be evaluated in general because we do not know the
ratio of the constants (B(r) is probably a linear function). However if we
restrict ourselves to symmetrical diatomic molecules the nuclear electric
moment will always be zero so that the last term drops out and we have
only

I =C& %„„r+,„"rdr,

It is the purpose of this paper to evaluate this integral and to compare
the results with experiment in several cases.

I I. INTENsITIFs FoR HARMoNIc OscILLATIoNs

The approximate wave equation for the nuclear motions of the diatomic
molecule may be written

Sz'-'p Z'e'
q'4+ lv ——+ V, (r) 4 = 0

h"-

where Ze is the charge on one of the nuclei, p is the equivalent mass
(=Ad, M2/M, +.lI2), r is the separation of the nuclei and V, (r) is the mean
potential energy due the electrons. The wave function may be separated into
three functions in the usual manner by setting 4=X%($) 0(8) R(r)/r
where N is a normalizing factor. The equations in P and 0 will not have any
eHect' on the calculated intensities of the spectral lines and we may therefore
pass immediately to the equation in r

+v, (r) z=o
' A. Sommerfeld, Erganzungsband, p. 69.
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where m is the rotational quantum number. Making the substitution p=
r/ro (ro= equilibriu separation of the nuclei) we obtain

8~'Jo
Iv + (N f(p) )h'

m(m + 1) 8=0

in which Jo = pro' and f(p) represents the effective potential energy.
In this paper we will restrict ourselves to linear oscillations and we may

therefore put f(p) = —D+ [(2trvo)'J, /2] P where $ = p —1 and D is the dissocia-
tion energy and vQ is the frequency of vibration for very small amplitudes.
Making use of this expression in Eq. (4) and expanding p in terms of ( (or,
one could set m = 0) and finally making the substitution tt = 27r(v& Jo)'"/(h)'" $,
we obtain

2 h'-'

R" + —W+D —~n(m+1) — —g' R = 0
hpp Sm'J p.

which is the wave equation for the linear oscillator. '

The solution of this equation is well known and may be written

h'-'

R„= e" "II—,(q) and ll + D —m(m + 1)——= s+ —Itvo (&)
X„ Sx'-'J

Q 2

where n is the vibrational quantum number and H„(rt) is a Hermitian poly-
nominal.

V~e wish to evaluate the integral (1) which may now be written in terms
of (p) and the radial wave function, in the following manner:

I = const. R, „(p)R,"„.(p)dp.
Q

As far as the nuclei are concerned the eRect of an electron transition is,
that besides the change in the equilibrium positions of the nuclei there is also
a change in the binding or potential energy such that the nuclei acquire a
new vibration frequency after the transition. Therefore if we take R, „=
(1/ItI„)e ""'H„(rt) as the nuclear part of the wave function for the upper
state, we will have for the lower state R,"„=(1/X ) exp —[(nrt+ tt')'/2] H„~
(ng+il) where a and ll represent respectively measures of the change in

frequency and the change in equilibrium position. From the deb. nition of g

we see that

q = [2s ( vo'Jo') "-'/(hl "'ro]r —2~(vo'Jo') ' "/(h) "-'

so that

ng + 5 = [(u2vr(vo'Jo')'~'/(It)"'ro'] (r + pro'(h)'t'/2~a(vo'Jo')"-']

—n2s(vo'J ')'"/(h)'" = [2s(vo"p)"'/(h)'"]r —
2( svpo)'"r "/(It)"-

Thus n = (vo "/vo')'" and

7 E. Fues, Ann. d. Physik 80, 367 (1926).
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b = (ro' —ro")2or(vo"//)'"/(h)//' = 0. 1221(ro' —ro")(vo"3f)'"

where vo" is expressed in cm —", M is the atomic weight (0 = 16) of one of the
atoms and (ro' —ro") is in Angstroms.

The integral (7) then becomes

E = const Jt (,g', V „)-'e &'/'e —/~&+'&'/'H (q)H (nr/ + b)dr/

where the limits are taken from —~ to + ~ instead of from —1 to +~ since
the addition of the region from —1 to —~ will not appreciably affect the
value of the integral for small quantum numbers. The values of the nor-
malizing factors are well known for the linear oscillator, being

/V„= [2"'n'!vr'"h""/2or-(vo'p)"']"
[2" ro )s' / h / /2~(vo //) / ] / (9)

In order to carry through the integration of Eq. (8) the method used by
Schrodinger' in the Stark eRect may be applied. The "erzeugende" function'
for the Hermitian polynomial is

n'=0

H„(r/)
gn' —e

—
/s +2sg

~z'!

and for the function of the lower state

n' '=0

H "(erg + b)~n" e
—t +2t (aq+h)

N"!

If these expressions are multiplied together and also multiplied by the expo-
nentials in Eq. (8) we have after integration

n' 0

n' '=oo n'( n" +~5
H„(r/) H„(nr/+ b)e o "e / &+" /'-dr/

I I II ] Jn' '=0 @ ~ @ ~ —/oo

+so

J
e . e
—s "+2sg—

o7 /2 —t +2t (ar)+b) —(ar)+5) /2d 7l

I/2

e
—ii /2(a +I')e[(s —t ) (1—a ) —2abs+2bt+4ast] /(I+a )

O,
2 + 1

By expanding the last exponential factor in powers of s and t and then equat-
ing the like powers of s and t on both sides of the equation we obtain for the
expression for the integral for each value of n' and n". Making use of Eqs.
(9), Eq. (8) becomes

(EV„ iV„") 'e "'"e ' "+'"/oEE„(r/) H„(n7/+ b)dr/I n I I
~ ~ 2 ~ 2

n I n I I

(r/ //o /)1/o n'rr n''

C3 2(n'+a''//2
l=o

(n' —l )/2(n' —l —1) /2
(n"-l )/2(n'' —l—1) /2

j=0

" E. Schrodinger, Ann. d. Physik 80, 486 (1926).
9 Courant and Hilbert, Methoden der mathematischen Physik I (Berlin 1924) p. 76.
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where

h 1/2 1 40.
C3 = e—& /2(~ +I)

1 —(1 — '))'
C2 3. j.' 1+ o.'

1 {n'—2i—t)

(n' —2i —I)! 1 + n'

and where the upper limit of the first sum is the smaller of n' or n" and the

upper limits of the second and third sums are either the upper or lower figures

depending upon whether n —k is even or odd. In order to visualize these

terms and to use them in the numerical calculations the smallest ones are

given in Table I. The value of the integral for (n", n') can be obtained from

n' n"

0 0
0 1
0 2
1 1
0 3
1 2
0 4

3
2 2
0 5
1 4
2 3
1 5
2 4
3 3
2 5

TABLE I.

Value of the integral (11)

(1/2»2) e
(1/2»') [e2+c2]

(1j")[dlel+a2]
(3'"/2) le3+c2el]

(1/2'i [dle2+c2d, +a2el]
(3/2)'I2[e +c e +c ]
(3/8)'f2 [d le3+c2d lt 1+a2e2+a2c 2]

(1/2) d2e2+c2d2+b2e2+b2C2+a2dlel+a 4]

(15»2/2) e 3+C2c3+c4el]
(3»' /2) [die 4+c dle2+c 4dl+a2e3+a2c2el]
(~/8)»2 [d2e3+c2d2el+b2e3+b2C2el+agd le2+a2cgl+a 4el]

(15/8)»' [d le 3+c2dle3+c 4dlel+a2e 4+a2c2e2+a2c 4]
(3'~2/2) [d2e 4+c2d2e2+c 4d2+b2e 4+b2c2e2+b2c 4+a2dle3+a2c'2dlel+a 4e2+«c2]

(3/4) [d3e3+c2d3el+ b2d le3+ b2c2d lel+a2d2e2+a2c2d 2+a2b2e2+a2b2c2+ a 4d1 el +a 6]

(15/8)li 2 [d,e 5+c2d,e, +c4d,e, +b2e 5+b2c2e3+b2c 4el+a2d, e 4+a2c2dle2+a2c 4dl+a 4e3

+a 4C2el]

(3/8»2) [d3e 4+c2d3e2+c 4d3+b2dle 4+b2c2dle2+b2C 4dl+a2d2e3+a2C2d2el+a2b2e3
+a2b2c2el +a 4d le2+a 4c2d1 +a 3el]

(3/2) [d 4e 4+c2d 4e2+b2d2e 4+b2c2d2e2+b 4e 4+c 4d 4+b 4c 4+a2d3e3+a2b2dle3+
+a2c2dgel+a2c2b2dlel +a 4d2e2+a 4c2d2+a 4b2e2+a 4b2c2+a 8dlel+a 8]

(n'n") by interchanging subscripts on "b" and "e" and on "d" and "e", i.e
a&b2codle2 becomes a2boc2d2e&. All coeScients with the subscript zero are equal
to unity and are therefore omitted.

I I I. CQMPARIsoN AvITH Ex PERIMENT

In the preceding section a formula is developed which allows the matrix
elements of the electric moment to be calculated for vibration transitions in

symmetrical diatomic molecules. The relative intensities of the bands in the
electronic-vibration spectra of these molecules are calculated by squaring the
integral (11)and multiplying by the fourth power of the frequency and by the
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distribution factor of molecules in the initial state. " It is somewhat dif6cult
to know exact1y what frequency to multiply by because the intensity obtained
should apply to the sum of all the rotational transitions which have the same
vibrational and electronic quantum numbers. If the rotational quantum
number in Eq. (4) is set equal to zero then we should expect our calculated
intensities to agree with those in the Q(0) branch corresponding to the given
electronic and vibrational transition. However, in any case, the changes in

the frequencies associated with different vibrational transitions are very small
since the change in vibrational energy is very small compared to the change
in the electronic energy. Since the frequency factors do not appreciably acct
the comparison of the calculated results with experiment, they have been
omitted in the tables given below,

It is practically impossible at present to calculate accurately the expected
intensity in emission spectra because the distribution factor for the initial
state depends not only upon the temperature but also upon the method of
excitation and upon whether or not the molecules have reached their initial
excited levels by means of a transition from a higher level. It should be
possible however, to calculate the relative intensities of those bands which
originate from the same initial vibrational level and the emission diagram=
should show agreement in the horizontal rows. In absorption spectra it is
easily possible to calculate the expected absorption intensity for a given
temperature because in this case the distribution factor is merely the appro-
priate Boltzmann factor. However, when we try to compare the calculated
results with experiment we hnd that the exact temperature or pressure is
seldom recorded in absorption spectrum intensity measurements. In the
following calculated results no attempt has been made to include the tem-
perature factor because of the uncertainty in the exact temperatures used in

obtaining the experimental results. XVe have calculated the intensities for the
first few ~ibrational levels only (because of the restriction to harmonic oscilla-
tions) so that in some cases the temperature distribution will not vary greatly
from a uniform distribution and merely the squares of the integral (11)should
be in approximate agreement with the experimental results, in other cases,
only the agreement in the columns (for absorption) should be considered.

In making the theoretical intensity calculations the values of o. and
are first calculated. The value of a which is given by (v, "/vo')'" is usually
very well known since it comes from an analysis of the vibrational energy
levels themselves. The value of u may therefore be determined to within
three significant figures. The value of 5 depends upon the values of the
separations of the nuclei which in turn depend upon the values of the mo-
ments of inertia given by the analysis of the rotational spectrum. The values
of the nuclear separations thus calculated are usually accurate only to within
about 1 percent so that 5 which depends upon the difference in the separa-
tions in the initial and final states (5=0.1221 (r, ' —r, ") (v, "M)'t2) is, in
general, susceptible to quite large errors. The next step in the calculations

' Cf. A. Sommerfeld, Erg3nzungb3. nd, p. 96.
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is to evaluate the coefficients a, b, c, d, and e given after Eq. (11). The triple
sum in Eq. (11) is then evaluated which in the highest state (n,

' =4, n" =3)
considered, consists of 13 terms. In the diagrams given below the observed
and calculated intensities are given in the usual double-entry form. In every
case the observed intensities are placed on top and the corresponding cal-
culated ones are given directly underneath them. Each element will be treated
in a separate section.

a. Sodium.

The experimental and calculated data for the green absorption band of
sodium (Na ) are shown completely in Fig. 1. It may be seen that here the
agreement is rather remarkable, perhaps much better than one would expect

0
2
2.00

5
4.52 4.78

5
5.32

9
5.82

6
5.00 1.22 0.04

4
1.32

0.68 1.27
3

3.26 1.70

6
6.28

5
3 ~ 42

1.02
3

3.26

3
0.60

2
0.40

1.53

2.38

Fig. 1. Observed and calculated intensities in the green Na. absorption band. The ob-
served values are placed on top.

with the available intensity measurements which are only estimates. " The
experimental intensities are taken from Fredrickson and 6'atson. "The values
of the frequencies and of the nuclear separations are taken from Loomis and
V ood-' and give for o. and 6 the values 1.130 and 2.43 respectively. Fredrick-
son s.nd KYatson give the nonappearance of the bands (1—2), (2—1), (3—1),
(2—2) and (1—3) as an especial characteristic of this system and the calculated
intensities indicate very definitely the fact that these particular bands should
be very faint. The calculated intensities in the positions (1—2) and (2—1) are
quite sensitive to changes in the nuclear separations and indeed, when the
writer first calculated these intensities, he used the value ro' —ro" =0.40 10 "

cm given by'Fredrickson and 6'atson and found complete disagreement with
experiment since the values in the positions (1—2) and (2—1) were approxi-
mately 12 on the same scale as used in Fig. 1. Later he found that Loomis

'0 The Physical Revi:w Referee has kindly pointed out that since at 1000'K the relative
distribution in the initial states n" =0,1,2,3,4 is 1.00, 0.80, 0.64, 0.51, 0.41 respectively, the
agreement in the top row of Fig. 1 can only he accidental and that the agreement in the col-
IIIr ns only should be noticed."O'. R. Fredrickson and K. 'A'. '6'atson, Phys. Rev. 30, 429 (1927).

'-' F XV. Loomis and R. K. AVood, Phys. Rev. 32, 223 (1928).
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and %ood had pointed our errors in Fredrickson and Watson's analysis and
that they gave instead the value ro' —ro"=0.33 10 ' cm from which the
values given were calculated.

b. Potassium.
Fredriekson and Watson" give an intensity diagram for the near red potas-

ium absorption band which is very similar to the green band of sodium.
However, as was the ease with sodium, the nuclear separations which they
give (ro' ro" =—0.43 10 ' cm) do not give calculated intensities which agree
at all with experiment. It is interesting however, that because of the absence
of the (1—2) and (2—1) bands and because of the likeness to Na~ it is possible
to estimate the change in the nuclear separation for K2. The value of 5 which
is obtained is almost the same as that for Na~ and since (v, "M)'" is practi-
cally identical in both cases the value of ro' —ro" can be estimated to be
close to the same ~alue as for sodium (0.33 10 ' cm) although it may possibly
be as low as 0.29 10 ' cm. The agreement for only the first few terms when
0.33 10 cm is used is shown in Fig. 2. The principle point in favor of the

3
3.00

10
8.64

11.55

8
7.02

7.68

1.13

1.80

2
1.86

Fig. 2. Observed and calculated intensities in the near red K2 absorption band. The ob-
served values are placed on top.

argument for the change in separations chosen is that the only value, which
gives a general agreement throughout a11 terms, is just the value which
reduces the (2—1) and (1—2) terms to a very small value.

c. Iodine.
The iodine spectrum is characterized by the fact that intense bands

correspond to changes of very large quantum numbers. Because of this fact
it is obvious that we cannot expect to calculate the exact intensities by the
integral (11)which is derived on the assumption of harmonic oscillations. We
can however, draw important qualitative conclusions from this formula. If
we restrict ourselves to the first column, that is, to all bands which result
from a transition from the lowest initial vibrational state, we find that the
most important term in the theoretical calculation is the d term which has
the same index as the vibrational quantum number of the end state n'. The
constants given by Mecke" for iodine give o. =1.300 and 8 =14.9. Because
of the large vaIue of 6 we find it is just the d coeS.cients which are extremely

"Mecke, Handbuch der Physik XXI, p. 547.
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large, in fact d~4 is about 20,000 times do. The values of the coefficients go up
rather rapidly to a maximum at d&4 and then slowly decrease. To calculate
the intensities we must square these values of d and multiply by the square
of the normalizing coefficient which tends to shift the maximum intensity
in the direction of large quantum numbers. It requires therefore no stretch
of the imagination to conclude that the first terms will be insignificant with
respect to later ones and that observable terms will begin to appear at about
n'=14 and extend out into the neighborhood of n'=60 or more. The ap-
pearance of lines in these positions is in agreement with the experimentally
observed intensities.

Because of the effect of the Boltzmann distribution factor, there are very
few molecules in the higher n" states so that the absence of transitions start-
ing from the higher n" levels is explained even though their calculated
transition probabilities are large.

Hfll og8Il.
In the absorption spectrum of hydrogen all the transitions have the same

initial quantum level (n,
"= 0) and we should therefore expect Eq. (11i to give

a fairly accurate representation of their intensities. The intensiy constants
for the hydrogen absorption spectra are obtained from the molecular con-
stants given by Richardson and Davidson'4 and are a=1.786 and 6=4.45
The agreement of the calculated intensities with the absorption data given
by Dieke and Hopfield" is shown in Fig. 3. The agreement in this case is not

n' 2

Ip 8 5 4 8 3

I, 10 72 22 5 38 5 39 0 20 7 4 2 0 02 1 2 0 19

Fig. 3. Observed (I,) and calculated (I,.) intensities for the ultra-violet absorption spectrum
of the hydrogen molecule. The initial vibrational state of all of these transitions is the same.

good although it will be seen that the theoretical calculations give about the
right number of bands at least. No explanation of these discrepancies can be
given but it must be realized that the intensities are in the extreme ultra-
violet where it is very difficult to make accurate absorption estimates. Be-
cause of the similarity of the higher wave functions one would expect the
intensities of the higher observed bands to become gradually smaller rather
than to break off suddenly as is shown in the figure. It may be possible too
that the fact that a harmonic oscillator was assumed will explain the discre-
pancies in the bands at the right of the figure.

Although as was stated earlier, we cannot expect very close agreement
between emission spectra and the calculated intensities the emission spectra
of the 3'8—+O'S band system of hydrogen shows some interesting points.
The notation and constants are taken from Richardson and Davidson" and
we find 0. =0.784 and 6= —1.008. The experimental values are taken from

"A. K. Richardson and P. M. Davidson, Proc. Roy. Soc. A125. 35 (1929).
"G.H. Dieke and J. J. Hopfield, Phys. Rev. 30, 400 (1927).
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Kapucinsky and Eymers'" intensity measurements. These measurements are
in the visible region and were carefully made by means of a registering micro-
photometer so that great faith may be had in the results. The experimental
and calculated intensities are shown together in Fig. 4. It will be seen in this

n"

n

286
286 223

29
41.8

9.1
1.4

375
137

I

75. 2
73.5

395
72.4

159
257

5.4
6.6

61
194

(8)
32.6

102
88.4

142
10.9

29, 3
24. 6

Fig. 4. Observed and calculated intensities in the 3'8—+2'S emission band system of
hydrogen. The observed intensities are placed on top.

figure that good agreement is obtained except at the positions in which n
changes by +1 units. At these positions the intensities are apparently re-
versed, that is, the one corresponding to a change in n of +1 agrees better
in every case with the experimental intensity corresponding to a change of
—1 in n and vice versa. No explanation of this fact can be given at the pres-
ent time.

IV. CONcLcslox

()n the basis of wave mechanics the intensity of a spectral line is measured
by the integral of the product of the electric moment and the wave
functions of the initial and of the final states. It is possible to carry this
integration through approximately for vibration electronic transitions in
symmetrical diatomic molecules. In this way a formula is developed for the
intensity of any band in the electronic vibration spectra of these molecules.
The intensities of certain spectral bands of Na~, K., I~, and H~ are calculated
and in some cases rather good agreement with experiment is obtained. It
should be noticed that although there are discrepancies in many of tl",e results
the general intensity values and the number of lines to be expected agree well
with experiment in all cases in spite of the fact that the important constant
(depending upon nuclear separations) varies from —1.01 in the 3'8 —2'S
band of hydrogen to +14.9 in the absorption spectrum of iodine.
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"9,'. Kapucinsky and J. G. Eymers, Proc. Roy. Soc. A122, 58 (1929).


