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ABSTRACT

A tentative expression for the quantum Hamiltonian of two electrons has been
set up in a previous paper. The equation is discussed again. It is shown that the
last term in it is subject to doubt. The Hamiltonian is tested by applying it to the
calculation of the 6ne structure of the He 2'P level. It is found that the above men-
tioned term in e' is in contradiction with experiment. Removing the term from the
equation one is left essent'ally with Heisenberg's old Hamiltonian. The spin interac-
tion in it is shown to agree well with experiment. The calculation has been applied
also to Li+.

The essential improvements on previous work are'. (1) an increase in the pre-
cision of the unperturbed eigenfunctions; (2) a determination from experimental
data of a constant D which depends directly on spin —spin interactions (see Eq. (1)
below) and which can be calculated with fair accuracy. Comparing the theoretical
and empirical values of D a clearer test of the magnitude of spin —spin interactions
can be obtained than by calculating the relative positions of the three components of
the triplet. The reason for this is that the relative positions of the lines depend also
on another constant C which is a difference of two approximately equal numbers and
is niore difficult to calculate accurately.

(I PURPOSE OF KVORK AND RESULTS

'HE motion of one electron in an external field is treated very satisfac-
torily by the Dirac equation. It is desirable to have a similar treatment

of the two or many electron problem. A partial attempt in this direction has
been made by the writer. ' Considerations in configuration space and also the
application of the Heisenberg-Pauli' wave field theory led to the Eq. (6) of
the above paper. This equation appeared at the time as a likely one, but it
was impossible to give a rigorous derivation. The writer has used the first
form of the Heisenberg-Pauli theory. Because of the indefiniteness due to the
infinite self interactions of point charges with themselves a certain amount of

' Breit, Phys. Rev. 34, 553 (1929).
'- XV. Heisenberg and O'. Pauli Jr. , Zeits. f. Physik 56, 1, 1929, Zeits. f. Physik 59, 168

(1930).
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arbitrariness was necessary in removing the infinite terms of the total energy.
Also the interaction was derived only to the first approximation in e'. The
same problem has been treated in more detail by Oppenheimer' who showed
that even to higher powers of e' the writer's Eq. (6) could be derived if certain
infinite terms of the interaction energy are systematically neglected. How-
ever, Oppenheimer also shows that a strict application of the wave field theory
leads to infinite relative displacements of the atomic energy levels. The
failure of quantum mechanics to give a satisfactory account of the electro-
magnetic interaction of two particles appears to be connected with two
difficult questions: (1) the size of the electron i.e. whether the electron can
be located at a point and (2) the Dirac jumps to states of negative energy
which make it impossible to have normal states for a finite number of
particles. Neither of these questions can be answered at present and it seems
that no satisfactory purely theoretical solution of the two electron problem
can be obtained before this is done.

The derivation of (6) in configuration space was obtained by using Dar-
win's classical Hamiltonian function. The choice of quantum symbols has
been made in such a way as to obtain equations of motion in agreement with
the classical ones. This however was not sufficient to establish the validity of
the equation. In fact a discussion in configuration space enables one to see a
fault in the equation. In order to explain this unsatisfactory feature we
explain first in somewhat more detail the satisfactory side of it. With (6) as
it stands we have, omitting the external field, the following equations of
motion:

The classical expressions obtained from Darwin's Hamiltonian are:

(C) Pq' = —eieii jr ' —(1/2mimiic') [r '(p'p") + r '(p'r)(p"r)]I.
0 XIs

The first equation (A) is an exact relation between the velocity and ni, .
Equation (B) connects the velocities with the momenta. It was supposed
that, in the sense of the correspondence principle, (B) is also true in the quan-
tum theory. It then followed that (C) agrees with the second equation (A) to
within terms in (s/c)'. The p&' of Eq. (6) therefore replaces Darwin's p&i

because they have the same rate of change. The employment of equation
(B) in the quantum theory is, of course, questionable. All that can be said
is that the correct quantum equation should give (B) as an effective equation
holding for wave packages. This has to be proved for whatever equation is
finally devised.

' J. R. Oppenheimer, Phys. Rev. 35, 461 (1930),



FIXE STRUCTURE OF IIe 385

For the discussion of positive energy levels we can use the writer's Fq.
(48) which is equivalent to (6). Here if terms in Ir are dropped the Hamil-
tonian becomes exactly the classical one with the exception that the last term
does not disappear. This shows that (B) and (C) are not satisfied consistently
in Eq. (6) the error being of the order of e4/mc'r' The . writer is very grateful
to Professors Pauli and Heisenberg for emphasizing the fact that this last
term does not contain h.

There is another unsatisfactor y property of Eq. (6). Equation (B) gives
pA-, », p~»» in terms of v.», vI,»». Thus

pr = rrrrvr + mrvr(&r /2c ') +'-(ererrl2c'-) [r 'vrr + r r(viir) ]

This is a purely classical relation. In (6) pr is replaced by (Ir/2rri)P r For.
a single particle of charge e» in an external field of vector potential A» we
replace mrvr(1 —PP) '" by (kr'2rri)Vr —('er/c) Ar In this case, to a sufficient
approximation Ar ——errvrr/cr We sh.ould expect that a correct theory will

replace mrvr(1 pr ) —'r =mrvr+mrvr(vr /2c ) by pr —(ererrvrr/c r) We
have identified however the quantum operator (k/2rri)V r with Darwin's
pr. We see therefore that pr in (6) replaces the classical

vrr r vrrr
+

r f3

while it would be more satisfactory if it replaced only the first part of that
expression. This means that if m» becomes very large and the reaction on
particle II negligible there is no exact agreement between (6) and Dirac's
equation. It is thus seen that (6) is likely to be right only to the first order in
e'. Also from the point of view of the wave field theory there is much less
arbitrariness in the derivation of first order effects in e'.

With Eq. (6) it is possible to derive an equation involving two row, two
column spin matrices and showing therefore the interaction of electrons as a
function of their spins. This is Eq. (48). The interaction energy contains, in
addition to the ordinary spin interactions, the extra term in e'. It is seen
from the above considerations that the presence of this term is subject to
doubt. In the writer's previous paper it has been supposed that the term
might have a physical significance. Some rough estimates of the order of
magnitude of its effect indicated that it might be reconcilable with experi-
mental facts. It was felt however that a more accurate test is needed.

A possibility of testing the spin interaction in e4 is offered by the fine
structure of the He triplet spectrum and to some extent by that of Li+. It
has been shown by Heisenberg' that the inverted positions of the triplet com-
ponents in these spectra can be explained by taking into account the inter-
action of electron spins with each other. The magnitude of the separations
was also shown by him to be approximately in agreement with experiment.
An attempt to refine Heisenberg's calculation has been made by Sugiura. '

4 Heisenburg, Zeits. f. Physik 39, 499 {1926).
" Suguira, Zeits. f. Physik 44, 190 {1927).
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He considered in an approximate way the effect of polarization of the charge
distribution formed by the inner electron due to the electric field of the outer
one. A somewhat better agreement with the total separation in the yellow He
has been obtained by using this correction. Gaunt' has also attempted to
improve on Heisenberg's calculation but has not reached a definite conclu-
sion. The difficulty in the application of Gaunt s calculation lies in the in-

sufhciently accurate unperturbed eigenfunctions used by him.
In the present paper the effect of all the spin interactions is calculated

using unperturbed eigenfunctions determined by the variational equation
derived in the writer's recent paper. ' These functions are also not exact but
they are more accurate than those previously used. The result of the calcula-
tion is that satisfactory agreement with the experimentally observed fine
structure is obtained if the extra terms in e4 are neglected. The agreement
with experiment is spoiled if the supposed additional effect of these terms is
taken into account. This conclusion follows from the fine structure of He
and to some extent also from the fine structure of Li+ if the recent interpreta-
tion of the hyperfine structure of that spectrum is adopted. ' The conclusion
is therefore that the terms in e' have no phy. ical significance and that Eq. (6)
is not correct to higher orders than e'. Kith terms of the first order in e'-

satisfactory agreement with experiment is obtained.
The present test is not able to distinguish between Gaunt's equation or

Eq. (6) with the terms in e' omitted. Both of these agree with the observed
fine structure. It is hard to believe however that the terms in (1/2r) [(p'p")
+(p'r) (p" r)/r'] do not exist and are replaced by ( harp")/r For this .reason
Gaunt's equation is also very likely to be incorrect. Further, Eq. (36) of the
writer's previous paper is equivalent to Gaunt's and is seen also to contain
terms in e4. These terms do not have any influence on the fine structure being
of the form (e4/4mc'r') (3 —2(a.rarI)). They cannot have a physical signifi-
cance since they do not vanish if h —+0.

The calculations which follow are rather laborious and it is advisable to
explain at this point the comparison of the results with the experimental fine
structure. The effect of spin interactions is taken into account by the ordi-
nary method of perturbation calculations. Both in He and Li+ this method
should give, in the first order, results much more accurate than the experi-
mental precision. This is seen directly from the fact that the separations in
the fine structure are of the order of a few cm ' while the total term value is
of the order of 2)&10' cm '. In the perturbation calculation the effect of the
spins is first of all neglected and the eigenfunctions used are determined.
Their form is that of (21) in the writer's previous paper. ' Quite independently
of the form of the function Ji it may be shown that the relative position of
the three components of a triplet I' term is given to the first order of the spin
perturbations (and therefore very accurately in our case) by the following
expression for the energy

Gaunt, Phil. Transactions of the Roy. Soc. A228, 151 (1929).
' Breit, Phys. Rev. 35, 569 (1930).

Schiiler and Bruck, Zeits. f. Physik 58, 735 (1929).
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F. = Eo + [ —3(C + D), 2(D —C), 0 j

j = 0, 1, 2

387

where j is the inner quantum number, and C, D are certain integrals in terms
of I'. The term C is due to the interaction of the electric field with the elec-
tron spins. It is this term that gives rise to the ordinary multiplet structure
and commonly goes under the name of the interaction of the spin with orbital
angular momentum. By itself (i.e. neglecting D) it would give rise to the
Lande interval rule. Although there are at present no accurate quantitative
confirmations of the correctness of C, there appears to be no reason for doubt-
ing it particularly on account of the large number of cases which are in
qualitative agreement and it is therefore supposed that the physical nature
of C is correct. The integral D however involves the interactions of the two
electronic spins with each other in the form of f(r) (~,r) (Our). The question-
able terms in e' give rise to a part of D which v ill be called DI, while the terms
in e' give rise to another part Do.

D = Do+DI with terms in e4

or D = Do without terms in e'

(2)

The experimentally known fine structure determines from (1) both C+D and
C —D, and therefore also C and D. These values will be called enzp~ricul
values of C and D. The comparison with experiment is made by computing D
according to the first and the second Eq. (2). It is found that the first equa-
tion is in disagreement with the empirical value of D while the second agrees
well with it. This agreement does not appear to be accidental because Do
consists mainly of terms of the same sign and also because the agreement
holds in He and Li+.'"

Since the physical nature of C appears to be sound this constant has been
used as a check on the accuracy of the approximate form of F. It has proved
difficult to obtain absolute agreement of the empirical and theoretical values
of C. The difhculty lies in the laboriousness of the determination of eigen-
functions by the variational method and particularly in the fact that C is a
difference of two numbers which are of approximately the same magnitude.
These two approximately equal but opposite contributions to C are due to (1)
the electric field of the nucleus acting on the spin of each electron and (2)
the electric field of one electron acting on the spin of the other. The latter of
these two effects turns out to he the larger one numerically. It depends essen-
tially on the average value of 1,~r'. From the agreement of the empirical and
theoretical values of C it is possible to estimate the accuracy of the second
part of C. The constant Do also depends essentially on 1/r' The estimated.
accuracy of the second part of C gives one therefore a guide as to the accuracy
of the computation for Do.

" r is v ritten here and later for the distance between the two electrons. The two electrons
are referred to from now on as 1 and 2 rather than I and II.

'0 The numerical calculations on Li~ were made jointly with Mr. L. P. Granath of' this
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For He the result of the calculation is

(C, Do, Dg) = (RHn"/24-)( —0.91, —0.62, + 0.27) (3)
where XII is the Rydberg constant for hydrogen and o. is the fine structure
constant. In comparing this with empirical material we find somewhat dif-
ferent data. The results of Houston" and of Hansen" agree in giving
5~02/De~2 ——14 with Av02 ———3(C+D) =1.068 cm —;Dv» ———2(C D) =0—.077
cm '. The results of Wei" are somewhat dilferent giving Avo~/Avl2 10 or 11.
Kith the results of Hansen and Houston the empirical value of D is (Ran. '/24)
( —0.65) cm " while using the results of Wei it is (RHn'/24) ( —0.60) cm '.
Either of these values is in good agreement with Do and is definitely in dis-
agreement with Do+DI. From the Hansen, Houston data we obtain as the
empirical value of C= —(RHn'/24) 0.81. This is not in very good agreement
with the computed value listed in (3). However the agreement is as good as
can be expected. This may be seen by considering the numerical part of the
calculation for C. In the final step of the calculation we have C=1,302
Rqr(cx'/24) (1.020 —1.719). The first of these numbers 1.020 is due to the
action of the electric field of the nucleus and the second —1.719 is due to the
field of the electrons. An error of 5~/& in the second number is likely to be
accompanied by an approximately equal error in the opposite direction for
the first number because the eigenfunction is normalized. An error of 10~'/&;

in 1.719 is 0.17 and this constitutes an error of 24'7& in the result —0.70=
1.02 —1.72. It is therefore likely that the disagreement of 12% between the
computed and the empirical value of C is an indication of an accuracy of
about 2.5% in the computation of either the first or the second part of it. In
other words the apparently low accuracy is due to the fact that C is the dif-
ference of two parts which are approximately equal in numerical magnitude.
llsing Wei's value for the separation ratio C= —(RHn'/24) (0.84). If this
value is right the computation for C is correct to 8.3% and a likely accuracy
of the calculation of each part is 1.7~/~;. For hei's value of the separation ra-
tio the empirical values of both C and D come out lower than the calculated
by consistent amounts. Using Houston and Hansen's observations the
empirical D is higher than the calculated and the empirical C is lower. This
is somewhat inconsistent because the error in the calculation is likely to be
such as to overestimate the square of the eigenfunction for low r. It is

likely however that neither the experiment nor the calculation is accurate
enough to decide this point. It is only clear that the computed Do agrees well
with either set of data and that the computed C, although different from the
empirical, does not differ from it by more than can be explained by reasonable
errors in the calculation. The presence of DI is definitely excluded since it
would imply an inaccuracy of 43% in the calculation of D, The value of the.
nuclear spin is immaterial for the present application,

laboratory and the writer is very grateful to him for his permission to quote here the results."Houston, Proc. Yiat. Bead. 13, 91 (1927).
"Hansen, Nature 119, 237 (1927). Also see Grotrian Graphische Darstellung etc. vol.

I, pp. 111—115, Springer, 1928.
""h'ei, Astrophys. J. 68, 194 (1928')
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(Il DETERMINATION OF APPROXIMATE UNPERTURBED FUNCTIONS

It has been shown by the writer' that 'I' states of a two electron configura-
tion involving two electronic states with unequal azimuthal quantum num-
bers have the following complete set of normal orthogonal eigenfunctions

wi ——(3'"/47r)(F sin Hie'ei —F sin 02e'~2)

(6 i /4ir) (I' cos gi —I' cos 02)

(3'"/4ir)(F sin Hie '&, —F sin H, e '~i)

P(r, , r. ; 0), F = F(r, r, ; fI)

where (ri, ili, ibi), (r&, ll&, Q2) are polar coordinates for each electron and
cos 8 = cos 8, cos 02+sin gi sin 02 cos (@ —fbi) so that 8 is the angle between
ri, r2. This form is exact as long as the spin interactions are not brought in.
If we had the exact form of F the whole problem could be solved quite ac-
curately because as has been explained in )1 the first order of the perturbation
calculation for the effect of spins should give a result of much higher accuracy
than that of the experimental determinations. Unfortunately it is very
diAicult to determine F precisely and it is more practical to use good approxi-
mations for its form. Again, without approximations Ji is determined by the
followin g conditions

BF' 8F M' (9F
b

J~ P —2 cos 9 —+ — + 2F'/rP + 2I"/r~"
Br, ~ri

c3F BF 1 1 (9F BF BJ.
'' 0F'

+ 2 sin 0F =+ 2 sinOP' + —+ — —— —2 cos0 + ——
r 1'-80 r &'80 r i' r ~' (90 80 80 80

+ is ' /ll'iir —E)ip' —2PP ., 8+I--)Idv = (i

= rl"-r -' sin Odr~dro~0

with the normalization condition

The ranges of integration are here 0 (r& (~, 0 (r& (~, 0 (0 (m. In order
to determine I' precisely it would be sufhcient to expand it in the form of a
sum of a complete set of orthogonal functions with arbitrary coefficients and
then to determine the coefficients by means of (4) and (5). Since the labor
involved in this is very great and since the resultant series must subsequently
be used in the perturbation calculation an approximate solution of the
problem has been obtained by the current variety of the Ritz method. It has
been supposed that to a sufficient approximation

F = r, (1 + c cos fl) exp [ —irri/2 —br~/2J. (6)
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This form is suggested by the usual screening considerations. The First elec-
tron (1) can be thought of approximately as moving in a screened field force
subject to a potential(Z —1)ye'r while the second electron(2) is moving mainly
in an unscreened Field Ze/r If. this is supposed tobe true then it is found that
(1) is actually likely to be found outside of the region where there is a large
probability of finding (2). Approximately therefore the radial part of (6)
should give the solution. It is this kind of approximation that has been used
by Gaunt with values of a, b derived directly by the screening considerations.
This consideration is not exact and it can be improved by introducing the
dependence on c and adjusting a, b, c so that (4), (5) are satisfied. The im-
provement to be expected from using (6) with adjustable constants amounts
essentially to correcting the field of force acting on (1) for the incomplete
screening of the nucleus by (2) and also to taking into account the fact that
the two electrons cannot be considered as distributed on spherica1 shells and
that the probability of a conFiguration r&, »2, 0 depends on 0. 9,'e let

2p

8F ' BF

+;p = costIt

+» —2+» —2

BF
pe 2» —2+2+ 2»

—2p'2 + 2» —2 ~lIl 8I; + 2»
—2 SlYl OI,

Substituting (6) and performing integrations involving only simple ex-
ponentials we Find:

JF'A, dV = (1+c'/3)(8a 'b '+24a 'b ')+bc(16P "—24a!3'). 28 = a, +b

Jl(ri '+r ')(F' —2pFF+F ')dV =(1+c'/3'-3(48a 'b '+96a--'b-'-) —64cP-'(8)

f(F' —2pFF+F')dV = 192[(1+c'/3)a 'b ' —(c/2)P ']. (9)

The integrations involving r ' are somewhat more complicated. Expanding
r ' in zonal harmonics and powers of ri, »2, and then using"

n sn
++1 2m+1+'I 2 2

~"F-(~)d~ =—
J i (n+no+ 1)! e ns

l

2 2

14 Whittaker and Watson, Modern Analysis, p. 311.

(n, ~m)
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we have

(1+ cp)'r 'dp, = 2(1+ c'/3)p4 '+ (4c/3)p4p4 '+ (4c'-'/15)p&'p4 '

+1

J p(1 + cp) 'r 'dp '-= (4c/'3)p& ' + (2/3 + 2c'/5)pqp&
'

+ (gc/15)p, 'p, '+ (4c'/35)p, 'p, '

with the convention

Using

~ r
r), r = PI, P„lf rl & r; rI, r& = P, PI lf rl & r

Jf Jf exp ( —ar4 —br 4)dr, dr„=a, '(a + b)
TI ) T42

JI

J exp ( —ar4 —br&)dr4dr4 = b '(a + b)
T1& T2

(12)

we derive by successive differentiations with respect to a, b

I t r, 'r4'p& '-'exp( —ar& —br4)dr4dr =2 [a '-'b '-(a+b) '+a 'b '(a+b) '] (13)
0 0

Again using (12)
Xl X

J r, 'r4 'p p4
' exp '-( —-ar4 —br~)dr4dr~ ——6/[ab(a + b)'].

0 0

Integrating (12) with respect to a, and using

r
J

r
' [exp ( —ar) —exp ((—a —b)r) ]dr = log (1 + b/a)

0

we get

Jf ~f r44r&'p. 'p4 ' exp ( —ar& —br~)drqdr = 24a ' log (1 + a/b)
0 ~O

+ 24b 'log {'1+b/ a) —24{'a ''+ b ')(a + b) ' —12(a+ b) '(a '+ b ') (15)
—S(a + b) '(a +b ') —'-'6(a + b) '{a ' + b ') .

I'sing (11), (13), (14), (15) one part of the integral involving r ' is evaluated
as

24 2u + b
'd&" = —— (1 + c'P) r ' exP ( —arI —br~)dt/ ———,——+

B(l" ab(a+ b)
'-' a'b

ts+ b

b

16 96
+ C — — + ——+ + c'- 192a ' log

a'b(a + b)' a'b(a + b)' ab(a+ b)'
(16

192 96 32 32
+ +a'(a+ b) a'(a+b)' 5b'a'(a + b) 5b4a(a+ b)'
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56a ' + (64/5)b ' 24a ' + (96/5)b ' 48(a ' —b ')—+
(a + f)' (a + b)' 5(a + b)'

48(a '+f ')
+

(a + &)'

Another part of the integral in r ' is given by the second line of (11). Using
(12) we find

r~'r~'p, 'p, "exp [—P(r& + r;) jdr~dr.. = (720 log 2 —497.625)P '
0 0

~f f rl r2 P 2~Pl ' «p [ —&(rl + r2) ]«Ar. = (15/8)p-
~0 O

X f X

rq'r2'p2p~ ' exp [—8(r~ + r.) ]dr&dr~ = (21/8)8 '
0 0

(17)

rl'r2'Pl ' exp [—I3(r| + r2) ]«1« = (33/8)l3 '.
0 Q

Substituting these expressions (17) into the second line of (11) it is found
that

jl pFI'r 'dV = ~ 3.5 + 13c + [2. 1 + (8/35)(720 log 2 —497.625) ]c'-'1 I3
' (18)

Combining (16) and (18) we also have fr '(F' —2pFF+F')dV. The varia-
tional Eq. (4) with the restricting condition (5) is now obtained by using

(8), (9), (16), (18). On performing the substitutions it is convenient to use
dimensionless variables x, y defined by

a = x6, b = iG, G = 87c'raZe2/h' (19)

The constant G is related to the Rydberg constant by

4Rz ——GZe'. (20)
The variational Eq. (4) becomes equivalent to the requirement that the
fraction

should

2&i

A'0 + 2cLic + cx2c"

~z Po + 2]Sic + P2c'

become a minimum. Here
x"-y' 2x+ y 3m+ y 56x'y'

v +y"—x—2y+——— — +
Z (x+ y)

' x'y (x+ y)' 3( x+ y)'
256y 256xy 128 512"y' +

3(x + y)' (x + y)' 3(x + y)' 3(x + y)'

2 1 2 2 204
+ —+ — -+—

&-3."~(*+a)' '&( +x)' *~'( +~)' 3( +~)'- I
2

(5/3) y'+ (5/9) x' —x/3 —2y/3+ —[x'y'(f'/180) —6.48x'y'(x+ y) ']
Z

(21)

(22)
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Po = 1, 2Pg ———128x'y'(x+ v) ' P. = 1/'3

720x ' log (1+ x/v) —720x "(x + v) ' —360x '(x + y)

+ 24x-'y '(x+ v)-'+ 24x 'v-'(v+ v) ' —(210x '+ 48y ')(x+ y) '
—(90x '+ 72v ')(x+ v) '+36(x ' —

y '-')(x+ y)-'+180x—'(v+ y)
"'

+ 180y '(x + y)

(23)

The number 6.48 in the last term n, is the approximate value of (32/15)
[(21/8)+(2/7) (720 log 2 —497.625)]. The result of minimizing (21) is '

x = 0.2t3, y = 1.0() c = —0.0089

and the value of 8,'R, corresponding to this is

F/Eg ———1.0654

v bile the experimental value is

tL/R g)„„=—1.0666.

()f the three constants entering the eigenfunction the constant x is the most
important one for the following computations because it determines the mean
radius of the outer electron and enters as a factor x' in most of the important
terms of the formulas for hne structure separations. It should be observed
here that the eigenfunction is suAiciently eiact to determine the energy value
to 0.1~/&, which is a higher order of accuracy than that aimed at in the calcula-
tion of the one structure.

)III SECUI.AR FQUATION FOR FINE STRUCTURE

Denoting, as is customary, the electronic spin functions by S, Sp with
5 = (0), Sg = (&) we have a system of three normal orthogonal linearly indepen-
dent functions

Si = 5.'5.', 50 = 2 '"(5 'Sg'+ S.'Ss'), S )
——Sg'Sp'-' (26)

the upper indices referring to the two electrons. These three functions when
combined with the three coordinate functions (4) form a complete set of
normal orthogonal functions of an unperturbed 'P state. The system may
be arranged in a table as follows

it)5 I

tt I .0

tt I5 )to') P

1t() ~

tt

I50

1t 1~ I

"Dr. R. V,'. Ci. AVyckoff of the Rockefeller institute has performed most of the numerical
cal» ulations on a calculating machine. The ~vriter is very grateful to him for this assistance.



each row corresponding to a fixed magnetic quantum number m. The per-
turbation energy'" is

with
~EX = A&i + Bc( + 'Do + Di (28)

he'
A = — IZri 'M, + r '[(ri —r ) X (2p. —pi}) ISxm'c'

(28')
he'

B = IZr2 'M—+ r -'[(ri —-ri) X (2pi —p~) []
8mm'c'

Do = R0(r)(dir)(d&r), Ro(r} = —(eh/4irmc)"-3r ' (28")
Dl R 1( )(rdl )r(d2r) R 1(1) = (8 /8iilC ) r (28"')

The M are the orbital angular momentum operators [r X~]. We have in-
cluded here only those terms of the perturbation energy which have an
inHuence on the fine structure and we have omitted therefore terms in

(d, d,). The first three terms of (28) i.e. (28'), (28") are of the second degree
in the electronic charge e and the last is of the fourth degree. Ke have written
this last term separately so as to be able to see the result with it and without
it. Letting

(Ad& + Bd2)SSi = C,145 i + 2 "'-(C, + iC„)u5O

(Ad, + Bdi)uSit ——2-"-'(C. —iC„)@S,+ 2 "'(C, + iC„)uS i (30)

(Adi + Bdi)NS i = 2 "'-'(C, —iC„)uSp —C,n5

On the right side of these formulas all terms in the antisyrnmetric combina-
tions 2 '" (5,'Sii' —5 'Sii') have been omitted since they do not belong to the
triplet state. KVe are justified in doing this in the present calculation because
the formulas (30) are to be used in the calculation of matrix elements for the
secular equation and only matrix elements between eigenfunctions belonging
to the unperturbed 'P state are of interest to us. Similarly we find"

(d,r}(d r)Si ——s'Si+ (2) 'i' s(x + iy)5o + (x + iy) '5 i

(d.r)(d r)50 = (2)"s(~ —iy)Si+ (.r'+ y' —s')5o —(2)"-(.i + iy)5-i (31)

(d-r) (drr)Si (.i iy) Si (2) s(x iy)5& + s 5—i

Formulas (30), (31) give the effect of all the operations due to the spins.
Other angular momentum operations are involved in the operator C itself.

'6 See {1). The cr's are here Pauli's matrices with unchanged signs i.e. with signs opposite
to those used in the above reference."A systematic way of obtaining the matrices involved in (30) and {31)is to observe that
Ad&+Bd2 with symmetrical A, B is equivalent to an angular momentum matrix so far as opera-
tions on symmetric spin functions are concerned. From this point of view (30) is obvious and
is easily generalized to any number of electrons. For (31) we can use (30) if it is remembered
that (dg+dy')'=2r'+2{6 j')(6g).
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KVe see that

he'
IZ{r M, + r 'Mp.) —3 '[(r, —rz) X (pz —pz) ] I . (30')

8~m'c'

Applying C to the eigenfunctions u&, uo, u & it is found that

C,(uz, uo, u 4) = C(141, uo, u 4)

(C. + iC„)(zl,, up 'll 1) = C(0, —(2)"' u„(2)' '-
444)p

(Cz zCp)(zzzy 14 ~p14 4) = C( —(2) "'uo, (2) '"u
4 0)

where

(32)

C = — — Z
' —+ ——

1
' BF M'

SII1H QV
rl' BH BH

1 1
+ —F1' cos H +-

r..3 2 r3

1—3 ~~
—F'-'+ F'- —2FF cos H

r3

+ P(F I' cos9) +

8F dF

Br~

f 4) 1 BF—1'{I' —ll COS 0) + —Sin' 0 rz F
ri 2 C)f I

—F—— + ———F -- —F—cot H

(33)

—+ —F1 dU

It is also found that:

(2) "'-s(x +
(2)"'-'s(x—

(x+

(rz

iy) R(r) (u, ,

iy) R(r) (u, ,

iy) 'R(r) (u„
iy) 'R(r) (u, ,

3s') R(r) (14,,

x' R(r) (u, ,
-

uo, u—1)

uo, u—1)

up, u 1)

uo, u 4)

14o, u —1)

uo, 11 1)

(0, Du, , Dzlo)

(Du, , Du &, 0)

(2Du 4, 0, 0)

(0, 0, 2Du4)

(Dul, —2Dup, Du 1)

(D 1l 4& (D + D )14p& D 1l 1)

with

D = Jf —,']2(an + bP)-' —('aP —nb)'-}R(r)dV

D' = -', '] (ao. + bP ' + 2((iP —ab '-' R r dl' (35)

where

a = F —F cosH, 6 =F sin H, cl = rl —rgcosH, p = r slllH.
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In formulas (32), (34) we omit everywhere terms involving other functions
than NI, No, m I. The reason for this is the same as that for the omission of
terms in 2 '~' (S 'Ss' —S 'Sp') in (30), (31). These formulas (30), (31), (32),
(34) can be used to form the secular determinant for the whole problem.

It is known that the matrix elements of AII between any two eigenfunc-
tions belonging to different rows in (27) must vanish and that, therefore, the
secular determinant can be broken up into five independent subdeterminants.
Kith the aid of the results just described it is found that the subdeterminant
m=0is

—C —X', C+D, 2D

C+D —D —)' —C —D =0, )'=X —D' (36)

2D, —C —D —C —)'

having roots X'=( —2C —3D, 2D —C, C). The other subdeterminants are
similarly found and give some of the same roots the first occurring on the
whole 1, the second 3, and the third 5 times. The result is that the energy is
to within a common additive constant

for j=0, 1, 2.

E = Ep + [ —3(C + D), 2(D —C), 0)

flIV COMPUTATION OF C AND D"

(1)18

Formula (6) is substituted into (33) and the integrations are performed.
It is found that

jI (F'r& ' + F'rq ' —FFr& ' cos 0 —FFrr ' cos 0)dV

= 8a 'b '(1 + c'/3) + 16c(a/2 + b/2) '. (37)

In the remainder of the calculation terms in c are dropped, this being justified
by the small numerical value of c.

j
BF

'I2r' —2rp 8+2(,/, j(rp —r' g)+O/2) i '6 2 ~, r
BfI

BF 1 2b —a 20b
2(.,/r, )FF dV = 8 — — + +-

8f I a'b(a+ b)' ab(a+b)4 (a+b)'
2b —a 2 b —a—+4.~68 — ——.
ab(a+b)4 (a+b)' (a+b)'

(38)

Here 4.168 = (16/5) (120 log 2 —81.875). Substituting these expressions into
(33), remembering the normalization condition (5) and (9), then substituting

"The same result can be checked by using the theorem emphasized by Slater.'the sum
of the roots of a secular determinant is equal to the sum of the diagonal elements. The first
row in (27) gives the last root (j=2), the second gives the sum of the last two, the third the
sum of the three roots."The writer is very grateful to Dr. F. %. Doermann for checking some of these formulas.
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the dimensionless constants x, y by means of (19) and noting that G2152=

4Z'R~n' we have

x'y' ' Z 64x'-y' 1 y'
128—— c C = EIJZ'n'-'x' —1 ——— c

(x+ y)' & (x+ y)' 2 (x+ y)'

xy'(2y —x) x'y' xy'-(2y —x) 2x'y' v —x
+ — — ——+ 20 —c'

' + ——+ 4.168:
(x+ y)' (x+ y)' (x+ y)' (x+v)' (x+ v)'

The first term involving Z is due to the action of the electric field of the
nucleus and the remaining part of C is due to the interaction of the two elec-
trons. It is see» that the two parts of C have opposite signs. For large Z the
first part predominates and gives the usual effect for high atomic numbers.
For small Z the second part may be numerically the larger one and C may be
negative.

The part of D arising from 0„,given by (28"), is similarly found to be
Do given by

y' xy"-(2y —x)
1 —128— —c D5 ———(RHZ2a'-x5/5) — +(x+ y)' (x+ y)' (x + y)'

xy'-'(2 y
—x) xy'-'

+ 2( ——+(x+ v)' (x+y)'
4x'y'

The part of D arising from D„given by (28'"), is, neglecting c altogether

256x'y' x'y'(x' + 3y')
D, = (R55Z2n'-x'/120) 3 + + 48 ——log

(x + y)" (r2 v2)5

x' —11y
' —38x"-v'-

+ 2 i-2y'3

(x' —y')'

2x"g"
+ ——+

(x'- —y'-) '
+

g2 X2
141)

Substituting the numerical values of x, y, c of )2 the values of C, D5, D& listed
in( 1 are obtained.


