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ABSTRACT

In the case of a gravitating mass of perfect Quid which has come to thermo-
dynamic equilibrium, ik ~ previously been shown that the proper temperature To
as measured by a loca1 o411gv@r would depend in a definite manner on the gravita-
tional potential at the yoked where the measurement is made. In the present article
the conditions of therma} yqggjbrium are investigated in the case of a general static
gravitational 6eld which coM correspond to a system containing solid as well as Quid
parts. Vkiting the line ~~4 for the general static 6eld in the form

d$ = gsgd+dSy + g~gP ~P 2) 3t

~here the gc& and g«ate independent of the time t, it is shown that the dependence
of proper temperature @ p~sion at thermal equilibrium is such as to make the
quantity 7o~g» a coautau» throughout the system

I. INTRODUCTION

''N SEVERAL previous articles the principles of relativistic thermody-
~ ~ namics have been discussed' and then applied' to determine the con-
ditions for thermodynamic equilibrium in the presence of gravitational
fields. In the case of e, ~avjtating mass of perfect fluid which has come to
thermodynamic equihbrigm, it was shown in the course of the work' that
the proper temperature as measured by a local observer would depend in a
de6nite manner on the gravitational potential at the point where the meas-
urement is made. Thus if we write the line element, for a spherical mass of
fluid which has come to equilibrium, in the form

ds' ~ —e'(dr'+ r'd8' + r' sin' eddps) + e"dP

where p and I are functus of the coordinate r, the dependence of the proper
temperature To on positive was found to be given by the equation

dt' 2 df

This result is a very jgteresting one since uniform temperature through-
out a system which &~ come to thermodynamic equilibrium has hitherto
been regarded as a@ capable part of thermodynamic theory. In ac-
cordance with this equation, however, the proper temperature is found to

~ Tolman, Proc. Nat. Acad. L4, 268 (1928};ibid. 14, 701 (1928};Phys. Rev. 35, 875 (1930);
ibid. 35, 896 (1930).

' Tolman, Proc. Nat. Acad. 14, 348 (1928};ibid. 14, 3S3 (1928); Phys. Rev. N, 904(1930).
' See reference 2, last article.



increase as we move inwards towards the center ef t~ sphere, and this can
be qualitatively interpreted by ascribing to heat the ~eperty of weight and

regarding the increase in temperature as we move inwards as necessary in

order to prevent the flow of heat from higher to ~Irer gravitational levels.
Integrating equation (2) we obtain the result

log To+ —= const.
2

or

Toe"Io = To~g~~ = const.

and have thus obtained a quantity which has a constant value throughout
the fluid even though the proper temperature itself does not. This result,
however has so far only been proved for the eqgihbrium condition of a
perfect fluid, and the question naturally arises whether the quantity ro~g4,
would also have a constant value in the case of a ~re complicated system
containing solid parts. In the present article we shall investigate temperature
equilibrium in the case of a general static gravitas&coal 6eld by considering
that the parts of the system whose temperatures pre to be compared are in
thermal contact with a small connecting tube contajming radiation. Such a
tube may be called a radiation therm, orfjeter, and by calculating the change
in pressure as we go from one portion of the tube to another it will be easy
to show that the radiation has the same value of T'o~g, 4 throughout the
thermometer.

2. THE ENERGY-MOMENTUM TENSOR FOR BLACK-BODY RADIATION

In order to solve our problem by the method suggested, we shall need an
expression for the energy-momentum tensor for Mz"k-body radiation and
shall take this as given by the equation

d XII d X„T"" = (poo + Po) —g""Po
d$ d$

(4)

with

Poo = 3Po

where poo is the proper macroscopic density of the radiation at the point of
interest, po its proper pressure, and the velocities Ch„/ds correspond to the
macroscopic motion of the radiation; i.e. , to the motion, in the coordinate
system which is being used, of an observer who find 0+ the average no net
flow of energy in the radiation held.

Equation (4) is well known in general relativity as being an expression
for the energy-momentum tensor of a perfect fluid, 4 and the primary justifi-
cation for adopting it as applying to black body radiation resides in its

4 See for example Eddington, "The Mathematical Theory of RekCivvy,
" Cambridge1923,

equations {54.81) and {54.82).
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general applicability in studying the relativistic mechanics of any system
whose local properties can be specified by the two scalars, proper density
ppp and pressure pp. And such is evidently the case for black-body radiation,
with the additional simplification ppp = 3Pp.

In addition to this primary justification, however, it will also be of
interest to start with the usual relativistic generalization of the Maxwell-
Lorentz electromagnetic equations and derive the above expression for the
energy-momentum tensor by treating black-body radiation as an electro-
magnetic phenomenon.

In accordance with this relativistic generalization, the electromagnetic
field at any point can be specified by a certain antisymmetric tensor F„,whose
components are directly related in Galilean coordinates to the classical
components of electric field strength X, Y, Z and magnetic field strength
a, p, y. And the energy-momentum tensor is given in terms of the F„„by
the equation'

pP" = —gPVp&p + ~ gP&pPp (6)

Using Galilean coordinates at the point of interest and substituting for
the components of F„„the values which they then have, it is found that the
components of T&" assume the values indicated by the following typical
examples

Tl1 1 (X2 y2 Z2) 2( 2aP2 ~2)

T" = —OP —XY
T'4 = —PZ+ yY

T44 1(X2 + P2 + Z2) + 1(a2 + P2 + ~2)

Thus in Galilean coordinates T" T", T" T" T", and T" become the classi-
cal components of the stress in the field, T", T", and T' become the classical
components of the Poynting vector, and T ' becomes the classical density of
energy.

If now we consider that the electromagnetic field in question corresponds
to black-body radiation, and take a proper system of Galilean coordinates
in which the radiation as a whole is at rest, it is evident that we shall have
on fhe average

X2 —p2 —g2 and ~2 p2 ~2

since the average field strength will be independent of direction. ,

XV= YZ=ZX=O and aP=Py=pa=0
since the lack of phase relations between waves will make it equally probable
that the instantaneous values of these products will have positive or negative
magnitude, and

5 See Eddington, reference 4, equation (77.2}.
' See Erfdington, reference 4, equations {77,41—2—3M).
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(10)

since there will be no net Row of energy in the proper system of coordinates
that we are now using. Hence, introducing these results into equations 7,
it is evident that in proper coordinates the averaged energy-momentum
tensor for black-body radiation will have as its only surviving components

T11 +29 TSS —
PO and T" = poo

with

poo = 3po

where p00 is the proper macroscopic density at the point of interest and the
three surviving components of the stress are each equal to the pressure po.

This expression for the energy-momentum tensor of black-body radiation
holds, however, only for a set of proper coordinates x, y, s, t, in which there
is no net Row of energy, and to pass to a general set of coordinates x1', x&',

x$', x'4' we shall have to substitute the above values into the general trans-
formation equation

Doing so we at once obtain

Tifsv
Bx fs Bxv-- T&.
Bx~ Bxp

Bx„' Bx„' Bx„' Bx„' Bx,' Bx„Bx„'Bx„' Bx„' Bx.')
&'"" = (poo+ po) + po + + — (13)

Bt Bt Bx Bx By By Bz Bz BS Bt I

For the macroscopic velocity of the radiation in our new set of coordin-
ates, however, we can evidently write

dx„' Bx„' dx Bx„' dy Bx„' dz Bx„' dt Bx„'—+ —+ —+
ds Bx ds By ds Bz ds Bt ds Bt

(14)

owing to the null value for the components dx/ds, dy/ds and dz/ds and the
equality of dt and ds in proper coordinates. And from the transformation
equation

Bxg Bxv
giNv gag

Bx Bxp

we obtain

dx„Bx„Bx„Bx, Bx„Bx„Bx„Bx,
pvI "+

Bx Bx By By Bz Bz Bt Bt
(15)

Hence, substituting (14) and (15) into (13) and dropping primes we at once
obtain the result which was to be proved

dx„dx,
T"" = (poo+ po) g""po

ds ds
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with

poo = 3po

The second justification which we have thus presented for our expression
for the energy-momentum tensor for black-body radiation suffers from the
fact that it makes our 6nal expression, which contains none but macro-
scopically measurable quantities, a consequence of the relativistic general-
ization of the Maxwell-Lorentz equations, which assume possibilities of
microscopic measurement in con8ict with the modern ideas of quantum me-
chanics. Nevertheless, in view of the primary justification which we presented,
it is evident that our expression for the energy-momentum tensor for black-
body radiation may be used with reasonable con6dence at the present time,
and may actually be regarded as more certain than the basis of the second
justi6cation. At some future time, the expression might have to be modified
in the light of a successful unified field theory if that should ever be achieved.

II 3. THE LINE EI.EMENT

Having justified the expression which we shall use for the energy-momen-
tum tensor of radiation, we are now ready to proceed to our problem of de-
termining the distribution of radiation in a static gravitational field.

For the case of a general static system which may contain solid parts we
can not assume spherical symmetry as a necessary accompaniment of equi-
librium, and must take the line element in the general static form

ds2 = g;;dx;dx;+ g44dt2 1
p J 1 2 3 (16)

where g~;dx;dx; is a negative quadratic form.
We adopt the convention of using Latin indices i, j, etc. to correspond

with the spatial coordinates xi, xg and x3, and shall reserve Greek indices 0.,
P etc. to correspond with all four coordinates x~, xo, xo and t In accord. ance
with the usual definition of a static system we take the potentials gI4, g24 and
g34 equal to zero, and take the other potentials g;; and g44 as independent of
the time t, although depending in any arbitrary way desired on the spatial
coordinates x&, x2 and x&.

For the potential g44, we note from the form of the line element that we
have the simple relation

g44

4. ENERGY-MOMENTUM TENSOR FOR BLACK-BODY RADIATION

IN A STATIC FIELD

We must now consider the form taken by the energy-momentum tensor
for black-body radiation in the 6eld defined by the above line element.
Returning to our general Eq. (4) for the energy-momentum tensor

dx„d x,
&"" = (poo + Po) —g""Po

ds ds
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we note that in a static system the macroscopic velocities dx„/ds will evidently
be zero for p, = 1. , 2, 3

dx' =0
ds

and taking account of Eq. (1/) will reduce for the case p = 4 to

dx4 dt

ds ds

1
Qg44 (20)

Substituting in (18), the energy-momentum tensor degenerates into

T" = —g'~p

T44 —g44p

And on lowering sufFixes we have

T; = g~'aT' = gq'ag' po = g;po

T4 = g44g"poo = poo

so that the only surviving components become

(21)

T T T po
4T = poo. (22)

5. APPLICATION OF THE PRINCIPLES OF MECHANICS

We can now investigate the pressure of radiation in our thermometer
by applying the principles of relativistic mechanics in the form of the well-
known equation

Bgp 1 Bgtsp = 0.
8XP 2 ASIA

Taking the case p = 1 and substituting Eqs. (21) and (22), we obtain

(23)

t9 1 Bgs2' 1 ~g44
( —poV' —g) ——( —g'~poV' —g) ——(g"pooV' —g) = 0

8X1 2 ~X1 2 8X1

which can evidently be rewritten in the form

Bpo 8+ g 1 Bgqi Bg444—
g + po — poV g g +g

axl BX1 2 8$1 8 $1

1 Bg44+ —(noo + Po)V' —gg44 = 0 (24)
2 BX1

This equation can easily be simplified, however, since we are permitted to
write in accordance with a well-known result of tensor analysis

Bg& & Bg44 Bg~p 1 gg
gi j + g44 —gap

BX1 BX1 BX1 g BX1
(25)
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and if this is substituted in Eq. (24), it is found that the second and third
terms will cancel. Making other obvious simplifications, we then obtain for
the dependence of pressure on position the simple expression

~po poo + po ~ log g44+ =0
Bxi 2 8gi

(26)

and similar relations will hold with respect to the other spatial coordinates
xi and x2.

For the case of radiation, moreover, we have the additional simplification

poo = ~po

so that equation (26) further reduces to

8 log pp 8 10g g44+2 =0
t3x] Bxi

(27)

and since similar relations hold for the other spatial coordinates, we ran
express the dependence of radiation pressure on position in our gravitational
field by the remarkably simple equation

P0(g44)' = const.

6. DEPENDENCE OF TEMPERATURE ON POSITION

(28)

Finally, however, in the case of radiation we can connect proper pressure
and proper temperature by the well-known result of Boltzmann

a
po To

3
(29)

where u is the Stefao Boltzmann constant, and substituting this into Eq. (28)
we at once obtain the desired conclusion for the dependence of proper tem-
perature on position in the case of a general static gravitational field

To~gq4 = const.

7. DISCUSSION

In conclusion several remarks may be made with respect to the above
result which will be of interest.

In the first place it should be noted from the method of derivation that
the constancy of To~g4, has been proven in the first instance sole'y for
points inside the radiation thermometer. Nevertheless since we shall expect
To and g44 to be continuous functions of position, we sha11 fee1 justified in
concluding that To~g4, is also constant in the system itself where it comes
in thermal contact with the thermometer.

In the second place it should be noted that the derivation was carried
out on the assumption that the system had already been provided with a
radiation thermometer connecting the parts whose temperatures were to be
compared. Hence in the case of a given system of interest the question arises
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whether a thermometer can be inserted to connect the desired points without
thereby seriously altering the system itself. Thus if we had a gravitating
system containing solid parts it would be necessary to make a hole into the
solid and insert a radiation thermometer if we wished to obtain information
as to the temperature of the interior by the method that we have suggested.
This procedure, however, would certainly affect the gravitational potentials
g„, which are themselves completely determined by the distribution of the
matter and energy in the system. Nevertheless since the equation of con-
nection

Jsp 6 sp 1—S~po ———S~T~" = G~" ——Gg~" + Ag~"
ds 8$ 2

is a differential one giving the distribution of matter and energy in terms of
the g „,end their 6rst and second di8erential coefficients, it seems correct to
assume that the insertion of a thermometer of small dimensions can be made
without appreciably affecting the values pf the g„„ themselves. This
question might bear further investigation, however, since singular cases of
interest might be found.

Finally, it might be emphasized that although the proper temperature
itself, To, varies from point to point in a gravitational system which has
come to equilibrium, nevertheless the constancy of the combined quantity
Tp~g» provides many of the advantages of the oider principle of constant
temperature throughout as necessary for equilibrium. Indeed it would be
possible to labe1 To~g~ as the temperature of a system, except for the
undesirability of multiplying the diferent things that are signified by that
word. In this connection it is also interesting to recall that Einstein himself
was led in his early speculations on the nature of gravitation' to distinguish
between a quantity, called "wahre Temperatur, " which would be constant
throughout a system in thermal equilibrium and a second quantity, called
at the suggestion of Ehrenfest "Taschentemperatur, " which would vary
with gravitational potential. The considerations were of only a limited
applicability since this was at a time before Einstein's complete development
of the general theory of relativity; the quantities in question, however, were
quite analogous to our present To~g~ and T0.

~ Einstein, Ann. d. Physik 38, 443 (1912).


