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ABSTRACT

The proper form of the interaction energy between the nuclear magnetic moment
and the electronic system of a many electron atom is discussed. The results of the
Dirac equation for a single electron are taken as the guiding principle. A form for the
interaction energy is set up as an expression involving Pauli's spin matrices. No
convergence difficulties occur in the form here given.

The interaction Hamiltonian is applied to the 3S and 3P terms of two electron
atoms for the case of Russell-Saunder’s coupling. An exact formula is derived for the
resultant hyperfine structure of 3S terms and corrections to the Goudsmit Bacher
formulas for P terms are given. It is shown that the Landé interval rule for 3S
hyperfine structure levels is exact, and that therefore the ratio of intervals can be
used to determine nuclear spin moments.

The formulas are applied to the Lit 5485A line. Proper functions for S levels
are worked out by the variational method and applied to the calculation of the
magnetic moment of Li;, With Schiiler’s wave-length data the nuclear g factor is
2.13 on the assumption that the nuclear spin is 3/2.

The accuracy of the calculation is discussed. It is likely to be good to at least
2% in g. As a by-product of the calculation the lowest energy level of ortholithium
has been computed as < —1.1354 in units of the ionization potential of Li**, The
empirical value is —1.1358.

INTRODUCTION

HE effect of nuclear spin on optical spectra has been treated mathemat-

ically by Casimir,! Fermi,? and Hargreaves.®* A somewhat more qualita-
tive discussion has been given by Goudsmit and Bacher.* In the first three
of these discussions only one valence electron has been taken into account
while in the last the more general problem of several valence electrons has
been considered. Qualitatively the conclusions of Goudsmit and Bacher are
doubtless correct. They do not pretend, however, to be exact quantitatively
since the coupling between the nuclear spin and the electron system is sup-
posed to be taking place only through one of the electrons—the most closely
bound s electron. It is desirable to have a more exact quantitative theory
taking into account the coupling of all electrons. This is particularly neces-
sary if, say, two of them are s electrons. The desirability of having such a
theory lies in its application to the absolute value of nuclear magnetic mo-

1 See Goudsmit and Young, Nature, March 22, 1930.

2 E. Fermi, Zeits. f. Physik 60, 320 (1930).

3 J. Hargreaves, Proc. Roy. Soc. 124, 568 (1929); 127, 141 (1930); 127, 407 (1930).
¢ S. Goudsmit and R. F. Bacher, Phys. Rev. 34, 1501 (1929).
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ments. The observations of Schiiler’ and of Granath®show that the3S level
of Lit is split into three components under the action of the nuclear magnetic
field and the separation between the two extreme components can be said to
be 1.03 cm.”!. There seems to be no doubt that the three components in
question are single. They are well and definitely resolved and so there is
every reason to expect eventually a reliable determination of the nuclear mag-
netic moment from the determination of their frequency difference. The
whole electron system consists in this case of only two electrons. The solu-
tion of the Schroedinger wave equation offers in this case a simpler problem
than that of the heavy alkalies. An attempt at its approximate solution and
its application to the calculation of the magnetic moment of the Li; nucleus
is one of the objects of this paper. The other object is to formulate a theory
for the interaction between the nucleus and the extranuclear electrons. A
few words must be said as to why the formulation of such a theory is still
subject to speculation.

For one electron an unambiguous result can be obtained by means of
Dirac’s equation. This has been done by Fermi and Casimir. The problem
is not so clear when two or more electrons are discussed. There exists no satis-
factory mathematical treatment of the relativistic two electron problem. It
becomes necessary to use approximate equations. The simplest form for
these is obtained through the introduction of Pauli’s two row, two column
spin matrices. It is known that interactions between electrons can be satis-
factorily represented by means of these as long as the electronic velocities
are not excessive. It might be expected that the interaction of nuclei and elec-
trons can be reduced to the same basis. There is one important distinction
between these two cases. The force between a nucleus and an electron is
attractive while that between two electrons is repulsive. When an electron
is close to the nucleus its velocity cannot be treated as small. For s electrons
an important contribution to the interaction energy is due to the influence
of the nucleus when the electron is very close to it. We have no reason to ex-
pect the interaction energy of the nucleus and the electron to be of the same
form as that used for the approximate interaction energy of two electron spins.
In fact it will be seen below that the two forms are different.

In order to derive the proper form of the interaction energy we consider
first of all the one electron problem from the point of view of Dirac’s equation,
i.e. we write down the formulas found already in Fermi’s paper. The two
smaller Dirac wave-function components are then eliminated and an equation
in the two large components is obtained. This equation involves Pauli’s
spin matrices and is equivalent to Dirac’s for the discussion of the lighter
nuclei. Having thus derived the proper interaction energy for one electron
the result is generalized to the case of two or more. This forms the first sec-
tion of the paper. In the second section the separations of spectral terms caused

$ H. Schiiler, Zeits. f. Physik 42, 487; (1927).

¢ L. P. Granath, Phys. Rev. 36, 1018, (1930), (letter). See also the forthcoming paper by
P. Giittinger in the Zeits. f. Physik in which the feasibility of {=3/2 is explained and an
approximate g value for the nucleus is derived.
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by nuclear interactions are worked out. In the third the results of the second
section are applied to Li.t

(I). THE INTERACTION ENERGY FOR ONE ELECTRON

We consider one electron of charge—e under the influence of a single
nucleus. The electrostatic potential due to the nucleus is 4o. The electrosta-
tic field due to the nucleus is central so that 4, is a function only of 7, the
distance from the nucleus. The vector potential due to the nucleus is 4.
In special applications we take

X
Ao [vXxr] M
73
With the abbreviations
p =P+ (e/c)A, P = (h/27i)V, po= E/c+ (¢/c)do (2)
Dirac’s equation for a stationary state is
(po + a1p1 + azps + asps + ame)y = 0. (3)

We suppose the o, to be those given in Dirac’s original paper. Equation (3)
is, of course, a set of four equations in four ¥,. It is convenient to eliminate
Y1, Y2 as has been done by Darwin.” The reader will verify that without
approximations

{ 20— me = (20) (po) | ¥ = 0 ()

Po + mc
where now the ox(k=1, 2, 3) are Pauli’s matrices and the column matrix ¢
contains only two rows: ¥3, ¥s. Equation (4) must be satisfied for any solution
of (3). Itis not altogether equivalent to (3) if it is used for the determination
of the eigenwerte E. In (3) it is required that Y1* Y1+ e +¥s*Ys+¥u* Y
be integrable. Equation (4) is equivalent to (3) only if this last condition
is added. If ordinary perturbation methods of quantum theory are applied
to (4) it is more convenient to use the integrability of ¥s* Y3 +¥4* ¥4 as the
restricting condition. As will be seen presently this circumstance is only of
secondary importance. For the present we use (4) and derive its conse-
quences as though ¥s*¥s+y¥s*¥s were integrable. Performing the operations
indicated in the second term, using (2) and introducing the electric and mag-
netic fields by means of

€ = —gradd,, 3 =curl A (5)
we obtain
E = me — edo + < [P2+ “(PA + AP) + Sar 4 he(sca)]
T = mc? — e —_— —_ — —_
‘T E + mc? + ed, ¢ c? 2mwe
h c’

e .
o +eA0)z[(5P)+—G—(5A) +il€xPls ()

+ (€ X A]d]

7 C. G. Darwin, Proc. Roy. Soc. 118, 654 (1928).
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this is still an exact consequence of (2). At this point we make an approxima-
tion. The magnetic moment u enters (6) only through A. It is sufficient to
consider first order effects in x and therefore in A. Quadratic terms in A
are disregarded from here on. The perturbation energy may therefore be
taken to be

" = - [e(PA—%AP)+-heuw®]
—E+mc2+er c 2we
(7
hc?e e e
“Ex Ale— i~(EA ]
+ 27(E 4+ mc* + eAg)zl: c [€x 4] ! c( )

In this expression the first bracketed term corresponds to the ordinary inter-
action energy which is used in the ordinary discussions of two electrons. In
the major portion of the configuration space e4, is negligible in comparison
with E+mc? which itself is very nearly 2mc.2 In this region the first bracketed
term of (7) is on using (1)

e My eh 1
H' = ———+ <:WMWF:> ®)
mc r 4rme r

M = [r X P] (8"

where

is the angular momentum operator and V operates only on 7! in the <>*
Only the expression (8) can be derived from the analogy of the electron and
the nucleus to little magnets. For s terms the second term of (8) becomes in-
determinate. A definite theory can be formulated by means of (8) if u is
defined as the limit of a spatial distribution of magnetic moment of very
small extension in the limiting case of the extension approaching zero. It will
be seen that the result of this limiting process is different from the applica-
tion of the complete expression (7). For s electrons the result of (7) is (—2)
times the result of (8). Hargreaves obtains zero for the perturbing effect of
(8) in the case of s terms. He could have obtained any desired result since
he has not defined the limiting process for the definition of the divergent in-
tegrals. Nevertheless his conclusion is correct. The exact effect of the first
bracketed term of (7) is zero for s terms, the presence of e4, in the denomi-
nator making the radial integrals convergent. We see that the picture of
the nucleus and electron as little magnets can be applied in this instance only
with extreme caution.

If the field is central € is perpendicular to 4 and the imaginary part of
the second bracketed term of (7) disappears. Itsreal part containing [E X 4]
is then combined advantageously with the second part of the first bracketed
term containing (3¢8). The perturbation energy becomes
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' (¢/mc)(My) 1
14+ (E — mc? + edo)/2me? r®

hec/2w [ (ud) n 3(1"3)(1'!.1)}
E + me® + eAO\ r3 el

(hec/2m)(e| €]) {(vd) _ (rd)(rv)}

(E + mc® 4 edo)? ©

r? rt

The perturbation energy (9) can now be applied to the calculation of the
splitting of an s term. The first term of (9) can be disregarded because
My =0 for s terms and because the radial integration gives a finite result
on account of e4, in the denominator. It is well known that the conser-
vation of angular momentum makes it sufficient to calculate the average
value of the coefficient of u.o, in the second line of (9). If this average be w
and the nuclear spin % the s level is split into two components displaced by
the amounts w, (—1—%~1)w from the normal position.® The first component
is the one of higher fine quantum number f=%k-+3%. The first term of the sec-
ond line of (9) contributes nothing to the average, again on account of the
presence of ed, in the denominator which makes the integration over r
give a finite result. Using (5) we have on partial integration

W= — —_— =

© 8wu hec 20 y 8mu (
y o ——
o 3 2r E + mc®+ edy 3

he
-—) 20 (10)

4Tmec

in agreement with Fermi.

The final result is not quite correct, but is very nearly so as long as the
region in which e4 o < <mc¢? is negligible in comparison with the spatial exten-
tion of Y¥’ and as long as E —mc? < <mc?. Both of these conditions are satis-
fied by light nuclei. The difference between (10) and the correct result is of
the order of the square of the fine structure constant.® This example shows
that the substitution of the integrability of ¥3*¥;+y4*Ys for the integrability
of Yi*yn+ ¥ Yo+ ys*Ys+Ya*Y, is safe for the present purpose. We see also
that the “empirical terms” used by Hargreaves are essentially the same as the
terms derived above from Dirac’s equation.

If instead of using Dirac’s equation we were to use the perturbation en-
ergy (8) we should run into convergence difficulties. These may be avoided
by endowing the magnetization of the nucleus with a finite spatial extension,
say, by supposing that the magnetization is spread uniformly through the
volume of a very small sphere. The first term then has no effect. The second

gives rise to
h (P 1
w = re f 'l’( ) f f(P,)AP (__) dVP'dVP

drmec 3 rpp

8 See e.g. G. Breit, Phys. Rev. 35, 1447 Equations (2), (3) (1930).
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where P’ refers to a point of the magnetization distribution, and f(P')u
dV, is the amount of magnetization in the elementof volume dV,.. The above
double integral is easily evaluated if I=/[f(P’)(1/rpp:)dVp: is interpreted
as the electrostatic potential at the point P due to a charge distribution of
density f(P’). The total charge is 1=[f(P’)dVe. Outside the nucleus
ApI=0. Inside the nucleus Poisson’s equation gives

Apl + 4xf(P) = 0,

and therefore
f(API)dVP = - 47!”.

In the limit of a very concentrated distribution f(P’) we may set therefore

1
Ap f f(PY——dVp = — 475(P) (11)
rpp!
and we obtain then
47y eh
w=—— —%0). (12)
3 4mme

This result must be multiplied by (—2) in order to give Fermi’s result (10).
The magnetic doublet model and Dirac’s equation give in this case widely
different results. The present evidence is that Dirac’s equation is to be pre-
ferred so that (10) is the correct result.

The perturbation energy (9) must now be generalized to include the case
of two or more electrons. As has been explained in the introduction we are
unable to start with a relativistic treatment of two electrons and we must
instead use (9) as an indication for the proper generalization. A number of
possible generalizations could be made. Thus one could go back to (7) and
use the field quantities €, 3¢ taking €; to be the electric intensity at x;, y1,
21, due to the nucleus and also due to electron 2. Or else one may take &;,
3¢, to be due only to the nucleus. For the first choice we would have to prove
that the imaginary term in (7) contributes nothing to the result. Also some
generalization of 4, would have to be made. Having no basis for forming
such a generalization we make instead

H =H'+ H (13)

where H,’ is the result of using x1, y1, 21, 61, instead of x,y,2, é in all of the terms
of (9). The coupling between the nucleus and each electron is thus represented
by a term in the Hamiltonian which depends only on the coordinates of that
electron.

It mayalso be shown that for S terms the alternative generalization based
on (7) leads to the same final result as (13) provided €;= —grad 4o: (i =1, 2).
The proof is not of sufficient interest to be quoted.
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II. CALCULATION OF PERTURBATIONS IN TERMS OF SCHROEDINGER
¥ IN CONFIGURATION SPACE

We use the method of sums.? Consider first the 3S terms. It is convenient
to define the following spin functions

S1 = Sa15a2, So = 27V2(S,1582 + Sa2SpY), S-1 = Sp'Ss?. (14)

The upper indices refer to electrons 1 and 2. The functions S., Sz are as
usual the column matrices (§), (}). The upper row corresponds to the spin
being in the positive direction of the 2 axis. In the case of Russell-Saunders
coupling there are three unperturbed functions for the 3S state. Each of these
is the product of a coordinate function and of one of the three functions (14).
The coordinate function ¢ depends only on the shape and size of the elec-
tronic triangle and not on its orientation.!'® The wave-function of the cou-
pled system nucleus--electrons contains also the angular momentum speci-
fication of the nucleus. Denoting the angular momentum of the nucleus by
k there are 2k+1 nuclear functions

1 0 0
0 1 0
0 0 .
Ne=| | Nemu=|-1|--+ Nax=]|- (15)
. . 0
0 0 1

The vector matrix u operates on these. The matrices for the components of
u we take to be the same as Fermi's. Among these the only matrix having
diagonal elements is u,. It is a diagonal matrix with elements u(1, 2—1/k,

- +. —1). The complete system of 3(2k+1) unperturbed eigenfunctions
can be represented by means of

Uz —_ .
' ' m=rkk—1,---—k
It is most conveniently arranged in a table:
Angular momentum:i k+1 k k—1 ' ——————— —k+1 —k —k-1
urk k1 wk? | uk
Uk w1l | ——m e — wg—k*1 uo—k
Uk | —m e u_yRRE gk gk

In Slater’s method we are concerned only with diagonal elements of the per-
turbation energy matrix. The functions N™ are normal orthogonal and so
are the S;. We are therefore concerned only with coefficients of u,. This
shows that the combined effect of the perturbations due to M and Moy is
zero. In fact this perturbation is of the form (B,+ By)u. It, by itself, com-
mutes with the total angular momentum. When it operates on u;* it gives
(Bi:+ B2.)uu,* as well as other terms which do not count in the calculation

¢ J. C. Slater, Phys. Rev. 34, 1293 (1929).
10 E. Wigner, Zeits. f. Physik 43, 624 (1927).
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of the diagonal element [u,**H’u;*. The operation on u:f gives —(Bi.+
Bs)pus. Thus Ju**H'us* = — fu;** H'u*=0. The term of highest fine
structure quantum number is therefore undisturbed. Considering the other
functions in turn we see that there is no splitting due to terms not involving
81, é;. This may also be verified by a short calculation of the average value
of A(r)d/d¢1+A(r:)d/d¢. in the six dimensional configuration space x;
-« + gly for the case of Y =y(ry, 72, cosf2). The terms in g,, 8, are easily
treated if it is observed that, so far as the calculation of diagonal matrix
elements is concerned, the symmetric operator A;é,+ 4,68, gives rise only
to the following terms

(A161 + A262)(S1, So, S—1) = (A1 + 42.)(S1, 0, — S_y). a7

Letting now the energy perturbations of the three levels be w;, w,, ws, in
the order of decreasing fine quantum numbers, we have from the first three
columns of the table

R—1
f‘l’*(Au + A)Y, w4+ w, = p w1, w4+ wy + ws

(-5
-3,

1 kE+1
= 1 _——y = —).
w w1< , . p ) (18)

hec 32,2 1 2Ze?
(2 1) 20,0
2n(2me? + Ze2/r,)? % rd 718

Performing one of the integrations over 1 for 4;, and over 2 for A, and then
using the symmetry of ¥2in 1 and 2 we have

wy

Here

w; = 16w/3 mtuflllz((), 0,0; x, y, 2)dx  dydz

(ko = eh/4wme > 0). (19)

The only approximations made in deriving (19) are: (1) a definite case of
Russell-Saunders coupling, (2) neglect of the square of the fine structure
constant. The integral in (19) represents the probability of one electron
being in a unit volume near the nucleus. The connection of this result with
Goudsmit and Bacher is seen if one writes

¥ = (1/2"2) [¢a(g)dm(gs) — da(g2)dm(gn)]. (20)

If n refers to the inner electron state

f*P’(O, q)dg = 36.%(0), and

w1 = (87/3)upod2(0). (21)
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In this approximation (19) (18) are identical with the corresponding formulas
of Goudsmit and Bacher. A discussion of the difference between (19) and
(21) will be given in the third section.

If k=1/2 formula (18) remains correct if it is read from left to right and
the last term is omitted. This is obvious from the order in which w;, w., w;
have been derived.

We may now consider 3P terms. There are three linearly independent
coordinate eigenfunctions, each of these combining with the three spin func-
tions (14) and thus forming a set of nine functions. The coordinate functions
may be called ¥, ¥, Y1 corresponding to components 1, 0, —1 of the orbital
angular momentum in the z direction. The functions ¢Sk do not themselves
correspond to definite parts of the 3P term but certain linear combinations
of them do. These linear combinations are

3P : 3712(Y1S1 — $oSo + ¥-15-1)
3Py 2 2712 YsSy — $oSy), 2712 (YaS_1 — ¥_1S1), 27V2(— ¥_uSo + ¥oS_1) (22)
3Py : 1Sy, 27 12(YoS1 + ¥1S0), 6712WiS—_1 + 2eSe + ¥_iS),

2712(YoS_1 + ¢¥-150), ¥—15—1.

The functions y1, Yo, Y1 are supposed to be chosen so as to transform them-
selves under rotations as 271/2(x+1y), — 2,27 1/2(—x+12y). The set of functions
(22) is convenient because each one of them corresponds to a definite value
of the angular momentum in the direction of the 2z axis. There is no splitting
for the 3P, and we consider first the 3P; term. The nucleus is brought in by
means of the N; just as in the case of S terms. The table which led to (18)
is still correct, though now the functions #;™ are different. Equation (18) still
is valid although (19) is different. The validity of (18) is of course a conse-
quence of the “cosine” law of interaction with the nucleus. It is very easy
to prove this by writing #;”=v;N™. Denoting the coefficient of . in the in-
teraction energy by @, we have on applying the diagonal sum theorem from
both ends of the table wy=I,= —I_;; wot+wi=(k—1)/k,4+ o= —((k—1)/k)
I_,—Iywhere I;=p[v*a.v;. This shows that I,=0 and (18) follows at once.
It remains to determine w;,. We may omit the correction in the denominator
of the first term of (9). The second two terms are easily combined and we
have

wi = (eu/mc) fv1*(7’1‘3M1z + 75 Mo )v + val*(Bldl + Bydy)v:  (23)

where

hec 1 ¢ 2Ze?
B1 = {2’”162 321— —_—— + 21l ¢ (24)
2r{2me? + (Ze*/r1)}? rd  rd b

Here ¢ is a unit vector along the z axis. B is obtained from B, on substitut-
ing 2,, 7, everywhere for z;, 7;. Performing the operations é;, é; in (23) we
have on letting
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B=B,+B, (25)

w = —ei flh*(h_lez + re 3 M)y + "ei f\l/l)*(’l_lez + 7 Moo
2me 2me
(26)
+G/2) [ (VB — 0?2 (BL + B — V2B = iB )

This form for w, is correct quite regardless of any approximations which may
be made as to the representation of the coordinate wave-functions ¥, ¥, Y—1.
The most general forms of these functions are known and formula (26) is
capable of giving exact results as long as the hypothesis of Russell-Saunders
coupling applies.!! In practical applications it appears to be unnecessary to
use the general expressions for ¥, Yo, ¥—1 and it will usually be sufficient to
use the approximate representation of these coordinate functions as antisym-
metric combinations of products of functions involving the coordinates of
only one particle. We may then write

Y1 = (312/4x)(F sin 0,61 — F sin f,¢142)
Yo = — (6Y2/47)(F cos 8; — F cos 65) 27
Yoy = — (312/4x)(F sin 0,e=i%1 — F sin G,ei%2)

with
F = fi(r))fa(rs); 4 fF'-’rﬁrgZdrldrz =1
F=ppr).

The functions in (27) are chosen so as to give (22). The radial function fi is
characteristic of the p state while f, describes the s state. If a single electron
were in that s state it would be described by a normalized function v,.

Clearly
0.0 = 0/ ([ rtraar). (28)

It is now found on substitution of (27) (27')

(27)

(e/2mc) f%*(ffssz + e 3M o)y = (eh/4mme)(r?) (29)
where

(71_3) =4 fF21’1_37121'22d7'1d72 (29')

is the average of 73 for a p electron described by a radial function fi. Also
in

3 f‘Po*Bz\l’o

11 E, Wigner, reference 10; G. Breit, Phys. Rev. 35, 569 (1930).
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we need

(3/167?) f F? cos%, By, = (1/5)ue(r1=%) — (1/20)uo(r1=®) (Ze?/mc?).

A numerical estimate shows that the term in 74 is much too small ordinarily
to be worried about and this as well as similar terms will be neglected here.
The most important contribution to (26) comes from terms of the type

(3/167?) fF2 cos? 01By, = (27/3)ues(0)?
using (28). The remaining contributions are from
-3 f {W1*2712(B, + iB)o + ¥0*27V%(B, — iBWa} = (3/5)mo(ri 7).
It is thus found on substituting all the integrals into (26) that

w1 = ppol (4/3)(0)2 + 2(r3),} . (30)

This completes the calculation for the P, level.

For the 3P, term we have five electronic functions given by the last row
of (22). These may be designated as v; and the complete specification of the
system is given by #;”»=9;N™. Only now /=(2, 1, 0, —1, —2) and the v,
vy, v_; are, of course, now different from those just used for the *P; term. In
this case the table following equation (16) must be extended so as to have
five rows. The method of sums does not suffice now to give all of the separa-
tion ratios. Denoting as before the coefficient of u. by a@. and letting Il=
wfvi*av; the method of sums shows directly that Iy=—1I_, Ii=—1I_,
I,=0 but it does not establish a relation between I; and I,. A calculation is
easily made however for both I; and I.. We have:

I, = ::% f‘l’l*(h_‘"’Mu + a3 Mo )Y + & fll’l*Bz'h- (31)

Substitution of the integrals used in deriving (30) gives

Iy = ppo[(87/3)¢:(0)% + (8/5)(r%),]. (32)
Also

I, = (ue/2mc) f¢1*(71_3M1z + 73 M)
(33)

+ W/2) f (Wo* Buabo + ¥1*2-V2(B, + iB,Wo + ¥a*2- /4B, — iB)n)

so that I; can be obtained directly from (30) by subtracting (6/5) (r=),
inside the parenthesis. We have
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I = ppo[(4m/3)e(0)2 4+ (4/5)(r3),] = I./2. (35)

Using the sum theorem we obtain for the first order energy perturbations

3Py = ppol(4m/3)4(0)2 + (4/3)(r%),]

E—2 3 k 3 k 1
(2,»—-——,——,— 3 +)) (36)
k k k k
which may be compared with
I 1 E+1
Py = o (4m/30(0)? + 2<r—3>p1(1, —— - T) (36"
1 kR+1
5, = wua(87/3)(1 + em(ov(l, - - T) (36")

Here ¢ is a fractional correction due to the difference between (19) and (21).

III. APPLICATION TO THE SPECTRUM OF LIt

The pattern of the 35 —3P line of Li* which has been observed by Schiiler
and Granath will now be considered using formulas (36) (36") (36’'). The
quantities (#3), and € are of the nature of correction terms and neglecting
them these formulas become identical with those of Goudsmit and Young. The
¥,(0)? for a hydrogenic s electron is related to the fine structure constant by

2mY5(0)2ue® = Ra?Z3/n 37)
which is convenient for calculation. For Z=3 and »=1 we have in agree-

ment with Goudsmit and Young (8/3)Ra2Z3/1840n%=0.228 cm~'. Letting
(1840u/10) =g(k) we have therefore the approximate formulas:

E—2 3 E+3 2k 41
3P2=0.228(g(k)/4)<2, — = - +3 2kt )>

k ko k
3Py = 0.228(g(k)/4) (1, - —; - kj}) 37)
1 B+ 1

which are essentially the same as those of Goudsmit and Bacher. An applica-
tion of (37) and the calculation of relative intensities of the different compo-
nents of the pattern can be made for different values of k. As has been
pointed out by Granath the experimental pattern seems to agree best with
k=3/2. Most of the pattern appears to have a complicated structure which
is due to unresolved components. Only the group of lines due to transitions
from 3P, to 3S; is simple and consists of three fairly well resolved lines. It
seems difficult at present to draw any definite conclusions from the other
parts of the pattern on account of lack of resolution. We consider it more im-
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portant therefore to have an accurate calculation of the correction factor
1+4e€in (36"’) than the exact evaluation of (36) (36”). There is, of course, no
difficulty in evaluating (#3),. In the present instance the correction due to
(#3), amounts to about 1 percent change of scale for 3P, and 2 percent for
3P

In order to calculate the factor 1+ ¢ in formula (36’’) we must use the exact
formula (19) which differs from (37) by the correction factor

1+e=2 f ¥%(0, ¢)dg/¥1:(0)2. (38)

The integral in the numerator is here the same as the integral in (19) the
letter ¢ having been written collectively for (x, y, 2). The denominator of
(38) is the y¥,(0)? of (37') for n=1, Z=3.

We have tried a number of approximate forms for (g1, ¢») using the
variational method for the calculation of the term value of the 3S state and
then, having adjusted the constants to satisfy the minimizing requirement,
calculated by means of the minimized functions the corresponding value of
1+4e. In all cases € is a small quantity. Some of the functions give eigen-
werte in good agreement with the spectroscopic term value while others give
considerably too small absolute values of the eigenwert. It is of interest to
see the results of the bad as well as the good functions. A very rough ap-
proximation to the solution can be obtained by tentatively expressing ¢ as
an antisymmetric combination of products of hydrogenic functions in the
field of a certain nuclear charge. This charge is deliberately taken to be the
same for both functions. The two functions entering are orthogonal and the
calculation is very easy, only the common scale of the two functions being
varied. In terms of the ionizing potential of Li*+ the energy of the 23S state
is known to be A= —1.1358. In the same units the above function gives
A= —1.1279 and 1+€=0.96. This is a deliberately poor function, possessing
only one adjustable constant and giving a relatively poor agreement with the
experimental A. Hylleraas'? has considered the 3S terms of two electron
spectra particularly for He. In his paper functions are tried for the ortho
state of He which may be called the one and the two term approximations.
These give for He A= —1.0855 and A= —1.0871. The values of 1+¢€ for He
would be 1.009 and 1.04 respectively. For Lit+ we have used only the one
term function of Hylleraas giving A= —1.1337, 14+€=1.02(6). From the
analogy to He one would suppose that the two term function of Hylleraas
would give an appreciably larger e. The calculations with the two term
function of Hylleraas are complicated, however, and we have found it more
convenient to use another three constant function. It has also been possible
to correct the first function of Hylleraas by a numerical method. In the
latter case there is no definite way of using the eigenwert agreement as a
check on the calculations and the procedure itself is somewhat arbitrary.
Nevertheless it appears to be definite enough to show that 1+€>1.02 and

12 Hylleraas, Zeits. f. Physik 54, 347 (1929).
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that 1 +€x=1.06. The numerical method is based on the following considera-
tion. In the units of length (h2/8m?mZe?) and energy (RhcZ?) used by Hyl-
leraas the differential equation to be satisfied by ¢ is

[62+2 8+62+2 6+<1+1>1 a<_ea>
—_—t 34—+ — — — 4+ — — | sin 6—
or,? r1 0ry Or%y 1y Ore ri2 792/ sin 6 96 a0

A 1 1 1
o —~——]¢=0.

1 7o Z712

The angle 6 is the angle between the radii 7, 75 and 7y, is the distance between
electrons 1 and 2. A certain approximation to the exact solution can be ob-
tained by supposing that ¥ is a function only of 7; and 7, the angle 8 being not
very important for this particular state. The one term function of Hylleraas
does not involve 8 or 713 and is therefore an approximation of the above type.
A systematic neglect of the dependence on 6 leads of course to a definite
eigenwert and to a definite eigenfunction if the variational method of solu-
tion is used. Substituting a general function ¢(r1, 7,) into the variational
equation it is easy to obtain a differential equation for this . This equation
is

a2 2 9 92 2 ) A 1 1 1 ] 0

[6r12+ r1 0r +6r22+ re 07y + 4 + 71 + re  Zp ¥

P 71 lf 71 > 7o (39,)

p =19 if r; < 7,
We assume for the present that the eigenvalue of N and the function ¢ of
(39’) is a sufficient approximation to A and ¢ of (39). For the 3S state ¢
is antisymmetric in 71, 7. and vanishes therefore at 7, =7,. It may be repre-
sented in two dimensions. Along the axis of 7o=0, p=7r;. The last three terms
behave as 1/7,. If ¢ and its first and second derivatives are finite on this
axis we must require in order to satisfy (39’) that the term 2/7,9y/drs+y¢/rs

should be finite i.e.
dlo 1
( g ¢> __ 1 (40)
0ry  /rp=0 2

Any trial ¥ can be checked qualitatively by means of (40) and it is important
to require that (40) be satisfied in the region of large numerical values of .
This is especially advisable in the present instance because the result we wish
to obtain is proportional to [ (71, 0)*r’dr1 and depends primarily on the
relative values of y? at r,=0 as compared with its value at other points of
the 7y, 7, plane.

The one term function of Hylleraas was tested by means of (40) and it
was found that although the logarithmic derivative was fairly close to its
correct value the differences were greater than could be desired. At a certain
point of the 7; axis (40) is satisfied exactly. This point lies at a higher value
of ;=710 than that which corresponds to the maximum of 7% At the maxi-
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mum ¥ does not decrease rapidly enough in absolute value with increasing
rs. The dependence of ¥ on 7, has therefore been corrected by a numerical
procedure so as to satisfy (40) in most of the important region. For values
of 71 <ry this was done by fitting the exponential curve Ce™? to the curve
of ¢ against 7,. The fit was made quite accurate by calculating logarithmic
derivatives d log ¥/d7; of the Hylleraas function and choosing such an 7,
for every 7, that d log ¥/dr,= —31. This procedure is of course somewhat
arbitrary because e¥% is not an exact solution of the wave equation and
because d log ¥/dr,= —% only at 7,=0. Nevertheless, as long as the cor-
rection applies only to a small region in the neighborhood of 7,=0 it is es-
sentially correct. For values of 7, > it is impossible to correct the function
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Fig. 1. The dotted curve is computed from the corrected, the full drawn curve from the
uncorrected Hylleraas function. The values of 3 log ¢/dr, are indicated along the curve.

by means of an exponential curve. The correction was made, therefore, by
choosing for a given r;=r,"">r,, a corresponding value of 7,=r,"<ry, for
which 9 log ¥/dr, deviates from —1/2 by a numerically equal amount. The
known corrections to ¢ for 1 =7," and different values of 7, were now applied
tor;=r,"’ for the same values of 7,. This means that the deviation of 9 log
Y/9r, was taken as the criterion of the magnitude of the correction to . The
whole procedure has of course a meaning only as long as the corrections are
small and can be applied therefore only in the region around the maximum
of riy(r1, 0). This maximum is at »;,=12.5 in the units of length used by
Hylleraas. The correction becomes zero at r;=18.5. The values of (1 (r,
0))? at these points are 397.5 and 270 on an arbitrary scale. The relation
of the corrected and the uncorrected (r1¢¥/(r1, 0))? curves is shown in the Fig. 1.
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Using these corrections the changes in [r2y(ri, 0) dr; and [[rir:2*(n,
r2) dridr, were calculated. The corrections were taken into account only
from ;=0 to r;=24. The resultant change in

frl’wl/z(n, 0)dr, /f fflzfzzlllz(fl, r2)dridr,

came out to be 4 per cent. The value of 14¢ for the one term Hylleraas func-
tion is 1.02; the corrected value of 1+4¢is 1.06.

Our correction procedure may of course be criticized on account of its
arbitrariness. It must be remarked however that the sign and the order of
magnitude of the result depend primarily on the fact that an increase in the
absolute value of ¢ is required at the maximum by the logarithmic derivative
condition. Thus even though mathematically the procedure lacks rigor we
believe that for the present problem it is essentially correct.

Finally we have calculated the result by the variational method using
the following trial function.

¢ —_ d)(kf], kfz); ¢ — (71 —_ C)e—(aIZ)rl——(b/Z)r, —_ (72 — C)e—(aIZ)rz—(bﬂ)r,_

This function is easily adapted to the variational procedure. It contains
three constants a, b, c. The constants ¢ and %k can be treated algebraically
in the variational procedure. Extensive arithmetic need be done only in
connection with different values of ¢. The reason for this simplification is
that the minimized value of % is always close to k=1 if b=1, the difference
from 1 being usually of the order of 1 percent or less. The first step is to
choose a value of ¢ and to take b=1. Supposing that k=1 the minimizing
is done for ¢ analytically. Taking this value of ¢ the result is minimized for
k analytically. It is then usually unnecessary to minimize for ¢ again because
k=1. The procedure is repeated for different values of ¢ and the absolute
minimum of \ is fixed by interpolation.’* We reproduce the final formulas for
the minimizing procedure because they may be found useful in other con-
nections. For k=1

N4 =(M— Lo+ L)/N (41)
where
M = 8a7373 + 24b7'a™® — 12a %7 1B77(3871 — 2a¢7Y)
— c[4a~2%% + 12a~%~1 — 8abB~—5(3~1 — a~1)] (42)
+ ¢2[2a7073 + 2073~ — 4abB%]; B = (a + b)/2
Lo = 24a=%b3 + 48475~ — 4887 — ¢[16a=3~3 + 24ah~2 — 408-5]
+ c?[4a7273 + 4032 — 889] (429

13 The trick of minimizing for k is the same as that used by Hylleraas, ref. 12, and amounts
physically to satisfying the requirement of having the kinetic energy = —(1/2) times the poten-
tial energy in a system with Coulomb forces.
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ZL, = 24[a*b%a + b))+ a3 %a + b))t + a2 (a + b)*
+ 2077 1(a + b)75] — (33/2)8~7 — ¢{8[2a%b*(a + b)!
+ o~ %a + b))t + a % (a4 )3 + 3¢ (a + b)7]
— (25/2)87%} + ¢*{4[a"%%(a + b)) + a7 (a + b)~*] — (5/2)877}.

(42")

Z =nuclear charge.
N/4 = 24075p~% — 1888 — 12¢(a=*b~% — B~7) + 2¢%(a%~3 — B~°) (42")
With L =L,— L, the minimum for 2 comes at
k=L/2M, \/4 = L*/(MN).
The correction factor 1+4-€is obtained as

14 €= kI/(N/4) (43)
where

I = 2405 — 12¢(a* — B4 + 26%(a~3 + b3 — 2879). (43"

Using these formulas we obtain for a =1/3; the minimized values ¢ =1.446,
£=1.0057, —\/4=1.1344; 1+€=1.082. The minimized value of a is 0.380
giving —\/4=1.1354; 1+€e=1.063. On the other side of the best value of a
say at a=0.395, 14+€e=1.055 and —A/4=1.1353. The calculations have
been carried out to several more significant places and for several more values
of @ than given here. It is seen that 1-}e varies slowly for the functions
minimized for changes in ¢ and k. We believe therefore that 1.063 is a fairly
accurate result. It will be noted that this result is in agreement with that
obtained by correcting Hylleraas’ one term function, and that the agreement
between the empirical value of —\/4=1.1358 and the theoretical —\/4
=1.1354 indicates that the trial function used by us is good.

It is of course usually said that an eigenfunction may be quite inaccurate
even if a good eignwert is obtained. We must consider this in somewhat more
detail. Eckart!* has already given a criterion for the accuracy of eigenfunc-
tions. His reasoning may be extended so as to apply to the specific calculation
of a given quantity.

With Eckart we let the solution obtained by the variational method with
a given trial function be ¢ and the true eigenfunctions (in this case of the
3S system) we denote in order of decreasing term values by i, ¥, -« -;

the corresponding negatives of the energy we write as Wi, W,, --- The
functions ¥, Y, - - - are supposed to be normalized and ¢ =aw1+asx2+ - - -
where a2+a.2+ --- =1. Eckart shows that if the trial function ¢ leads to

4 Carl Eckart, Phys. Rev. 36, 878 (1930). In this very useful and interesting paper will be
found also many other eigenfunctions. The one used for 3S states of two electron systems is
very similar to ours. The eigenwert for Lit obtained by Eckart is almost as good as the one
obtained by us. For our work we considered it important to minimize for ¢ as well as the other
constants because the result is fairly sensitive to ¢c. See also D. S. Hughes and C. Eckart, Phys.
Rev. 34, 694 (1930) for the calculation of the isotope effect in the Li* spectrum.
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an energy value of absolute amount W then 1—a2 <(W,—W)/(W,— Wy).
We wish to calculate the average of some quantity f(¢) over the configuration
space g. The function ¢ gives the approximate result fo=[f(¢)$2(¢)dg while
the correct result is f= [f(¢)¥12(¢)dg. The error is

fo - f = (a:* — Dfur + afes + as¥fas + - - - + 2a1aaf12 + - - -

where fi. = [Y#rfdg. The terms in f;; are of the order of 1 —a,? which in the
present instance is of the order of 4 X103, The relative error due to these
terms can be therefore neglected. The only important terms are those con-
taining f1;(¢£1). Thus

fo—F=22a,2 aifi 223 aifu. (44)
=2 =2
Any a2 for i>1is <l—a2<(W,—W)/W,—W.,) and the general order of
magnitude of (44) is that of ( (W,— W)/(W,— W,) ).'2. The numbers fi; are
however also of influence. In order to estimate their order of magnitude we
must use the special form of f. In our problem

J =30, g2) + 8(0, q1))

q1 and g, being the collective coordinates of electrons 1 and 2. We have then

fia = [¥1(0, 9900, . (45)
Approximately

28— 2_”2[(1’13((]1)(1’23((12) - ¢'1s((12)¢2s((11)]
Yo 2 272[81,(q1)d5s(g2) — P1:(g2)dss(gy) ]

where the ¢y, is a hydrogenic function in a central field of nuclear charge Z
and ¢ss, ¢3, are hydrogenic functions in a central field of nuclear charge Z—1.
The hydrogenic functions ¢s,, ¢3, are orthogonal to each other. In this approx-
imation fi22(1/2)¢2(0)¢3,(0). It will now be remembered that ¢,,(0)? in a
field of charge Z is proportional to Z3/n%. Thus ¢5,(0)2/$1,(0)22(2/3)3(1/2)3
=1/27 in the present instance. We may take fi,<(1/30)f. It is now seen
that we are likely to over-estimate the error by setting az=ay4 --- =0, and
attributing all the error to a,. Doing this, fo—f=2asf12=(as/15)f and a,
itself is of the order of 1/15. Thus the accuracy is likely to be about (1/2)
percent.

This estimate of the probable error together with the agreement of this
calculation with the numerically corrected Hylleraas one term function makes
us think that the value 1.06 which we calculated by both methods is probably
correct to 1 percent. We thus conclude

14 e=1.06. (46)

Using this value in (36’’) (37) and the separation between components (1)
and (3) observed by Schiiler we can derive the value of u. According to Gran,
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ath® a slight correction must be applied to Schiiler’s value of vyq for compon-
ent (3). Applying this correction and supposing that the nulear spin is k =3/2
we get

1840u/k = g = 2.13. (46"

Thus Schiiler’s and Granath’s present data and the present calculation
indicate that the magnetic moment of the Li; nucleus is approximately equal
to three times the theoretical magnetic moment of a proton. If the magnetic
moment were exactly three times the theoretical protonic moment the g
value in (46’) would be g=2. We have at present no explanation to offer
for the result g=2.13. It appears that the difference of 2 and 2.13 is a greater
one than can be accounted for by experimental errors or by errors in our cal-
culation. It must be remembered however that the measured position of
component (1) may be slightly affected by the proximity of component (2)
and that the whole separation between (1) and (3) is of the order of 1 cm™.

Note added in proof: If the coupling of the electronic orbits and spins is
of the Russell-Saunders type and if the electronic interactions are not too
large and yet considerably larger than the interactions with the nucleus it
is possible to give general and simple formulas applying to the case of one
electron being in an s state. The other electron is then supposed to be in an
L state of azimuthal number /. We may write the energy perturbation as:

w=WkO/DfF+1) —kE+1) —iG+1)] (47

where the perturbation Hamiltonian is taken to be H'=(Bu)= (u/k)(Bk)
and k denotes the angular momentum matrix vector of the nucleus in units
h/2w. If the electronic angular momentum J is made diagonal in the sense
of containing 8(j’, /) as a factor for every matrix element and if for a given
j the matrix J, is also diagonal then the diagonal elements of B, for that j
mb;m=(j,j—1,---, —j). The proof of this for B, is exactly similar to
the proof for o, in the usual derivation of Lande’s g factor. The momentum
J. remains conserved under the perturbation B,. We now imagine the
coupling between the electron spins and between the two orbital momenta
to be removed. The matrix elements may be referred to pairs of states such
as (2512)m, and (2Li41/2)m,. A canonical transformation does not change the
sum of diagonal matrix elements belonging to a given m=m;+m.. The
values of b for 8L and 'L are thus related to the values for 2S, 2L by sum rule
equations:

(0 + 1)5(Liys) = (3)CS) + (€ + )b(CLiysy2)
HoCLi) + 5(Ly) + (L)}
= ($)0(®S) + 2ib(*Li141y2) + (I — $)b(*Liyp2) etc.
The values of b for the one electron terms are known:
bCL) = 2u0 b + /3G + 1)+ (793 b(S) = (167/3)ua ¥5(0).

The value of 5(1L,) is easily computed directly and the remaining & are
determined by the above relations. Thus:
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b(Lup)/mo = (87/3)s(0)/( + 1) + 41(r3)/ (2 + 3)
b(L)/me = (87/3)W5s(0)/(12 + 1) + 2(r)

b(Li)/ o = — (81/3Ws(0)/1 + 40 + 1)(9)/(2l — 1) (47)
b(\Ly)/mo = 2(r).

Formulas (36), (36’) are special cases of (47), (47"). The fact that sum rela-
tions such as used here exist has already been mentioned on p. 210 of Pauling
and Goudsmit, Structure of Line Spectra. According to an informal com-
munication of Professor Goudsmit these sum rules have been used by him
in the derivation of the general formula in Phys. Rev. 35, 440 (1930).
Formulas (47), (47") apply only to the case of Russell-Saunders coupling
but have the advantage of simplicity.

It



