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AasTRACT

To clarify the discussion as to whether or not a quantum mechanical treatment
of the motion of electrons in magnetic fields will lead to a formula for e/m, differing
from that obtained by classical electro-dynamics the following problem was solved.
A uniform magnetic 6eld in the s-direction exists in the half-space x&0. A plane
monochromatic de Broglie wave, travelling in the positive x-direction representing
electrons of arbitrary energy, impinges normally on the plane x =0. Solutions of the
wave equation were found fulfilling appropriate boundary conditions at the plane
@=0. Currents are calculated quantum mechanically and compared with the cor-
responding classical expressions. It was found that for electrons possessing energies
of the order of magnitude used in deflection experiments, no observable deviations
from classical results are predicted. Another quantum mechanical effect is diffraction
at slits. Simple approximate calculations show that this effect can produce a fractional
error in e/m of the order of the de Broglie wave-length divided by the slit width.
These results are opposite to the conclusions reached by Page. %e may remark that
he solved a problem of "stationary states" which does not represent the actual ex-
periments.

''N A recent issue of the Physical Review Professor Leigh Page' tried to
~ explain the difference in the value of s/m obtained from deflection experi-

ments and from spectroscopic evidence on the basis of quantum mechanics.
This was later criticized by Eckart, Grst, he doubted certain approximate
calculations of Page which may, however, be shown to be correct second,
he referred to articles of Kennard' and Darwin' which prove quite con-
clusively that a wave packet representing an electron in a uniform magnetic
Geld moves as in the classical theory. To this we may remark that in the
deflection method the measurements are not made with a single particle but
are statistical since we work with beams of electrons. However the work of
Page does not seem conclusive because he considers the solutions of the wave
equation corresponding to the completely quantized motion of isolated
electrons in a magnetic 6eld of in6nite extension; whereas in the deflection
experiments we have to deal with a problem of "streaming. "

II2. In trying to decide the question as to whether or not quantum
mechanics will lead to results appreciably different from those of the classical
theory we have considered the following problem. A homogeneous magnetic
held in the x-direction fills the half-space x &Q. Free electrons moving in the

' L. Page, Phys. Rev. 36, 444 (1930).
~ C. Eckart, Phys. Rev. 36, 1014 (1930).
' L. Page, Phys. Rev. 36, 1418 (1930}.' E. H. Kennard, Zeits. f Physik 44, 347 (1927).
~ C. G. Darwin, Proc. Royal Soc. A117, 25'8 (1927).
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x-direction impinge on the plane x=0 and penetrate the magnetic 6eld.
Classically they will describe half-circles with centers on the plane x=0
and radii

where p represents the momentum of the particles. We find easily that in the
magnetic field the components of the current density S are

2Ix
5, =0 S„=

(r2 x2) 1/2 (2)

and the total current f;S„dx= 2Ir where I is the current density of the in-
coming electrons. Quantum mechanically we have for x)0 the wave equation

a, + x——y
—— — x'+y' + —,=0

where d2 is the Laplace operator for two dimensions and X =h/P is the de.
Broglie wave-length of the incident electrons. The incoming electrons are
represented by a wave function il/, =A exp (27ri/Xx) and the outgoing elec-
trons by P, =B exp (—2xi/Xx) so that for x&0 the total wave function
f&=f;+f,. We must seek solutions of (3) which fulfill the boundary con-
ditions at x=0:

where

(//is. ) i&i ——(//is. ),P,
(~s.)iA = (//is. )24~

P&(~) = 0

h 8 e
me, = —+ —A,

2' t BX C

(a)

(&)

(c)

(d)

h 8 e
mv„= —+ —A„.

2x"4 8$ c

In our case the components of the vector potential A, and A„are given by
A, = —~IIy and A„=-,'Hx. Making use of results given in a recent paper
by Landau' we 6nd that

y (x) &
w i x y /x r

is a solution of (3) if i//i(x) satisfies the equation

L. Landau, Zeits. f. Physik 64, 629 (1930).
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Qle may therefore write our boundary conditions (4) (conditions 4c is iden-
tically fulfilled)

$(0) =A+8
2' i

~'(0) = (A —8)

~( )=0 (d)

It will be shown later that the condition 4(~) =0 will, for a given X

determine Q'(0)/$(0) so that we may write for convenience

) 4'(0) = V(l)
2~4 (0)

where g()i) is a real quantity.
The first and second of the relations (7) then give

q(A + 8) = i(A —8)

or

g exit
1+II

The phase of the outgoing electrons therefore differs from that of the in-
coming electrons by xr, where

1 —q2
COS gT 1+/ (10)

P(0) = A(1+ e~")

II3. The current density is in general given by

eh BP 8$ e'

4x i' 8x Bx inc

with a similar expression for 8„. Substituting equation (5) and the vector
potentials we 6nd immediately

e h
(5,) i = 0 (5,)i = — (BB —A') = 0—.

m X

This latter expression is zero due to the fact that A. and 8 are equal in
absolute value from (9). The intensities of the incoming and outgoing waves
are equal. Further

e h
(S„)& = ———x4'j (S„)& ——0.

m )r
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At x=o (Sv)i=(Sv)q=o. Continuity of the currents is therefore a conse-
quence of the boundary conditions (4). Finally we can calculate the total
current

fs CO

(Sv)|~x =— xQqhdx.
Am~ o

By integrating partially and using the differential equation (6) for Q and the
fact that P(~) =0 it is found that

1
xyjdx = ~2(1 y q')y(0) j(0).

o 2

Substituting (11)and noting that I=ehA'/mX we find that

I (Sv))dx = 2Ir
~o

d2$ 1 1
+ u+ ———( /=0.

/$2 2 4

This equation is treated extensively in Chapter 16, page 341 of Whittaker
and Watson "Modern Analysis. " In their notation we obtain for a solution
vanishing at $= ~:

v(v —1) v(v —1)(v —2) (v —3)
0(() = &.(6 = ~* '") (&—'+ ~ ~ ~

2(2

for large $ (a is a constant to be determined from $(0). If v is an integer the
series breaks o6 and we obtain the well-known harmonic oscillator eigen-
functions. This solution "connects" with the following solution for small $:

T

2s j2+1j4
2

~v/2+ 1/4, —j./4

F

1
2v j2+1/4

2+
r(—"

4(&) = s

$2
5 '"~~/~i/4. I«

2

where

l + —& 8 + —~)() + —~)

}1!(2m+ 1) 2!(2' + 1)(2|s + 2)~ ~

~ ~

which is just the classical value.
$4. To get a clearer idea of (S„)&, a quantity which would be measured

in a deflection experiment, we must study the solutions of (6) in more detail.
Introducing $ = 2x(7r/Xr)'I', v+& ——7rr/X (6) becomes
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From this solution one can shove easily that

q = 2(2v + 1) "' tan—
I' —+—

—tan —for v )) 1
2

1 —
g

COS x'T = = COS vx1+ q~

or

717 = XV ~

Thus the phase shift between the incoming and outgoing electrons is com-
pletely determined in terms of v and therefore in terms of the energy of the
incident electrons. It may be worth while to remark that v is very simply
related to the number N of de Broglie wave-lengths on the circumference of
the classical half circle

v = .V —-'; or m» = (/V ——',)m

or since ) is usually of the order of 10 ' cm, v is of the order of magnitude
j.os to 10». For quantum numbers of this order of magnitude one would
hardly expect to 6nd the differences between classical and quantum mechani-
cal predictions to be measurable.

$5. To add weight to this belief we may consider the character of the
function Q(x) in more detail. This is best done by considering the Wentzel-
Brilloujn-Kramers approximation. For x) r P(x) behaves as an increasing
or decreasing exponential and to satisfy the condition $((e) =0 we must
choose the latter. We obtain

6 2x
/(&& —= —*v ——

I ( ' — P BID . '
(x2»2)i/4 X.J,

This "connects" according to Kramers with the oscillatory solution for
x'&r

4(*) =--
(»2 x2) 1/4

2m' f' " 1r
cos —

( (»' —x') "'dx ——
)» 4

We see immediately that this approximate solution determines (f()(,) =)(y'(0)/
2m /(0) and we find for it again

G. %entzel, Zeits. f. Physik 3S, 518 (2926); I-. Brillouin, C. R., Juli, 1926;H. A. Kramers,
Zeits. f. Physik 39, 828 C,1926); A. Zvraan, Utrecht Dissertation, 1929; L. A. Young and G. F.
Ublenbeck, Phys. Rev. 36, 1154 (1930).
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V7C

q= tan—
2

The constant (2 has to be determined from the value (//)(0). We f2nd from (11)

g (l + ~sir)rl/2

ÃV
COS—

Calculation of the current gives then for x &r

4Ix 2~ p" 2r j(S„)1= —cos' —I) (r' —x')'"dx ——r .
(r' —x')"' Xr J (16)

The current, therefore, is "oscillatory" with an amplitude just twice the
classical current. The distance between the maxima is, for small x, just
X/2 but increases as x approaches r. The distanceD of the last maximum from
x=r is given by

2g f" 7r
(r' —x')"'dx =—

)rJ„g
ol

32/3

8
(17)

For x&r the current is given by

2Ix 4~ f.
(&.) = — v ——( (*' —")"'&*I

(x2 2 2) 1/2 x.J, (18)

This current falls oA very rapidly with increasing x, in fact in going a dis-
tance nA beyond x = r the ratio of the current to the current at x = r —6 is
given by

1
exp (—2122/2)

2(22) '"
This ratio is equal to 0.001 for n —2.1.

$6. These last results are perhaps doubtful since in the neighborhood of
x=r the approximation from which they were derived becomes invalid.
%e can, however, derive them more rigorously by observing that near x = r,

1 ——=2

Instead of (6) we have then
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This equation has been thoroughly discussed by Kramers (reference 7) and
the solution which "connects" properly with the exponential and oscillatory
solutions of (6) is found immediately to be

(20)

~(s) has been tabulated by van der Held (see Kramers, reference 7) and we
find from his table

(17')

and in traveling a distance 2.5A the current drops to 0.001 of its maximum
value.

)7. Returning now to the value of e/m we must distinguish between
two quantum mechanical effects. The first is the one discussed above. If
we observed the maximum current we would find it displaced a distance
6 from the classical position. If we calculated e/m from

8 CV 1

m II r

we would obtain too large a value. This is in the right direction to explain
the discrepancy between the de8ection and spectroscopic values of e/m
but quantitatively the relative error due to this is of the order (X/r)'I' which
is about 10 . The observed relative discrepancy is 4&(10 '.

A second quantum mechanical e8'ect in an actual deflection experiment
would be diRraction at the entrance slit. A rough calculation based on the
uncertainty principle shows that this can give a relative error in e/m no
larger than X/d where d is the slit-width. For actual cases this is of the order
10 '. We conclude therefore that the quantum mechanical analysis of the
deflection experiments cannot explain the observed discrepancy. One might
still think of relativistic or spin effects as a possible explanation of the e/ra
paradox, but we have a feeling that the resulting corrections will also be
extremely small.

¹teadded in proof: We regret that, in preparing this manuscript we
overlooked the article of Charlotte T. Perry and E. L. Chaffee (Phys. Rev.
P5, 904; 1930) which seems to show quite conclusively that the discrepancy
between the two values of e/m is due to an error in the experimental deter-
mination of the velocity of the electrons in the deflection experiments.


