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ABSTRACT

A contact between two solid conducting bodies is visualized as a small gap be-
tween them. This gap can be described as a potential-hill over which electrons,
according to the wave-mechanical theory, can pass even with insufficient kinetic
energy. The general expression of the resulting current intensity as function of the
potential-difference is obtained and discussed for the case of two identical or differ-
ent bodies in connection with the resistance of granular structures (thin metallic
films) and the rectifying action of certain contacts.

I NTRODUCTION

~HE usual picture of an electrical contact between two solid conducting
bodies is that their surfaces or part of their surfaces are at a distance of

atomic dimensions from each other, so that the electrons can pass through
the contact surface in the same way they pass through any surface within
the same body.

Now such an intimate contact between two bodies along a large part of
their surfaces is probably very rarely realized. Nor is it necessary for the
conduction of electricity from one body to the other. Such conduction can
also take place through those parts of their surfaces which lie rather far apart
from each other, that is, at a distance many times larger than the usual
atomic distance. In fact, according to a well-known principle of wave
mechanics, which has been used already (and sometimes abused) for the ex-
planation of a great many phenomena, an electron can jump over a "poten-
tial-hill" even if it does not have sufficient kinetic energy to do so according
to the classical mechanics. Now the gap between two contiguous bodies may
be considered as the top of such a hill, with practically vertical slopes at (or
rather just beyond) the respective surfaces. There must be in general a
steady Row of electrons across the gap in both directions, the difference be-
tween the two Aows being the actually observed current intensity I. In the
case of equilibrium the latter is of course equal to zero. If, however, an
additional potential difference $ is maintained across the gap, I will be a
certain function of Q, diferent from zero.

It will be our first: object to determine the general character of this func-
tion I(p). Before, however, proceeding further let us remark that this func-
tion can always be expanded in a power series and that for small values of @
one can simply put I=n&$ in accordance with Ohm's law, a&, being the con-
ductjvjty of the contact, that is the reciprocal of its electrical resistance.
For larger values of p one must get
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I = 0;gQ + npQ'- + n3$~ +
The coefficients of the even powers of @ vanish in the case of a contact.
between two identical bodies. They must be however diferent from zero in

the case of two bodies of diRerent nature. One thus gets in this case, to the
second approximation, I=a~/+0. +', which means that the current is
changed in magnitude when the sign of P is reversed. This means a rectifica-
tion effect of the same type as that given by an electron valve on the curved
part of the characteristic, and may be quite large for some particular contacts.

1. GENERAL THEORY

For the sake of simplicity we shall consider the contiguous surfaces of the
two bodies (a, b) as two parallel infinite planes. Their distance apart will be
denoted by 6. The potential energy curve will be represented by the full
line MNQRS'r(Fig. 1) XQ = U, and SR = Uq denote the increase of potential
energy of an electron crossing the surface of the respective body (from inside
to the outside). The inclined line QR represents a homogeneous electrical
held acting between the two bodies. The corresponding change of the poten-

Fig. 1.

tial energy of an electron passing across the gap from a to b will be denoted
by V and will be reckoned positive if this energy is diminished (as shown on

the figure), that is, if the force I' acting on the electron in the gap is directed
from a to b (F= V(5). In the following it will be always supposed that the
potential energy of an electron in a is higher than in b; the diHerence repre-
sented by the line NISI will be denoted with U.~. One has the obvious
relation Vg —U, g+ V= U„or

XP = W represents the kinetic energy of an arbitrarily selected electron
in a, or rather that part of its kinetic energy W, which corresponds to the
x-component- of the velocity, the x-axis being drawn in the direction ab.
Every electron in a for which this component v is positive, will be able to
pass through the gap, no matter how small W, is, in comparison with the
height of the potential wall XQ. On the other hand only those electrons
of b will be able to jump over the gap to a for which the part of the kinetic
energy corresponding to the x-component of the velocity (in the negative
direction) is larger than SX,= U„&,.
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The "transmission coeScient" for the a-electrons with the energy 8",
will be denoted with D(W,). It is equal to the probability of any such electron

passing from a to b (or the fraction of all the electrons succeeding in this
enterprise). On the other side of the gap, that is in b, such an electron will

have for the x-direction the kinetic energy lV, + U ~. Reversing the direction
of its motion we should get the same probability D(W, ) for its getting back
to a.' We thus see that D(W, ) is the probability of a b-electron having for
the negative x-direction the kinetic energy 8",+ U.~, to pass across the gap
to a. The number of electrons per unit volume having velocity components
in dv„dv„, dv, will be denoted by f,dvQvPv, and fidvQvgv, for a and b

respectively. So far as the change in the veLocity distribution of the eLectrons

in each body, due to the passage of the electrons to the other body or from
the latter, can be neglected, f.and f, can be treated as functions of the result-

ing kinetic energy W= W, +W„+W, =zm(v, '+v„'+vP). In case of two

metals these are the well-known Fermi-Pauli-Sommerfeld functions. '

m 8 j. m=2— fa = 2—
h ew/kT/Q + I h ' ew/kr/IL + (2)

The number of electrons passing from c to b per unit surface per second is

equal to
fll QO f +QCI trs +00

I, =
~l dv, ~l J, dv„dv j)(W,)f,v, .

0 OC OQ

For the corresponding number of electrons passing from b to a we get

I, = Jt dv, ~t Jt dvpv j7(W, —U, i)fiv,
0

Where v ' is defined by the condition —',m(v, ')'= U. These expressions may
be simplihed by introducing instead of v the variable lV =qnzv ' and in-
stead of v„and v, the variable R= W, +W, =sim(v„'+v. 2) and the angle
ib=arctan (v„/v, ). It will be remarked that (2R/m)& and |b are the polar
coordinates replacing the rectangular coordinates v„, v, . Ke get then

f 00 00

I, = —
I dIV,D(W,), f,(lV, + R)dR (&)

m~ &0

2m'

I2 = — dIV.D(H' —U,a) l fa(IV*+ R)d&
m2~IV 0

or replacing 8' by TV ' = W.—U, ~,

I, = —
I dW, 'D(W, ')

l f,(H~,'+ U. , + It)dIL.
m ~ 0 0

Cf. J. Frenkel, EinfGhrung in die Wellenmechanik, p. 57.
' Cf. A. Sommerfeld, Zeits. f. Physik 4"l, 7 (1928).
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The resulting Row of electrons from c to 6 is

2'I = Ii —Ib = —
i dW, D(W,)m'~ p

[f,(W, + R) —fb(W, + U, b + R) jdR

We shall now suppose that I=O. This means that the two bodies are in a
statistical equilibrium with respect to each other, as a result of the existence
of a definite contact potential difference between them, corresponding to the
drop of potential energy V in the gap.

This state of equilibrium must obviously be independent of the special
shape of the function D(W, ), which determines the velocity with which it
is established or the time of relaxation. Therefore in the case of equilibrium
the coefficient of D(W,), that is the integral over R in (5), must vanish for any
value of lV„whence it follows that the integrand must vanish. We get thus,
as the condition of equilibrium

f.(W) =fb(W+ U.b) (6)

This equation can be considered as the direct consequence of the principle
of detailed balance.

Let us now assume that V is increased by the amount V&, corresponding
to an additional (external) potential difference @= Vi/e (e=charge of an
electron). Instead of the initial potential energy curve Fig. 1, we shall get
in this case the curve MXQR&S&T& (partially dotted line) if Vi is positive
(which it, of course, need not be). This will alter to some extent the trans-
mission coefficient D(W,) replacing it by D,(W,) say, and what is more im-

portant, change the potential energy difference U & replacing it by U &+ V&.

As a result Ib will now be smaller than Ii (if Vi) 0), and we shall have a cur-
rent flowing through the gap in the direction of the applied electrical force.
Taking account of the condition (6) we can determine this current by the
formula

2x tI = —
I dIV,Dg(W, )

PV p

[fb(H', + «„b+ R) —fb(H', + «„, + V, + R)]dR
~p

For sufficiently small values of V&, we can put
afb(W, + U.b+ R)

fb(W*+ I'.b+ R) —fb(W*+ «.b+ R+ Vi) = —Vi
BR

This reduces the inner integral in (7), in view offb(~ ) = 0 to Vi fb(W*+ U b),
so that neglecting the difference between D and D&, which is immaterial
so far as second powers of V~ are neglected, we get to a hrst approximation

2m'

dIV.D(B,)fb(W, + U. b) = n&.
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This expression, or rather its product with e', may be defined as the reciprocal
of the resistance of the contact (per unit surface). Putting Vi = eE5 where E
is the (additional) electrical held in the gap, we can define the quantity

e2I&
0'

i2E V»
that is

2xe'8
00 =

~

dW.D(W,)fi,(W, + U„i)

as the specific "conductivity" of the gap forming the contact.
Proceeding to the second approximation, we get

~ja ~'» B Jt,
fi,(W + U„i, + R) —fi,(W, + U, i, + 8+ V, ) = —Vi

BE 2 BE'
BD

D» =D+ V»

(the arguments being in both cases those corresponding to Vi ——0) whence

I = n»t » + a2V»'

with the previous value of n» and

n2 = —I dW, —D(W, )fi, '(H', + U. i) + fi(N', + f.'„,)

fb' denoting the first derivative of f~,

It must be emphasized that the above results hold for the case only that
U, f,+ V» remains positive. If V„f,+ V& &0 the role of the bodies a and b will
he exchanged.

API LICATION TO THE'. ( ASE OF TWO IDENTICAL METAL'. j
AND TO GRANUI AR STRUCTURES (THIN FILMS)

The last remark applies in particular to the case of a contact between
two identical metals, which is characterized by U. b (as well as V) being equal
to zero. The second term in (10) will then vanish, and I will be an odd func-
tion of V».

Introducing f for fi, in one of the expressions (2) we get in this case for the
"specific conductivity" of the gap

4irme'5 (' " D(W,)
0-

h' 00 e~*"r/A + 1
(12)

It will be interesting to compare this expression with that of the usual speci fic
conductivity of the corresponding metal cf as derived from Sommerfeld's
theory. The latter expression can be put in the form

e'ln
0

moo



ELECTRICAL RESISTANCE OI' CONTACTS

where n denotes the number of electrons in unit volume, vo their maximum
velocity for T=0, and 1 the mean free path of the electrons having this veloc-
ity. ' Putting

m=2

Ssm' ('" edlV

h' J e"'"r/A + 1

we see that the integral

Smn~ -- dlVD 8
h3 &1V//;T

can be considered as the mean value of D(W)/v for all the electrons (irre-
spective of the direction of their velocity). V e thus get, according to (12)

or approximately —putting (D/v) = D/t o

(15a)

This relation shows, that with respect to its conductivity the gap can be
treated as a metal, where the free electrons have a mean free path of the order
of magnitude of 5D. One can of course use it in the opposite way and treat
a metal as a series of gaps. This interpretation roughly corresponds to the
theories of Bloch and Peierls, where the electrons are considered as bound to
the separate atoms, but still capable of jumping from one atom to the next
one over the potential hill separating them.

The transmission coe%cient D in the case nf two identical metals
U = U~ = U, that is for an energy-curve of the shape shown by the full line
line of Fig. 2, is given as a function of the energy TV =-', mv ' so long as the

Fig. 2.

latter is smaller than Uo, by the formula

P' a
D csh' P5 + ————sinh'P8

4 n' P2

' A. Sommerfeld, Zeits, f. Physik 4!, i {1928).Formulas {48c)and {42a).



Z. JiZZXZEI

where4

8+~et 8m~m
a' = W„P' = (U —W,).

h' h'
(16a)

For values of P8 which are large compared with 1, this reduces approximately
to

It may be convenient to write P in the form P = 2s (74 where X can be defined
as the wave-length of an electron moving with the positive kinetic energy
Vo —8', . If expressed in volts this energy is equal to @, then

11
cm = Angstrom units.

yl(2

For the electrons with velocity v = vo, that is, the maximum velocity at
zero-point of temperature, which approximately corresponds to the maxi-
mum of the Fermi distribution curve in the region of usual temperatures,
the difference Uo —W, is just equal to the work function of the metal (as
measured directly in the Richardson effect). ' Putting P—:4 volts we get for
these electrons (using Angstrom units for X and for the distance 5):

X —5, P —1 2, 2P6 —2 46.

Since the expression in brackets in (17) is of the order of magnitude 1, we

get as a rough estimate of the transmission coefFicient D for lV, = ~ming

~ ~-2.48
o = ~

If the mean value of D entering in (15a) could be identified with Do, we
should have

Og
2 «45

that is for 0 = 102 with / =100 (which roughly corresponds to the mean free
path of the electrons at room temperature)

(re/0 = 10 ".
To get absolute figures we note that for good conductors the specific re-
sistance 1jo' is of the order of 10 ' ohms. The resistance of the contact
r =8/0', reckoned per unit surface (in cm' of course) thus turns out to be of
the order of 10 '10'=10 ' ohms. For a twice larger gap with 5=20A
=2&(10 ~ cm we should get in the same way a resistance about 10" times
larger than the previous one, thai is, about 10' ohms, Further increase of 6

' Cf. J. Frenkel, reference 1, p. S9.
' P, Sommerfeld, reference 3, formula |',S3b),
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would mean practically complete disappearance of current; for with 5 = 20A

it would require an electric field of io million volts per cm across the gap,
corresponding to a potential difference of 2 volts, to obtain a current of the
order of 10 a amp/cm'.

It must be remarked that for such high values of the held intensity —or
rather of the potential differenc the current wou1d no longer be pro-
portional to the latter, but would increase much faster, gradually assuming
the character of Millikan's "field-currents. " It can be easily shown that this
character, corresponding to a practically unidirectional How of electrons
(from a to I/, that is in the direction of the applied force only), would be
acquired for potential differences of the same order of magnitude as that cor-
responding to the potential jump at the surface of the metal (U, /e).

Ke must now come back and test the validity of our assumption that
the mean value of the transmission coefficient D(W,) can be identified with
its value D& for the electrons with the velocity t/, =t///(=t/ „for T=O).

To do this we must find out the maximum of the function

D(W)
F W

ew/kT/g + 1

which enters the integral (14) defining the mean value of D(W)/v Leaving.
aside the case of extremely high temperatures we can put A = e ~0"~ where
W// ——2mt///k. Neglecting the variations of the denominator of (17) when com-
pared with that of the numerator we can further put, according to (16a),'

D( II&) &
—((U—w, ) / kr, J I /r

the "effective temperature" T&, being defined by

1/kTi = 32''m//'/k'.
This gives

~
—f (O'—W) / kTt ) I /2

F(H') =
e(w'-~o)/~~ + 1

or with

IV U —lV
o, =k, =(i, =V(ti —8,

1

e—[y ($1.—$) ] I/2

F(W) =
8—&i+ 1

7'

7 =
Tl

(18a) .

The maximum of this function corresponds to the minimum of its reciprocal.
Putting BF'/8( =0 we get

1+ -«-" =2[(k -k)/~j/ (19a)

It can be easily shown' that this equation has either two solutions (= $'($e
and $ =$")fo, or none, depending upon the value of the parameter y. The

This implies, of course the limitation to the case 8 & U, see below.' For instance, graphically, by tracing the exponential curve Y=1+e~ &0 and one branch
of the parabola y=2[{]i—()/y]i/k {for $&t'i),



limiting value of this parameter is approximately equal to $i. When y&)$&,
the equation (19a) has no solution, which means that the function (19)
steadily increases, as ( increases from 0 to $&. In the opposite case y(($i,
we get approximately

t-t' =2[«, —~)/. ] ~ -d 2[(~ —~")/.]" =-1 (20)

the first solution corresponding to a sharp maximum of J"(W) in the neighbor-
hood of W= Wo, and the second to a faint minimum in the neighborhood of
W= W~. In order to see what case we have to deal with in practice, we must
introduce numerical values.

If 8 is measured in Angstroms, then it follows from (18a) Ti = 1.2 X 10'/P
Thus the "effective temperature" is high for 6=13 which means an actual
contact between the two metals, of the order of magnitude of the room tem-
perature=120'K for 5=102 anA becomes very small as 6 increases beyond
this value.

Assuming U„ to be equivalent to 14 volts and Wo to 10 volts, and taking
T=300 K, which corresponds with respect to the thermal energy kT to
about 0.02 volts, we get $, =500 and (, =700.

9"e thus see, that in the above considered case of a gap 5 = 102, the param-
eter p is approximately equal to 2.5, that is, extremely small compared
with its limiting value 700. For this case the first of the equations (20) gives
approximately to —f'=20 and the second $, —$"=2. It can be easily verified
that the maximum of F(W) at W= W'=kT(' is actually so sharp that
D(W)/v is practically equivalent to D(W')/v' which is only very slightly
different from the value D(W, )/v, assumed above.

The condition y)$~ can be realized at T=300'K for very broad gaps
only with a width 6&1702. In this case the main part of the electric current

for sugcien—tly sma/I values of the potential differences @=U, /e, that is,
for very small field intensities 8 =&/5—should be due to electrons having a
kinetic energy larger than U, For these electrons the transmission coefficient
D(W) is of the order 1, whereas their number for usual temperatures is
extremely small. The electric current between a and b would have in this
case the character of a thermionic current (and not of a field current) whose
strength can be calculated by using the general expression (15a) for the eEec-
tive conductivity of the gap with'

jg ~ e
—(ki —hatt) —e

—(U—~0) ~I~

Thus in this case the electrical resistance of the gap r =6/a', should be inde-

pendent of its width 5 and should vary with the temperature» e '"
It would have an appreciable magnitude only for very high temperature~
lying in the same range as the temperatures for which thermionic currents
are observed. For usual temperatures, gaps of such width could no longer be
treated as contacts, whereas in the case of shorter gaps with 5 =10A their
resistance would be practically independent of the temperature and would
vary exponentially with increase of 5.

s This being {approximately) the relative number of electrons with a kinetic energy large
than V.
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The above results may have interesting applications to the question
about the electrical resistance of granular structures, such as metallic powders
and probably also extremely thin metallic films obtained by means of
cathode sputtering. As well known, the latter possess an abnormally high
specific resistance, which for films with a thickness of about 10 ' cm and
lower, may be 20 times larger than that of the same metal in block, and
further abnormally small temperature coefficient of resistance, which in
fact can become negative (decrease of resistance with increase of tem-
perature). It has been often assumed' that the high value of the specific
resistance of very thin films is explained by the fact that their thickness may
be smaller than the normal mean free path of the electrons (the latter being
supposed to be scattered irregularly from both surfaces of the film). It would
follow from this idea, that the "critical thickness" d for which the specific
resistance should begin to increase, must be approximately equal to the
mean free path /, and therefore must vary with the temperature in the same
way as does the latter. According to the modern wave-mechanical theory of
metallic conduction / varies inversely with T (or still faster in the region of
very low temperatures), whereas as a matter of fact d remains practically
independent of the temperature.

If on the other hand we adopt the equally often advocated granular
theory of the constitution of thin films, and substitute for the usual concep-
tion of metallic contacts (which has been a serious obstacle for this theory)
the conception developed in this paper, then the main properties of these
films, distinguishing them from the metal in block, receive a satisfactory
explanation. To say nothing of the abnormally high specific resistance, the
smallness (or even the negative sign) of its temperature coe%cient may be
explained by the fact that the width of the gaps between adjacent grains is
diminished, as a consequence of their thermal dilatation, with increase of
temperature. Account should be taken of course of the thermal dilatation of
the dielectric base upon which the film is deposited. But a comparison of the
thermal dilation coefhcients shows that they are as a rule larger in the case
of the metals. This relation can be illustrated by the fact that the gaps
between adjacent rails in a railway line decrease in the summer and increase
in the winter time, and not vice versa. Denoting the length of a rail or grain
with L, and its effective dilation coefficient with o., we see that when the tem-
perature is raised by ~ rthe width of the gap is decreased by D6 = —I.~T.
The relative decrease A5/5 = —(L)5)nAT may be quite large even for a very
small value of n( —10 ') if I. is sufliciently large with respect to 8. And since
the resistance of a gap varies exponentially with 8, this means a marked de-
crease of resistance, partially compensated by the normal increase of the re-
sistance of the separate grains.

It is further well known that the resistance of thin films depends very
largely upon the gas or gases present during their preparation. On our
theory these gases must make thin monomolecular adsorbed layers on the
surface of the separate grains of which the film is built up, thus changing

' An assumption that has been worked out mathematically by J. J. Thomson long ago.
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the potential energy U which determines the transmission coefficient ac-
cording to (18) and consequently the resistance of the gaps between the
grains. It may be remarked that this change of resistance must be quite
parallel to the change of the thermionic emission of the corresponding metal
owing to the presence of the adsorbed layer. In fact the difference U —S"0
in equation (18) may be identilied with the "work function" U —Wb which
determines the thermionic emission in Sommerfeld's theory. It follows then
from (15a) that the logarithm of the specific conductivity of a gap (contact)
must vary with U', as the square root of the logarithm of the thermionic
emission of the same metal for the "effective" temperature.

3. APPLICATION TO THE CASE OF TWO DIFFERENT CONDUCTORS

AND TO THE PHENOMENON OF RECTIFICATION

Turning now to the consideration of a contact between two different
conducting bodies (a, b) we shall first consider them as metals; the case of a
non-metallic body (semi-conductor) may be obtained perhaps (see below)
by taking the extreme form of the Fermi distribution law for a small con-
centration of free electrons which is nothing else but Maxwell's distribution
law.

We have seen that when between two metals "in contact" that is at a
small distance from each other, a potential difference V, determined by
(1) and (6) is established, there will be no current Rowing between them.
Putting in (2) A = e ~'ar and 8 = e ~a~a~, we get, according to (6)
W —W, = W —Wb+ U,b or according to (1).

V = (U —H'„) —(Ub —Wa). (22)

This formula shows that the contact potential difference between two metals
is equal to the difference of their respective work functions, as of course it
should be."

If a small additional potential difference V~ is introduced, we must
get a current determined by the "specific conductivity" (9). By the same
argument as in the preceding paragraph we easily get

1 e'8e bD( W g)
0

2 mug

where W, + U, a = Wb, Wb being (practically) the maximum kinetic energy of
of the electrons in the body b at T =0, Since, according to the equilibrium
condition Wb —U, b= W'„we get further, dividing 0, hy a'b=e'Lbnb/mvb the
specific conductivity of the metal 5,

O.
g—=———D(W.)

Og 2 lg
(23)

v here v, =vg is the largest velocity of the electrons in a at T=0. So far as
v, and sb are of the same order of magnitude (which is the case for all metals)

'o Cf. C. Eckart, Zeits. f. Physik 38 (1928) and J.Frenkel, Zeits. f. Physik (1928),
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we do not have to discuss this expression in detail, since it is practically
the same as in the case of two identical metals.

A few words should be added with regard to the character of the function
D(W, )

For the case of the energy curve MEQRST of Fig. 1 with an inclined

top, this function cannot be evaluated in a simple way. We can, however,
simplify the problem by replacing the inclined top line QR by a horizontal
line Q'R' passing through its center. We shall thus get a practically equiva-
lent energy curve MXQ'R'ST (Fig. 3), for which the function D is given

Q

-P.

pig. 3.

by the formula
40fgA y

D ——
(a, + ai)' csh'Pfi+ (P —a,ai/P)' sinh'Pb

Sx'm 8m'm Sx'm
a.' = I „Va'= (H' + U') P' = (U.' —IV.)

h'- ' h' h'

with U, '=NQ'= U, ——,
' V, Uq' ——SR'= Uq+ 2V, U'-= U, q. For sufFiciently

large values of P5, with which we are here concerned, the above expression
reduces approximately to

D = exp [—[(U. —W, —-', V)/ST, ]»']
with the previous definition of T,. In substituting this into (23) we must put
W, = lV.. Ke thus get the same expression for D as in the case of two iden-
tical metals, with the only difference that the "work function" U —S", is
replaced by

U. —IV. —'; 1' = -', [(U„—IV.) + (U~ —IV~) l (25)

that is by the arithmetric mean of the work functions of the two metals.
Now if V is increased by V&«V the transmission coe%cient is changed

by the amount (BD/8 V) Vi where

8D D

RV 4[-,'kTi(U, —H'. + Ui, —11'b)]
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Introducing this expression and the expression (24) in (11) and putting for
the sake of brevity

we have

[2kTi(U, —IV. + Ui, —Wi, ) j"' = 8 (26)

27r 1 f'
dIVD(PV) tf, (lV + U) + 8f&'(IV + U) JI-'28 p

or so long as |Ij is small compared with W+ U

f~
ng =

~l dWD(W)fg(W + U + 8).
m'840

(27)

Comparing this (8) we see that

cx = (1y /28 (28)

where O. I is the value taken by the coefficient nI, if U is increased by 8.
It may be remarked that aI, is connected with the "specific conductivity"
of the gap 0, by the relation

0.„=e28aI.

Now o;I', is but slightly different from oII, since 8 is assumed to be small,
so that we can Finally put n~ ni/2-—8 This .relation could be of course obtained
directly by neglecting the First term in the integral (11) which does not take
account of the change of the transmission coeScient D caused by the intro-
duction of the additional potential difference V& ~ It can be easily shown that
the ratio of this term to the second term, which just characterized this change,
is approximately equal to

8 2kTI I/2

L. —FV. + Ug —H"(„L', —tV. + 6'I, —H'g

that is, remains very small for values of 1I corresponding to gaps of the
width 8=i' or even less than that.

The "characteristic curve" of our contact, considered as a rectifier, is thus
the parabola

I = niVi(1+ Vi/28)

This equation holds, of course, for sufficiently small values of VI only. It
follows from it that the rectifying action of the contact becomes prominent
for values of

~
Vi

~
which are of the same order of magnitude as 8. Using the

previous value of TI =120' which corresponds to 0.01 volts and assuming
for the mean work function of the two metals 2(U, —W + Ua —Wi, )
value corresponding to 4 volts, we get for 8 about 0.4 volts.



ELECTRICAL RESISTANCE OF CONTACTS

This is a rather large figure, which explains the fact that metallic con-

tacts cannot be used as detectors for radio-oscillations of small amplitude.
It seems possible, however, on our scheme to explain the detector action

of contacts between metals and some semi-conducting "crystals" used for this

purpose in simple radio receivers, by assuming that in these bodies we have
to deal with a distribution of electrons diRerent from that of Fermi.

The simplest assumption would be to replace the Fermi distribution by
the usual Maxwellian one, corresponding to a relatively small number of

free electrons per unit volume. This can be considered as a particular case
of the preceding theory, since the Maxwell distribution is the limiting case

i~ 0

of the Fermi distribution which may be specified by putting the maximum

kinetic energy of the electrons at T =0 equal to zero. It is clear that in this
case the semi-conductor will play the role of the body a and the metal that
of the body b, so that we shall have W. =O, V= U. —(Uz —W&), etc."

It seems at first sight that this will leave our formulas for n&, and o.2

unaltered since they depend upon the distribution function of the body b

only and not on that of the body a. That this is not so, is clear, however,

fmm equation (23), which with W, = 0 and v = 0 would give 0, = ~ . This
shows that some of the approximations used in the evaluation of o.&, and

o«no longer hold in the limiting case we are now considering.

Ke shall not try to adjust our calculations to this case, for the implied

picture of a semi-conductor as of a box enclosing a rarefied electron gas
seems hardly adequate enough to deserve a quantitative treatment. It is,
however, directly apparent without any calculations whatsoever, that the
rectifying effect of a contact between two bodies, so far as it depends upon
their dissimilarity with respect to the concentration and the velocities of the
electrons, must increase for a given absolute value of V& as this dissimilarity
becomes more pronounced.

A satisfactory extension of the above theory to the case of contacts be-
tween a metal and a semi-conductor, or between two semi-conductors will

be possible only after an at least crude electron theory of such semi-conduc-

"Ke have designated with a that body for which the potential energy (inside) is higher
than for the other when equilibrium is reached, that is, when the straight lines representing
the kinetic energies g, and g 0 lie on the same level (that is, coalesce with each other).



tors shall have been deve1oped. It will be further necessary to take account
of the fact that in actual contacts the distance 5 between contiguous sur-
faces does not remain constant, but varies in a more or less periodic manner,
within a certain range, and that the adjacent (curved) surfaces of the two
bodies need not be equipotentia1 surfaces, as is the case if they are far apart.


