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ABSTRACT

The quantum-mechanical computation or the cross-section for combination
of electrons with a positive point charge has been carried out in polar coordinates.
This gives the fraction of the recombination to a final state of total quantum number

n arising from recombination to the substates of different l values, making possible a
comparison of the results with the experimental recombination intensities for alkali
vapors to which the theory applies approximately.

N ELECTRON passing by a hydrogen ion with a velocity equivalent to
V volts can undergo a spontaneous transition to one of the states of a

hydrogen atom. The probability with which such a process can occur has
been treated by Kramers' and by Eddington' by the methods of the old
quantum theory and the correspondence principle. Oppenheimer' gives in

his treatment of the motion of electrons in a Coulomb field the corresponding
wave-mechanical expressions. The following paper gives certain additional
calculations and numerical expressions for the probability of capture of
electrons.

We recall the definition of the effective cross section of recombination:
The decrease of the number N+ ions per cm' is expressed by

dX+ = —a(v) S+ X = —q(v) N~ N '

is the number of electrons per cm having a velocity v relative to the ions.
N '=v X is the intensity of a stream of N ' electrons per cm' per sec. ot(v)

is called the coefficient of recombination and q(v) the effective cross section of
recombination.

To find the probability of a transition of such an electron to one of the
discrete states with negative energy one computes first the matrix element
of the electric moment associated with the transition under consideration.
As wave function in the initial state we require a solution pl, (r, cos 8, Q) of
the wave equation in the force field of an ion of charge Z e, which becomes a

plane wave at infinite distance, representing a stream along the x axis of
N ' electrons per cm' per sec. :

' Kramers, Phil. Mag. 46, 836 {1923).
fl Eddington, Internal Constitution of Stars, Cambridge {1926).
' Oppenheimer, Zeits. f. Physik 55, 725 (1929).
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and

limC .
2xmc

RQ'
k' =

V

h
imag(P»grad/») = iq '

V is the energy of the electrons and R& is the ionization energy of a hydrogen
atom in volts. co is the radius of the first Bohr orbit in hydrogen. In the
final state we take the known solution of the wave equation in polar co-
ordinates P„,~, (r, cos 8, q'). Then we compute the matrix elements in the
complex rectangular coordinates

x = rcos8; X'(k, nlm) 1

u= rsin8 e" U'(k, nlm)

s = r sin 8 e '& V'(k, nlm) J

fx x
u P»P„,„dr, u P»P„, dr (4)

dv- = p' sin Hdpd8dg

The relation between the matrix element X(k, nlm) and the number of transi-
tions per sec q, (k, nlm) X giving light of frequency v„polarized in the x
direction is

64m' r„' I» X(k, nlm) I'
q, (k, nlm) E ' =

3 c h
(5)

Similar expressions hold for I and v. The total cross section for any given
state n, l is

q(k, nl) = q, (k, nl0)+ q, (k, nl —1)+ q, (k, nl+ 1)

Oppenheimer' computed by this method the q(k, 10) and showed that it is
asymptotically, for small velocities of the electron, proportional to Z'/V. In
a later paper he treated the problem for the excited states in parabolical co-
ordinates' using a wave function by Gordon' and Temple, ' which satisfies
Eq. (2). This method gives the expression of the total cross section summed
over all J|'s with the same n. The writers made use of the wave function used
by Mott' for the scattering of n-particles by nuclei in order to obtain the
individual q(nl)'s. Mott's formula is in this notation:

1 /2 kl/2. &(/ x/2)+i klo~p

Pk=Z
2mZ~' sinh xk

"=" i" (X + i) P (cos 8) i "- i "+'»
p) ' cpz z g+ — ed2:

), p F(X+1+ ik) 2 2

4 Oppenheimer, Phys. Rev. 31, 349 (1928).
' Gordon, Zeits. f. Physik 48, 180 (1928).
' Temple, Proc. Roy. Soc. 121A, 673 (1928}.
' Mott, Prop, Roy. Soc. 118A, 542 (1928).
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p = (2Z/ka, ) r and the integral is to be taken along a single contour around
s = +i/2 T. he asymptotic expansion for r = ~ satisfies Eq. (2), having how-

ever in the first exponent an additional slowly varying logarithmic term
(see Oppenheimer' and Motti). The evaluation of the integrals in Eq. (4)
is done following a method given by Fues' and used for similar problems by
Oppenheimer. ' At one step one is left with an integral

( --;)' '('-;)"'
J k

i+X+a+4
—2'+-

2n

to be taken around s = k/2n. Its evaluation leads to the formulas 7u and 7b.
for q, (nl) and q (nl) 7c .and 7d are the formulas taken from Oppenheimer's
paper. '

Abbreviating: R for the Rydberg constant in frequency units

='
(k

— 'k)(k+ 'k)( + 'k)~'~'~

k 2 1+6

S(k, l) k

k2(k2 12)(k2 22). . . (k2 (l 1)2)

T(k) =
g~k —4ktan —1(n/Ir}

sinh mk

32-x' up'E2

Z2g2

~ P ~(~ + 1) &(i7 + 1)F(aPy )=1+ s+ + a ~ ~

1 y 1.2 y(y+ 1)

k„(n—l —1)!
q.( lr)k= D — $(k, l) T(k)

(2l + 1).(n + l)!n"+4

gg2 s/2 2t+ 2+$ ) n+)
(7a)

4/ RZ' (2l + s + 3)(2l + s + 4)(l + 1). Q(l —1, 2l + 2 + s)—
k2 v„ (l + ik)(l + 1 + ik)

2

Q(l + 1, 2l + 4 + s)

' Fues, Ann. d. Ph~sik 81, 422 (1926).
' Oppenheimer. Zeits. f. Phvsik 41.268 f1927'l.
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v„(/ + 1)!(e—/ —1)!
q„ss, / = q„ss, / = D Sk, / Tk

c (l —1)!(2l+ 1) (m + /)!rs"+4

2 s RZ2 ai2 2l+ 2+ s '. n+l
(7b)

4 RZ2 (2l+ s+ 3)(2/+ s+ 4)
0(/ —1, 2/ + 2 + s) + Q(/ + 1, 2l + 4 + s)

k' v„ (l + ik)(l + 1 + ik)

L=n —1
V k'

q (I) = gq, (n, l) = 64D — T(k)
(~s + k2) 2

a= n—j.

e 0

—4ink
(n —s —1) F —ik, 2+ s —I, 1,'(n + ik)'

2ink —4ink
n —s —1 —— F —ik, 1+ s —n, 1,n+ik (e + ik)'

(7c)

n-l —I
& (4ss) 2k 10

q„(n) = q„(m) = Qq„(ss/) = 64D — T(k).
c (n'+ k')'

8~n —2 —4inkg (s + 1)(e —s —1) F 1 —ik, 2 j s —n, 2,
e 0 (n + ik)'

(7d)

For electrons whose kinetic energy is small compared with the term value
of the final state, we substitute sc=s/k in the integral J(k) and obtain

m2". e
—'/'" dmJ(k)=k"'''

'N +—

This integral is to be taken around the point w=1/2N and is independent
of k. Instead of formulas 7a and 7b be obtain 8u and 8b. 8c and 8d are the
corresponding asymptotic expressions for k = ~ of Eq. (7c) and (7d). For
a!!states we obtain q =A 10 " Z'/ V for small V. Since in experiments on
recombination the electron velocities are usually small, these formulas are
sufficient in most cases.

Abbreviating

4' x'
up~R'R„= 1.24 &( 10 "cm'volt

3c
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we obtain

E Z"- (n —l —1)!16'n"+'
tf, (nl)

V (2l+ 1) (n+ l)!e4"
(»)

{
4 tt —I—2 4n4 n+l

Z 1[t tt(22+ +21 1)+, (1—+1) tt(tt+ +4214),)I, 0 s.'e —l —s —ij

EZ' l(l + 1) (n —l —1)!16'n"+
q =(f. nl

V (2l + 1).(n+ l)!e'"

K 2l+s+2, l —1 (8b)

2

—E(21 + s + 4, l + 1)]

l=n —1 EZ2 1
(l.(n) = Qq, (n, l)

-0 P' 4e2 e4

a=n —1

{(n—s —1) M(n —s —2,0)+(n+s+1) M(n —s —1,0) I
e 0

(8c)

1=n—1

V.(n) = V.(n) = ZV. (n, l)—
l=0

EZ' 4
P' g4n

(8d)
a2s2:n 2

g(s + 1) (n —s —1) M(n —s —2, 1)'.
a=0

Empirical formulas are generally written in a form

1
(f(n, l) = const X

V* v„)'

where y„& is the frequency of the emitted light, given for hydrogen by

1 1y)= vn=RZ2 —+-
e2 k2

s=2 for the 2I' band of Cs I (see report on recombination by Mohler").
Evaluating Eq. (8) for some of the lower states and abbreviating the algebraic
expressions of k in frequencies according to Eq. (10) one obtains formulas 11,
where

2 4'x' ao R' R~ Z'

3 C

"Mohler, Phys. Rev. Supplement 1, 216 (1929).
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1s: q = q, (10) = B T(k).
V vg'

B T(k) vg
2s: q = q, (20) =

8 V. Vm'

B T(k. ) vg v;2 27) '"
3s: q = q.(30)=;i =

27 V v3' 7)

2P: q = q, (21) + 2q„(21) B T(k).
V2

This shows that the empirical way of writing the formulas involves frequency
terms without physical meaning. The general form of the expressions (11)
however is similar to Eq. (9), as T varies only slowly with k. None of
these functions shows any maximum point corresponding to the results of
Davis and Barnes experiment, "nor do any of the curves for higher states.

From formulas Sa and Sb the constants A(nt) were computed for some of
the lower states. The complexity of the sums increases greatly with larger
n's. Fig. 1 compares the exact and the asymptotic expressions for the 1s

O
C

OJ04

Eo.s-
0

0~02-

~ 0.1-
OQl.
IQ

ooo 4 6 6 io f2
V electron kinetic energy

I

f4 volts

Fig. 1. Exact and asymptotic values of g for recombination to the is state.

state. Table I and Fig. 2 give the values of A (n) for 1s, 2s, 2p, 3s, , to Ss.
The values of X~A(nl) is given in the last column of Table I and plotted as
black dots in Fig. 2. The ZiA (nl) have been computed by summing over the
A(nl) from Eq. (8a) and (Sb), andtocheck it, also directly by Eq. (Sc) and
(8d) . (Oppenheimer's formulas. )

"Davis and Barnes, Phys, Rev. 34, 152 (1929); Barnes, Phys. Rev. 34, 1224 (1929);
35, 718 (1930).
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)=—n —1
Toss.z 1. Volncs for A(nl) nnd A(n) ~ P A(nl) in forrnnln g(nl) A(nl) 10 " Zs/V cnss

)=0

terms

.227

.0335
~ 0114
.0053
.0030

A (ni)

.109

.0403

.0190

A (n2)

.0520

.0318

f
A (n3)

.0254

A (n)

.227

.143

.104

.0814

For a comparison of the absolute magnitude of the q's with the experi-
mental values obtained from recombination spectra, we compare in Table II
the values as given by Mohler" for the 1S, 2P and BD states of caesium for
V=0.2 volts with the states 2s, 2P, 3d of hydrogen. There is little justihca-
tion for picking these hydrogen states as comparison, except that their

Z(n&}
0.3-

0.2-

00 n*& 2 3 a
Total gvantvrn nvmber

Fig. 2. Values of A in the formula q=A X10~' Z'/V for recombination to various states.

epee&see quantum numbers most nearly correspond. For the I' and D state
we have a satisfactory agreement. The discrepancy of the iS value is to be
expected, since it is a highly penetrating orbit, and therefore would djger
from a hydrogen-like behavior in a much greater degree than the P and D
states, A similar disagreement is pointed out by Mohler" in comparing the
continuous absorption of these states with the theoretical computations for

TABr.s II. Comparison of oal~es of q for V~0.& ~olts between caesigm (experimental date)
and hydrogen (theoretical date).

Cs

term

15
2P
3D

O.015X 10 "cm'
6.0 X10 ~'cm~
6.0 X10 ~'cm'

term

2s
2p
3d

1.7X10 "cm'
5.5X10 "cm'
2.6X10 "cm'
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the same hydrogen states by Oppenheimer. ' If one takes the states 6s, 6p
and Sd of hydrogen, whose true quantum numbers are the same as for the
series electron of Cs in the considered states, the correspondence is improved
with respect to the 5-state (it being wrong by a factor 10 instead of 100)
but the agreement for the I'- and D-states is worse by a factor of about 10.
This comparison is not given in Table II, because these higher terms have
not been computed but only roughly extrapolated

It can not be expected to have any better agreement than this, since the
wave function of the series electron in Cs is considerably diAerent from that
of any state in hydrogen. It is interesting to see that the best agreement for
the I' and D states is obtained by comparison with hydrogen states of the
same effective quantum number.

Attempts to find an expression for the total target area

A(ool) X 10 'o X Z'

have not been successful.
The experiments by Davis and Barnes" can not be explained through

spontaneous recombination of the electrons and a-particles and must there-
fore be due to some other mechanism.


