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ABSTRACT

A disc of infinite conductivity, whose radius is a, and whose center is at the
origin, lies in a plane which is perpendicular to the z-axis of cylindrical coordinates,
r, z, p. A circularly symmetrical electromagnetic wave of wave-length X impinges on

the disc, and the resultant field is required. The solution depends upon solving an
integral equation of the first kind. When 2~+/X &1, this equation reduces to an inte-
gral equation similar to Abel s which may be solved explicitly. As an illustration
the solution is obtained for the diffraction of a wave due to an oscillating electric
dipole whose axis is the axis of z. It is mentioned that these equations have been
used in determining the powerflow into the earth below a vertical antenna which is
grounded by a circular disc lying on the surface.

i. FQRMULATIoN oF THE PRQBLEM

1
CONSIDER a disc of radius a whose center is at the origin and whose~ p1ane is perpendicular to the Z-axis of cylindrical coordinates r, s, p.

A circularly symmetrical electromagnetic wave impinges on the disc, and the
resultant field is required. Heretofore in such problems the disc has been
treated as the limiting case of an oblate ellipsoid of revolution. ' A solution
in the form of a definite integral may, however, be directly obtained without
making use of this limiting pracess.

The electric intensity E and the magnetic intensity H' of the incident
wave are assumed to be of such nature that:

and that Hq', E„',and E.' are independent of $. The dependence of this wave
on time is to be of the form e '"'.

In diSraction problems, the held due to the disc is considered separately
from the incident wave. This field alone will be considered here, the incident
wave being taken into account only through the boundary conditions. The
electric intensity 8 and the magnetic intensity H of the field due to the disc
must satisfy Maxwell's equations for free space, which in this case reduce to:

B„H, Ep P

Hertzfeld, Wiener Berichte (1911)p. 1587; Moglich, Ann. der Physik 83, N9 (1927}.
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BE, BE,
Qd+By
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—uopE„=—

1 B—kupE, = — (rH~)—
r Br

1 B BE,——(rE,) + =0
r Br Bs

In these equations E and H are expressed in the rationalized practical
system of units. '

The disc is assumed to be of infinite conductivity. Thus the radial com-
ponent of the electric intensity of the total field must vanish on the surface
of the disc. This requires that

(E,), «
——f(r) for r ( s

where f(r) is the negative of the radial component of the electric intensity
of the incident wave at s=o. From symmetry considerations it is seen that

(E), , =0 for r)u
and that

(He), o =0 for r & a.

It is required further that 8 and H be continuous functions of (r, z) through-
out space except at the disc, and that they vanish to proper orders at infinity.

2. SOLUTION OF THE PROBLEM

An appropriate solution of Eq. (2) is:

E, = ~t J&(Xr)$(X)(X' —k')' e+*'" " '"'dX
0

E, = + t Jo(X )d(X)X **&" ' '"'dX
0

He = ~i&op ~I J,(l r)y(X)e* &"'-"'&'"dX"'
0

(6)

The upper signs are used for positive z, while k =&e/c, where c is the velocity
of light. The symbols Jo and J& represent the ordinary Bessel's functions. The
quantity P(X) is an arbitrary function of X, independent of the coordinates.

In this system: Magnetic intensity, H', is expressed in ampere-turns per cm. Magnetic
Aux density, &, is expressed in webers per sq. cm. {=10' maxwells per sq. cm.). Permeability,
p, =B/~=4x/10 ' for free space. Electric intensity, E, is expressed in volts per cm. Displace-
ment, D, is expressed in coulombs per sq. cm, Permittivity, p =D/K=8. 85/10 " for free
space.
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It may be chosen in such a man. ner as to satisfy the boundary conditions
( (3), (4), and (S) ) and is, of course, subject to the restriction that it must
produce proper convergence of the integrals.

The method of solution is somewhat analogous to Beltrami's theory of
symmetrical potentials. ' Choose:

pa
p(X) = l F(s) cos [s(X2 —k')'/']dsJ,

where F(s) is arbitrary. From q. (7)

r(E,), 2 —— r l~ J1(—) r)p(X)dX
Br "o

Substituting the value of p()1) given by Eq. (9), and changing the order of
integration, there results:

p 00

r(E,), 2
——+ rF(s)ds —

ll J1(Xr) cos [s() ' —k2)'/2]dX
~r 0 0

For r&a
r/ f" F(s) cosh (ks)ds

r(E,),=2 = + —r
Br r

Thus Eq. (4) is satisfied.
Next F(/2) will be chosen so that Eq. (5) is satisfied. From Eq. (8)

(~~), , = ~212p )t J,() r)/t(X)dX.

Now from Eq. (9)

sin [/2() ' —k')'"] /'~ sin [s(X' —k')'/']
4p.) = F(/2) ——

„I' F'(s) ds. (14)
() 2 k2)1/2 J (112 k2)1/2

For r&a

sin [/2(X' —k')'"]
(H~), 2

——~222p F(/2) J1(l1r)
Jo () 2 k2)1/2

sin [s(k2 —k')'"]
F'(s)ds l~ J1()r)

(X2 —k') '" (1S)

F(/2) sinh (ks)
(&2)*-2 = 2~P

kr

[' F'(s) sinh (ks)ds =0

This equation gives F(/2) in terms of F'(s):
/" slnh (ks)

F(/2) = F'(s) ds.
J 2 sinh (k/2)

' Webster: Partial Differential Equations of Mathematical Physics. p. 368 (1927).
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Next F'(s) is determined in such a manner that Eq. (3) is satisfied.
Substituting Eq. (14) in Eq. (3):

00

(E„), 2 = Ji(Xr) F(a) sin [a(X2 —k')'"]
p

pa
F'(s) sin [$(X2 —k')'/']ds d/1.

sJ p

(18)

The value of F(a) from Eq. (17) is now substituted in Eq. (18). Changing
the order of integration:

sinh (ks)
(F.,), 2 = ! F'(s) ds ~ Ji(Xr) sin [a(X2 —k2)'/2]dX

J 2 sinh (ka) & p

For r(a
F'(s)ds ~! Ji(Xr) sin [s()P —k2)1/2]dX

cos [k(r' —s')'/']
r(E,), 2 f(r) = — ! sF'(s) ds

(r2 $2) 1/2

/' a sinh [k(a —r ) / ] sinh (ks) s sinh [k(s —r ) / ]+ i t F'(s) ds (20)
(a' —r')"" sinh (ka) (s2 r2)1/2

This is an integral equation of the first kind for the determination of
F'(s). It probably possesses no solution of a simple form. If, however, the
second integrand Qe expanded in a power series in ku, we find that the leading
term is

iF'(s) ka 4 sr'(a' —s') (ka)'
+ higher order terms

sinh (ka) 3 a' 5!

Let us now assume that ka&i, the final result being, of course, subject
to this restriction. Remembering that r in Eq. (20) is less than a, it appears
that the second integral of Eq. (20) will be much smaller than the first unless
abnormally great values of F'(s) occur between s=r and s=a. We will
therefore assume that the second integral of Eq. (20) is negligible as compared
to the first. The validity of this assumption for any definite problem must be
checked after F'(s) is calculated, by direct test of the final result in the
original conditions of the problem. In the special cases for which calculation
has been completed, the error involved has been found to be less than one
percent.

We thus have left an integral equation similar to Abel's equation, '
which may be solved in much the same manner. This equation is:

!"F'(s)s cos [k(r' —s')'/']ds
(r) = — !

~p (r2 —s2)1/2
(21)

' Bocher, An Introduction to the Study of Integral Equations, p. 8, (1914).



—F'(s) =,t Pg[(k' —P2)'"]f2(Ps)dP + t Xg[(V + k')'"]J2(Xs)dX (22)
Jp 0

where g[p] is a function to be determined. Substituting this value for
F'(s) in Eq. (21) and changing the order of integration,

pk cos [k(r' —s')'/']
rf(r) =

I Pg [(k' —P')"']dP sI2(Ps) dsi~

p J (r'2 s2) 1/'2

00
/ ' cos [k(r' —s')"']

+ Xg[(X2 + k')'/2]dX II sj2(Xs) ds
p j (r2 s2) 1/2

2 sin [r(k2 P2)1/2]
pg[(k2 P2)1/2] dP

~p (k2 P2) 1/2

f /20 sin r V+ k' '/'

j 71g[(F12 + k2)1/2]
(7 2 + k2)1/2

(23)

(24)

or, changing the variable of integration,

It is interesting to note that this equation for the determination of F'(s)
no longer contains the parameter a. Thus we wi11 proceed forma11y as though
the functions f(r) were known' for all values of r. In the final equations
F'(s) will involve a knowledge of f(r) only from r =0 to r =/2. Let

rf(r) = g(p) sin (rp)dp.
4 p

This is a Fourier integral equation, the solution of which is

2 f'

g(p) = —
I af(a) sin (ap)da

Ã &p

cos (ap) " 2 I'"8 cos (ap)= —2af(a) + —
I

—(af(a)) da.
2rP 2 2r j 2 Ba P

(25)

(26)

(27)

(29)

The solution of the problem is now complete, since we may write from
Eq. (14) and Eq. (1/),

' Since jt'{r) is essentially a component of the incident field, it vanishes at infinity as 1jr'.

Since f(a) vanishes to a higher order than 1/a at a = ~, the first term van-
ishes. Substituting the remainder in Eq. (22)

2 f' 8 2 COS [a(k2 P2)1/2]—~'(s) = —
I

—( f( ))d ' Pfo(Ps) dP~j, aa Jp (k2 P'2)1/2

(2g)
f% 00 cos [a(X'+ k')'"]

+ —~' (af(a))da i
XJ—o(Xs) dX

1I ~p BCL ~p (712 + k2) 1/2

2 f'i 8 a cosll [k(s —a ) /2]
~'(s) = ——

~'
— (af(a)) dn

~p A 8A (s2 a2) 1/2
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sin [a(X2 —k')'"] sinh (ks)

J (X k ) / siIlll (ka)

sin [s(X2 —k')'/']
ds (30)

(y2 k2) 1/2

and the components of the field are then obtained directly from Eq. {6),
(7), and (8).
Thus

sinh (ks) /'" sin [a(&' —k')'"]
Pe = 'si/ep I F'(s) —ds ll JI(Xr)e~*&"' dX

sinh (ka) J 2 (g2 k2) 1/2

sin [s(X2 —k')'"]
+ ia)P II F'( )sd s J,(Xr)P*&"' " '"' dX

/s/I 0 (g2 k2) 1/2

p /'~ s111h (kI1) s111h (ks)
P&{s) eifs/I, ——e* fsssinh (kI2) ds

kr 02 sinh {ka)
(31)

where

Rl + i71 = [r2 + (ia + z)2]'/'

R2+ iE2 ——fr2+ (is + z)']'".

The upper signs are used for positive s and the lower for negative s. Deriv-
atives of Hq give E„and E,.

i BHp

LOP 82'

z 8
R, = {rH)—

(dpr l)?'

(32)

In many important cases f(12) is given in the form of an integral.

Then

f(u) = I k(p) JI(ap)dp.
6 0

(33)

and

8 f 00——(~f(~)) = I p»{p)Jo(~p)dp
cx 8R d0

8 cosh [k(s' —n') '"]
R'(s) = ——

II pk(p)dp ~ e2J2(&a) dA
0 (s2 ~2) 1/2

2 I' " sin [s(p' —k')'"]
pk(p) dp

0 (p2 k2) z/2

(34)
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3. ILLUSTRATIVE EXAMPLE

As an example, F'(s) will be calculated for the diffraction of a wave due to
an oscillating electric dipole. The axis of the dipole is the Z-axis and it is
located a distance IIabove the disc. Then

so that

P 3 (H *—)( '——32')' J (pr)(fp
0

f(~) = P ~ ~l(p~)&p
dp

(37)

Thus from Eq. (35)

k(p) —P23 H(3 —3)l(-3 (38)

2 ('", sin [s(p2 —k')'(2]
F~{2) —

~ P33 H(p 3—)U2 —
dp

m ~p (p2 k2) l. /2

2 (' k(EP —s2) sinh (ks) + 2ikPs cosh (ks)
'~i kH

(jP + 32)2

(3H2s —s3) cosh (ks) + 2(3Zs2 —H3) sinh (ks)
~i kH

(+2 + 32) 3

This value of F'(s) is then substituted in Eq. (31) to obtain the components
of the field. The resulting integrals are rather complicated, but may be
numerically evaluated by mechanical means.

These equations have been used in determining the power How into the
earth below a vertical antenna which is grounded by a circuIar disc lying on
the surface. (The disc is an idealized case. Actually a number of radial wires
would be buried in the earth )The .results of this investigation will be
pubIished elsewhere.


