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ABSTRACT

This theory abandoiis the attempt to geometrise physics. Its aim is to give
invariant differential equations of motion for mass-charge particles in regions where
the indeterminacy of position and momentum is not significant.

Eddington's displacement rule is used to define an indeterminate vector field,
and a simple generalisation of it is used to define an indeterminate tensor field. The
vector field gives the possible velocity of a mass-charge particle at any point, and
vector lines in the field are necessarily the tracks of the particle. The tensor field
defines an invariant element of arc by means of which the orbit equations are given
in the familiar parametric form,

Physical or actual fields are necessarily determinate functions and are defined by
the variations of the indeterminate fields round closed loops in the usual way; but an
alternative definition is suggested which does not depend upon such abstract processes.
The usual identifications of the gravitation and electric field tensors give the classical
laws for small fields. In the pure gravitation field the vector lines become Einstein's
"geodesics", and for negligible gravitation field they become the empirical equations
of motion of a charge in regions remote from atomic nuclei.

The theory is purely a descriptive apparatus, and its usefulness is definitely
limited by the principle of indeterminacy. This admitted limitation enables the theory
to avoid the inconsistency between field and atomic theory, an inconsistency which
appears as merely the result of ignoring the limitation,

INTRoDUcTIo N

LL unified field theories have hitherto been attempts to geometrise com-

~~

~~

~

pletely the theory of the physical field: and such is the loyalty to the
geometrical ideal that quite unintelligible properties are introduced such as
non-integrable length and generalised parallel displacement. Such geometri-
cal analogies are entirely useless as aids to imaginative conception and there-
fore, in the writer s opinion, a hindrance to sound mathematics and to further
progress. In the present theory geometrical interpretation is dispensed with.
Stated briefly the aim of the theory is to derive a spacetime description of the
motion of a material particle in regions where the indeterminacy in the
particle's position and momentum is not significant; the motion being given
by differential equations of invariant form.

Apart from Whitehead's theory' which does not appear to have attracted
much attention, and which was based on the reactionary principle of absolute

' For a statement of the opposite view see Eddington's "The Mathematical Theory of
Relativity" Art. 83.

' Dr, A. N. Khitehead, "The Principle of Relativity" Chaps. IV, V.
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acceleration, the theory of O. Klein' appears to be the only theory which has
succeeded in so deriving the equations of motion of charged particles in elec-
tric 6elds. Since the latter theory introduces an unknowable fifth dimension,
it would seem less satisfactory than the present one which requires no such
ad hoc hypothesis.

The writer has tried so to state the theory that it shall be obviously noth-
ing more than a descriptive apparatus: not its validity, but only its usefulness
as an apparatus depends upon the existence of the entities whose motions it
proposes to describe. The limits to the usefulness of the method come out
quite clearly when the fact of indeterminacy is taken into account. Thus the
present theory will lead to the classical result that an accelerated electron
must radiate energy, but it also contains the admission that such a result is
meaningless when the acceleration is large and taking place in fields close to
atomic nuclei. This seems to be a distinct advance on the classical theory, at
least as usually stated; for no such admission is contained in the latter theory.

Thus the present theory suggests that the apparent inconsistency between
the field theory and atomic theory is nothing more, in all probability, than a
limitation in the usefulness of the field theory due to the fact of indeter-
minacy. Once the exact nature of this limited usefulness is defined the incon-
sistency evaporates.

I. THE VEcTGR FIELD oF PossIBLE VELocITY

Begin with space time coordinates x;, i =1, 2, 3, 4, and the fundamental
array I', I', i, j, 0 =1, 2, 3, 4. The latter is composed of sixtv four independent
continuous single-valued functions of the coordinates.

Select arbitarily a 4-vector A" at a definite point x; and proceed by the
rule

to construct a vector field, by defining

ci + date

x = x;+dx;.
The field at any point will depend upon the track along which the rule (1)

has been applied. We shall call this field the field of possible velocity, and
use it to describe the motions of particles.

A vector line in this field will be a line, every element of which has coor-
dinate components proportional to the components of the vector at the point;
and so defined, will be the track of a particle with the corresponding initial
conditions. The equations of a vector line follow immediately from Eq. (1) as

d'x; = —F;I,'dx;dxj, .
This is a set of four differential equations of the second order, their solu-

tions containing eight arbitrary constants, the four components of initial
velocity and the coordinates of the starting point.

' 0. Klein Zeit:s. f. Physik 45, 188 {1927).
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I I. THE FUNDAMENTAL TENSOR FIELD
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Erect, again at any initial point, the (symmetrical tensor) components
a;k and just as in fjl, define a tensor field by

da;k = (akI;" + a;„Ik")dx
dark (arkp i + af rp k)dx

where ai~ is the usual normalised subdeterminant of a;~.
An associated covariant vector

«-'l i &i&~4

may be defined at any point, and combining Eqs. (1) and (3) shows

1;; .0 frdX, .

Provided we remember that Eqs. (3) are not integrable, and that there-
fore the double partial differentiation of the a;~ s is non-commutative, they
can be expressed in the form

Ba;k«'Bx. = a„kl';." + a;„I'k," etc.

Insert these equations in the usual de6.nition of the Christoffel three-index
symbol of the second kind, we deduce that, if we put

(4)

(4')

then

kg, k J
= 6;,k + a,~ak'V'. ," + a„a"V'„".

Using Eqs. (4), (4'), and (5), Eq. (2) becomes

d' x; + ( jk, i }d-x;dxk ——2a„,a'*q, k"dx, dxk.

III. FUNDAMENTAL INVARIANTS

If we dehne invariant

we can show by Eqs. (1) and (1') that the value of A is a constant independent
of position, depending only on the initial values of A„A'. Similarly if we
de6ne the invariant

ds' = ai;dxidx;

and apply the rule of association

d dx = —F;; dx;dx,

the value of ds will also be a constant depending only on the initial values of
the displacement ds; and the tensor a;;. Comparison of Eqs. (1") and (2)
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shows that we may therefore use ds as an invariant differential to give the
Eqs. (2) the form

d'x;/ds' + r;p'dx;/dsdxg/'ds = 0.

Since ds is an invariant for coordinate transformations, we may use the
variation equation

~ds=0

to deduce4 the tensor character of the expression

d'x, +,'~k, f}dx,dx, = ~'

and as usual also the tensor

D" g
——aD"/axe + {sk, i}D"+ {sk,j}D"

and the similar derivatives of tensors of diferent order.
Note that although (10) is a tensor at any point, it is not a determinate

function of position; solutions of (9) are not fixed by the initial conditions, as
are those of Eq. (2).

IV. ACTUAL PHYSICAL FIELDS

Ke have introduced the idea of a possible field, indeterminate at any
point, but actual fields will be determinate at every point. Such fields may be
obtained from the fundamental array in the usual way.

Thus the total change in the possible vector field on going round a closed
space-time track is'

~Zf = —-'~"~&*B' W dS- (12')

and similarly the change in the tensor field is"

Aa;; = —
2 jt)t (ag;*B~,„+a;g~B~;„.)dS"

where

*B',= —ar;;/ax, . + ar;, /ax; y r,, r„' —r 'r„
is a tensor determined by the array.

Define as usual

(12")

(12)

(13)
(13')

' For an alternative deduction of the tensor character of (11) see the writer's "Mathe-
matical Properties of a Continuum with Indeterminate Metric" shortly appearing in the P.
R.S.

' See Eddington, reference 1, Art. 92.
' The proof of this is analogous to that of the preceeding equation.
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and

Then by Eq. (12) we can show that

*F;, = BI'„/,Bx, —BI'„'/Bx;

or that
*I";7 ——*A.;;—*A 7;

where
*K; = I',.;" + Bf/Bx;

(13")

(14')

(14")

in the original coordinates, but transforms as a vector; f being any function of
position, invariant.

An alternative antisymmetrical tensor' may also be defined by
g JI gy~1 @~I

t7 ~ 7 7t t

where

In what follows no difference results from using *II,; instead of ~F;;.

(15)

(15')

(a). Pure gravitation Beld.

Let us limit our choice of the 64 array-components at any point by the
twenty-four independent equations

Then Eqs. (4'), (4) and (5) show that Eq. (12) reduces to the classical Rie-
mann-Christo6el tensor, both (15) and (13") vanish, and (13') becomes
Einstein's symmetrical field tensor. By virtue of (12") the components a, ;
become determinate functions of position, Eqs. (3) becoming mere identities.
In this case therefore our theory is simply a restatement of Einstein's from a
new point of view; the vector lines or particle orbits, becoming Einstein s
so-called geodesics.

(b). Negligible gravitation Beld.

AVe wish to study the field of a small charged particle, in particular, of
an electron. The gravitation field of an electron may be neglected' to a first
approximation, and if zero external gravitation field is taken then we may
take the three index symbols as zero both in the orbit Eqs. (2') and in the
derivatives (11).

Maxwell's first set of laws

BF,g/ Bxi, + BI (i/B'x;+ BFi„y'Bx; = 0

are identically satisfied if either (14) or (15) are used as the electric field ten-
sor; and his second set

J' = BF"/Bx,
' For proof (of tensor nature} refer to the paper mentioned in reference (4) above.
' See Eddington, reference 1, Arts. 78, 80.

(17')



IVII.I.IA M BA ED

are satisfied to the degree of approximation assumed, if we define

Ji +Pij
I 2'

Again we have approximately

O'D;/8x;8xI„- ——D;, ;I, ——D;, I,;
so that by (14') and (18)

~i, j = ij ( + jr *Itr, )j, js = S" ( &j,jrs *&r,si j)

(18)

J;;—Jj, —u (K;j Kj;),„,

glvlng

A solution of this' is

"F;, = (1/4jr) )~J )t (1/r)(J, , ; —Jj,;)dv (20)

which gives the field at distance r from the volume dv containing the current
density J;. Suppose the current J;dv is due to a charge e moving with a
velocity A;, then J;dv=eA;, so that Eq (20). becomes

*F;; = (1/4jr)(e/r)(A;; —A;;)

or, by (1') and (4')

*F;; = 2V';, "Aie/4jrrs (21)

If the charge e is not considered a point singularity, it must be supposed to
be such that each element has the same velocity, and Eq. (21) to have been
integrated over the volume dv containing e.

Construct any sphere of radius u completely enclosing the charge e; then
it is easy to show that the average of the values of de/r at all points over the
surface of the sphere is de/a, so that the average of e/r is also e/a, and the
average of the field taken over the surface of the sphere will therefore be

e
Z j 2PZ2 s4 I' ~

4xa
(21')

Suppose now that the external field varies only so slowly that its variation
over the sphere of radius a can be neglected, then we may assume that it is
possible to choose the sphere so that the external field I';;" is equal and oppo-
site to the average I";; this sphere wi11 be defined as the boundary of the
charged particle, or even as the particle itself. Actually the sphere is only an
approximation: a more accurate definition would be the surface, assumed to
exist, over which the external field just balances the corpuscle's field at every
point.

' See Eddington, reference i, Arts. 72, 74.
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Granting this assumption, " that the particle is bounded by a surface of
zero field, the equations of motion of the charge e are given by putting in
(2')

a„;dx;/ds = .4„, dzi/'ds = .4 ",

and
2V, g "2, = (4sra/e)F, k' ———(4sra/ e)F, i',

"
giving, of course with the approximation mentioned before,

m. = e"-/4m assd'x;/ds' = —e-I "F "' (-'2)

which, if m be interpreted as the mass of the particle, are the empirical equa-
tions of motion of charged particles, in regions where the field Ii;," is not
sensibly varied over the volume occupied by the charge.

V. THE PRINCIPLE OF INDETERMINACY

Heisenberg's principle of indeterminacy shows that the vector line method
cannot give anything more than an approximate description of phenomena,
for to do so it requires an exact knowledge of the initial conditions. The de-
gree of approximation can be roughly estimated, however.

Let q, p be a typical pair of coordinates and momentum components
actually measured as the initial conditions of the particle, and let the esti-
mated uncertainties be ~q, Ap; definite values satisfying

~q ~p = 0(h).

Describe a sphere of diameter D and centre g, where

D ) Dq, and D —Aq = 0(hq).

(23)

(24)

If this sphere is moved so that its centre follows the track found by putting
the measured initial conditions in (22), then the particle will certainly re-
main within the sphere for a finite time T. The greater T or the smaller Aq

and D, the more useful the vector line description, and vice versa. V~e must
be careful not to assert that if exact initial conditions could be found, then
Eqs. (22) would give an exact description of the motion; for such an assertion
can never be experimentally verified. Essentially, therefore the time T must
be determined experimentally in every case; it is not possible to deduce from
the purely abstract descriptive apparatus any binding limits to its applica-
bility; an appeal to experiment must be made.

Nevertheless the following argument which, for the above reasons,
cannot claim to be rigorous, may not be without interest.

In zero external field, (that is zero after the initial measurements have
been made) an electron obeying Eq. (22) will move with its initial velocity
unchanged. Any initial discrepancy between its measured and its "actual"

io Eddington's assumption (reference 1, Art, 80) that the two fields neutralise each other
throughout the volume occupied by the charge couM be used here just as well, but the one given
in the text seems to be a useful alternative.
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velocity will be transmitted as it were along its motion unchanged. Hence the
time T in which the electron may drift out of the sphere of diameter D men-

tioned above will be

T = (D —Aq)/Av

or by Eq. (23)
= (m/h)(D —Aq)(Dq)

For the electron (m/h) = 0(1) so that by Eq. (24)

T = 0(hq').

Suppose the initial velocity is measured as 10' cm/sec; and allow an uncer-
tainty of no more than 10' cm/sec. Then by Eq. (23) the uncertainty in the
initial position will be of the order of 10-'cm. Thus T is of the order of 10 '
sec. and the length of track traversed in that time of the order of 100 cm.

When the field is not zero the initial discrepancy is not transmitted un-

changed and the value of T becomes correspondingly uncertain, in general
less. AVhen the field varies so rapidly with position that it is sensibly different
for different points within the sphere D, the various possible tracks starting
from the points of Aq will in general diverge so rapidly that the sphere D will

contain them only for a uselessly short time.
This non-rigorous argument thus leads us to suspect that in regions near

atomic nuclei, where the space-variation of the field is great, the vector
line method beccxnes useless; a result which is in full agreement with ex-
perimental data.

Independent of this argument is the further possibility that in the non-
uniform fields near atomic nuclei, the boundary of the electron as defined
in $4 can no longer exist. ln this case the electron would cease to function
as a particle and the process of deriving Eqs. (22) would no ion'ger be possible.


