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ON THE ENTROPY OF HYDROGEN*

By D. Mac GILLAVRY
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ABSTRACT

The entropy difference between ordinary hydrogen and hydrogen in perfect
equilibrium, both in the solid phase at the absolute zero, has been calculated to
be (3/4)R log 3+R log 4. This value checks the result given by Giauque and
Johnston. The method is the direct evaluation along a reversible path of fdQ/T.
under certain idealized assumptions, using partition functions. The thermodynamical
and statistical aspects are examined.

N a recent paper! I have indicated a theoretical way, by which the entropy

difference between ordinary hydrogen and hydrogen in perfect equili-
brium may be calculated. In this study I shall consider the details. With
Fowler? T assume, that ordinary hydrogen is a mixture of para- and ortho-
hydrogen in the fixed ratio 1:3, that thus transitions between para- and
ortho-hydrogen do not occur in the ordinary mixture, and further, that para-
and ortho-hydrogen and its different mixtures always have the same vapor
pressure and the same heat of transition, so that the ratio 1:3 persists un-
changed, when ordinary hydrogen is liquified or solidified. Recent experi-
ments® have shown that this last assumption is not exactly true. Calculations
made on these assumptions must be regarded, therefore, only as first approx-
imations.

All earlier investigations and measurements have shown that ordinary
hydrogen, gaseous, liquid or solid, may behave like a substance in true equili-
brium. We now must add, provided the experiments are not continued over
too long a time. One may speak of reversible quasistatic changes of state,
and thus, the entropy difference of ordinary hydrogen at higher and lower
temperatures can be discussed.* Going to rather high temperatures (above
500°C) the transition velocity becomes measurable, but at sufficiently high
temperature we have again the proportion 1:3 anyway. It seems to me that
there is no objection against idealizing the theory. Thus I suppose that the
necessary experiments can be performed in such a short time, that the transi-
tion velocity may be regarded as negligibly small over the whole range of
temperature. This concerns ordinary hydrogen.

* Contribution No. 635 from the Department of Chemistry, Columbia University, New
York. N. Y.

1 D. Mac Gillavry, Rec. trav. chim. 49, 348 (1930).

2 R. H. Fowler, Proc. Roy. Soc. A118, 52 (1928).

3 K. F. Bonhoeffer and P. Harteck, Zeits. f. physik. Chem. Abt. B, 4, 113 (1929); Naturwis-
scnschaften 17, 182, 321 (1929). K. Clusius and K. Hiller, Zeits. f. physik. Chem. Abt. B,
4, 158 (1929).

4 P. Ehrenfest and V. Trkal, Verslag. Akad. Wetenschappen Amsterdam, 28, 906 (1920).
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On the other hand one can discuss also the entropy of hydrogen in ideal
perfect equilibrium. In this second case care should be taken that the ex-
periments are extended over such a long time, that the transition velocity
may be considered as extremely rapid. Or one can take advantage of suitable
catalysts accelerating this transition velocity.?

Now, the difference between para- and ortho-hydrogen resides only in
the different rotational states. But the masses of all the hydrogen molecules
are equal and the distribution of translational velocities is exactly the same.
Further the total entropy can always be written as the sum of the translation-
al and the rotational entropy, disregarding at first the vibrational states. If
we take gaseous ordinary and gaseous ideal hydrogen at the same tempera-
ture (and pressure), then the difference in entropy must be a difference in
rotational entropy only. Also, according to the assumptions already made
by Fowler (l.c.), the difference in entropy between solid ordinary and solid
ideal hydrogen must be rotational entropy only; for either form the rotations
in the solid phase can be described by the same partition function, which
holds good for the corresponding gas phase. The rotational entropy, there-
fore, should be unaffected by a change in phase, if it were rigorously true,
that the ratio of ortho- and para-hydrogen is not altered by a change of phase,
in the case of ordinary, as well as in the case of ideal hydrogen.

In this paper I shall calculate the entropy difference at the absolute zero
between the two solid forms of hydrogen (ordinary and ideal). The problem
may be solved in this way. One calculates at first the rotational entropy
difference between ordinary hydrogen at a very high temperature and at the
absolute zero. One calculates in the same way the rotational entropy
difference of ideal hydrogen at the same very high temperature and at the
absolute zero. Finally one goes to the limit of infinitely high temperature. But
at infinitely high temperature there is no difference between ordinary and ideal
hydrogen. The distribution of energy over the rotational states becomes
exactly the same at extremely high temperatures. Therefore, the desired dif-
ference of entropy is obtained by simply subtracting the two indicated differences.
At the same time it is obvious, that one may disregard complications caused
by vibrations and other mechanisms. In the neighborhood of absolute zero
rotational states only are excited.

For the actual calculation we can best make use of the methods developed
by Fowler. Although ordinary hydrogen is a mixture, we can omit at once
the paradox term, for the ratio of the two constituents is assumed to remain
exactly constant. The entropy 7 is related to the partition function F by
the equation:*

5 K. F. Bonhoeffer and P. Harteck, reference 3. It is interesting to mention, that the
catalysts, which catalyze the transitions between ortho- and para-hydrogen, also catalyze
the combination of hydrogen and chlorine. Mellor in his Comprehensive Treatise on Inorgani:
and Theoretical Chemistry (Vol. II, page 159 top) says: “the mixed gases can be exploded
by a piece of brick at 150°, while platinum black or charcoal may produce an explosion at
ordinary temperature in the dark; in any case, they start the gases reacting—presumably by

catalysis.” Cf. Rec. trav. chim. 49, 348 (1930).
¢ R. H. Fowler, Phil. Mag. 44, 823 (1922).
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The indices 1 and 2 indicate two states with temperature T and T; the pres-
sure does not influence the rotational properties of perfect gases. The parti-
tion function of ideal hydrogen is:

Fi=1+4Se% 4 9¢7209 4 ... 4 3.3¢7% 4 3.7¢71% + - - - = ¢, + ¢, (2.1)
and the partition function of ordinary hydrogen is:
Fc —_ (1 + Se— b + Qe—200 + .. )1/4

X (3.3¢7% 4 3. 7712 4 .. )34 = ¢ V4. 304, (2.2)

and where & , is the partition function for para-hydrogen:

¢p = 1+ Se7% 4 920 4 . .. (3.1)
and ¢, is the partition function for ortho-hydrogen:
by = 3(3e¥ 4 T 4 117800 4 .. ) (3.2)
o = h2/8x2kT.

where 4 is the constant of Planck, k the constant of Boltzmann, I the moment
of inertia. Thus, we have to form the expression:

n* —n* = {n.00) — n.(2)] + {ni(®) — 7:0)}
[ d
= lim lim{—}R<1+; >loch

I
T,=» T,=0 dT

2

| 2

+ |R<1 + T-d—> logF; }
dT ST @

The indices ¢ and ¢ indicate ordinary and ideal hydrogen respectively.

That the substitution of F; for ideal hydrogen and of F, for ordinary
hydrogen in formula (1) gives correct results, can be proved also with the gen-
eral theorems given by Fowler in his monograph on ‘‘Statistical Mechanics.”
One finds on page 129 the theorem: that any particular species of free mole-
cule contributes to the characteristic function of Planck:

2 1

— F(T)
¥ tog 1} ,
l 0og ﬂl + (5)

where M is the average number present in the specified equilibrium state.”
One gets the entropy from Planck’s characteristic function by applying the
operator (1+7°d/dT). Thus any entropy difference of ideal hydrogen, for
instance, is given by:

Niy — M4 d F; '
Te M 1+T—>(10—+1>
R |( ar) \ %N

7 Combination of the two theorems on page 128 and 129.
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then M here equals NV, Avogadro’s number, if we employ molar entropies.

It may be instructive to interpret ideal hydrogen also as a mixture of
para- and ortho-hydrogen, between which two forms equilibrium has been
established. One verifies easily that:?

2

1
log —+1
gN

1

M, =— X N and M, = X N. (6)

We first get:

Niy — M4y
R

d é»p b Fo bo
1+ T-—){ (1 P 4 1)+ (Io P 4 1)}
K aT )\, + e\ ° I, 6 + o\ C L,

which becomes:

(1+Ti{ % JogFi+ ¢”—1ogF-}
diTN\e,+ 60— bt

|0+ s S oy )+ 5 (s )
.___ S og — og —
aT ¢p + ¢o & < ¢p,+ [ g N

d 2
< ar) ¢

The functions ¢, and ¢, depend on the temperature 7.

I leave it to the reader to derive in an analogous way the formula for the
entropy differences of ordinary hydrogen. I recall only that the concentra-
tions of the para- and the ortho-forms now have the constant values:

1

2

1

(1

1

b

- - 1
M,)e = lim (M,); = lim —N = —N, 7.1
e = O = v e T (7.0

o

(M,).

— 3
lim (M,); = lim —N = —N. (7.2)
T=w T=w ¢p + ¢o 4

The omission of the paradox terms from the two terms of equation (4) is
legitimate, since they cancel if they are not omitted.

8 Cf. R. H. Fowler, Statistical Mechanics, p. 30 formula (51), or p. 106 formulae (310)
and (311).



1402 D. MAC GILLAVRY

Equation (4) represents exactly

8- fu- fim

the integral taken along the reversible way examined in this study. It must
be possible to check the theory experimentally step by step, measuring heat
capacities, as is always done. From the thermodynamical arguments used
thus far it is evident, that no further term has to be added to the two terms

of equation (4).

Now, we regroup the terms of expression (4) in a more convenient way,

omitting the indices 1 and 2:

7t — ¥ . d F. ) d F.
—— =lim(1l + I'—)log — — lim(1 + 7—— ) log —-
R T=0 dT I; T=w daT I;
We introduce two new functions, defined by the equations:
d)u = 6-20¢0,7
I, = (6—20)3/4];0, = efsa/‘z]«‘(";
and we substitute F/ in the first term of (4a), noticing that always:
(1+Td)1 o <1+Td>< a> a+a 0
[—— ) log e=o/T = — N —-=)= - =4+ —==0;
aT aT T T T
thus:
7)¢~,* - ni* . d 1“0, . d ﬁ‘c
— —= lim{1 4+ 7—)log— —lim{1 + 7T—-)log — -
R T7=0 aT I T=w dT F;

I will give the results at once:
!
lim log —— = log 11/4.93/% = Jog 93/4;
T=0 Fd

d rS
lim 77— log — = 0;
r=0 dT I;

I, 1\V4/ 3\3/4
lim I()g——=log<—> <—> ;
7= F; 4 4

d I,
lim 7" —- log — = 0.
r=» dT F;

Thus:

ITNMH 3N\ 3
ne* — n:¥ = Rlog 934 — Rlog <1—> <~4—> = ZR log 3 + R log 4.

(4a)

(8.1)

(8.2)

(8.3)

(8.4)
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The mathematical material, necessary for the justification of equations (8),
has already been furnished by Fowler.?

This analysis is sound from a thermodynamical standpoint. However, a
statistician may ask, does expression (4) really represent the desired entropy
difference? Should not a third term be added? At higher temperatures or-
dinary and ideal hydrogen have the same internal energy and the same speci-
fic heat of rotation. At one time it has been supposed that transitions were
prohibited, and at a later time it has been supposed that transitions do occur.
Does not this different viewpoint necessitate a third term? Let us now add
a third term, representing the entropy difference arising from those two view-
points:

(@) — i),

using again the most general theorems; then the operator
Lim;—oR(1+4T7d/dT)

has to work on the expression:
(o 7 1) 4 (o 1) = (e 1)
—11 1)+ —\log— +1)—(log—+1
4 <Og N/4 + 2\ 8 3n/a &N
1\1/4 73\3/4 1 1
1 Hagp,3/4 — ] - (—) (I — 1)—] Fi-(l — 1)
og ¢,'"¢ 0g<4> 1 + OgN+ og ogN+

Fc 1 1/4 3 3/4
log— — log | - - .
&, % <4> (4)

The application of the operator limr_ R(14+7T d/dT) yields zero,!” in ac-
cordance with the thermodynamical considerations.

We may consider hydrogen as a mixture, if the experiments do not take
much time, and we may consider hydrogen as a single gas, if we always wait
a sufficiently long time. The entropy of hydrogen in equilibrium at higher
temperatures can not depend on the length of time we keep it in a vessel. The
equality can only be obtained in statistics by inserting the appropriate para-
dox terms (logarithmic terms), and for hydrogen considered as a mixture, and
for hydrogen considered as a single gas; then the term representing the dif-
ference vanishes. Here we have a case, that a mixed gas has the same entropy
as a single gas (see below).

Let us now consider the analysis more carefully. From thermodynamical
considerations two terms have arisen:

1:(0) — n.(0) and 7,(®) — 7:0).

To complete the argument from a statistical standpoint a third term has
been added:

9 One may refer concerning the limits (8.1) and (8.2) to Proc. Roy. Soc. A118, 52 (1928),
and concerning the limits (8.3) and (8.4) to Statistical Mechanics p. 52, 53, and also Phil.
Mag. 45, 11 (1923).

10 See equations (8.3) and (8.4).
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ne(%0) — ni(e0).
In this way we have come to the equation:
1% = 1% = 1:00) — 7:(0) = {7.(0) — 7(0)}
+ {n(®) = ni()} + {ni() — 7:0)},
which is trivial mathematically. It is obvious, that the mathematical calcula-

tion can at once be shortened in just this way, provided the general theorems
are applied throughout. Therefore, we get:

7.(0) — 7,(0)
R

=1 (1+Td){1<l i +1>+3<1 % +1) (1 F"+1>}
" =0 it )\ e \® N/a s \ % 3n/s By

lim 1 F 11 ! 31 3 (10)
= lim lo — —log— — —log — -
T °F, & 834 3 8%

Giauque and Johnston!! give for this quantity

* gk R( Log 2= 2 1) SR 3+ Rlog4, (%)
K =¥ = — —log — — —log — ) = —Rlog og 4, a
ne* — L log —leg o) = Rlog g

which is exactly our value. They consider ordinary hydrogen at the absolute
zero as a mixture of para-hydrogen and of nine species of ortho-hydrogen, in
accordance with the weight factor 3 X3 of the lowest ortho-state. Although
our final result is the same, Giauque and Johnston’s interpretation of quan-
tity (9a) as a paradox term does not seem a prior: plausible. We do not
compare ordinary hydrogen with the total of the separated constituents, but
with 1009, para-hydrogen. The conception of nine species of ortho-hydrogen
is confined to the absolute zero, whereas our analysis, following Fowler, is
generally applicable.

Fowler2 gives the quantity (3/4)R log 9, which value is not confirmed by
the above given analysis. In fact, only the first term of expression (9) is given
by Fowler. The second term, a paradox term, has resulted from our general
uniform analysis. This paradox term is intrinsic to entropy. Its significance
for diffusion problems constitutes only a special case.

In the monograph on Statistical Mechanics, page 163, one weight factor
3 is retained as an experiment, i.e., a correction (3/4)R log 3 is used. The
argument is, that nuclear weights must pursue hydrogen through all its
combinations. If a nuclear spin accompanies hydrogen in all compounds, then
I prefer to apply the full correction (9) to hydrogen and separate corrections
to its combinations.

I am very much indebted to Dr. G. van Hasselt, Amsterdam, for many
extensive discussions of the mathematical questions, and to Professor V. K.
La Mer for the preparation of the manuscript.

11 W, F. Giauque and H. L. Johnston, J. Am. Chem. Soc. 50, 3221 (1928).
2 R, H. Fowler, Proc. Roy. Soc. A118, 52 (1928).



